//===-- LLParser.cpp - Parser Class ---------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the parser class for .ll files. // //===----------------------------------------------------------------------===// #include "LLParser.h" #include "llvm/AutoUpgrade.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/ValueSymbolTable.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; namespace llvm { /// ValID - Represents a reference of a definition of some sort with no type. /// There are several cases where we have to parse the value but where the /// type can depend on later context. This may either be a numeric reference /// or a symbolic (%var) reference. This is just a discriminated union. struct ValID { enum { t_LocalID, t_GlobalID, // ID in UIntVal. t_LocalName, t_GlobalName, // Name in StrVal. t_APSInt, t_APFloat, // Value in APSIntVal/APFloatVal. t_Null, t_Undef, t_Zero, // No value. t_EmptyArray, // No value: [] t_Constant, // Value in ConstantVal. t_InlineAsm // Value in StrVal/StrVal2/UIntVal. } Kind; LLParser::LocTy Loc; unsigned UIntVal; std::string StrVal, StrVal2; APSInt APSIntVal; APFloat APFloatVal; Constant *ConstantVal; ValID() : APFloatVal(0.0) {} }; } /// Run: module ::= toplevelentity* bool LLParser::Run() { // Prime the lexer. Lex.Lex(); return ParseTopLevelEntities() || ValidateEndOfModule(); } /// ValidateEndOfModule - Do final validity and sanity checks at the end of the /// module. bool LLParser::ValidateEndOfModule() { if (!ForwardRefTypes.empty()) return Error(ForwardRefTypes.begin()->second.second, "use of undefined type named '" + ForwardRefTypes.begin()->first + "'"); if (!ForwardRefTypeIDs.empty()) return Error(ForwardRefTypeIDs.begin()->second.second, "use of undefined type '%" + utostr(ForwardRefTypeIDs.begin()->first) + "'"); if (!ForwardRefVals.empty()) return Error(ForwardRefVals.begin()->second.second, "use of undefined value '@" + ForwardRefVals.begin()->first + "'"); if (!ForwardRefValIDs.empty()) return Error(ForwardRefValIDs.begin()->second.second, "use of undefined value '@" + utostr(ForwardRefValIDs.begin()->first) + "'"); // Look for intrinsic functions and CallInst that need to be upgraded for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove return false; } //===----------------------------------------------------------------------===// // Top-Level Entities //===----------------------------------------------------------------------===// bool LLParser::ParseTopLevelEntities() { while (1) { switch (Lex.getKind()) { default: return TokError("expected top-level entity"); case lltok::Eof: return false; //case lltok::kw_define: case lltok::kw_declare: if (ParseDeclare()) return true; break; case lltok::kw_define: if (ParseDefine()) return true; break; case lltok::kw_module: if (ParseModuleAsm()) return true; break; case lltok::kw_target: if (ParseTargetDefinition()) return true; break; case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; case lltok::kw_type: if (ParseUnnamedType()) return true; break; case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0 case lltok::LocalVar: if (ParseNamedType()) return true; break; case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; // The Global variable production with no name can have many different // optional leading prefixes, the production is: // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal // OptionalAddrSpace ('constant'|'global') ... case lltok::kw_private: // OptionalLinkage case lltok::kw_internal: // OptionalLinkage case lltok::kw_weak: // OptionalLinkage case lltok::kw_weak_odr: // OptionalLinkage case lltok::kw_linkonce: // OptionalLinkage case lltok::kw_linkonce_odr: // OptionalLinkage case lltok::kw_appending: // OptionalLinkage case lltok::kw_dllexport: // OptionalLinkage case lltok::kw_common: // OptionalLinkage case lltok::kw_dllimport: // OptionalLinkage case lltok::kw_extern_weak: // OptionalLinkage case lltok::kw_external: { // OptionalLinkage unsigned Linkage, Visibility; if (ParseOptionalLinkage(Linkage) || ParseOptionalVisibility(Visibility) || ParseGlobal("", 0, Linkage, true, Visibility)) return true; break; } case lltok::kw_default: // OptionalVisibility case lltok::kw_hidden: // OptionalVisibility case lltok::kw_protected: { // OptionalVisibility unsigned Visibility; if (ParseOptionalVisibility(Visibility) || ParseGlobal("", 0, 0, false, Visibility)) return true; break; } case lltok::kw_thread_local: // OptionalThreadLocal case lltok::kw_addrspace: // OptionalAddrSpace case lltok::kw_constant: // GlobalType case lltok::kw_global: // GlobalType if (ParseGlobal("", 0, 0, false, 0)) return true; break; } } } /// toplevelentity /// ::= 'module' 'asm' STRINGCONSTANT bool LLParser::ParseModuleAsm() { assert(Lex.getKind() == lltok::kw_module); Lex.Lex(); std::string AsmStr; if (ParseToken(lltok::kw_asm, "expected 'module asm'") || ParseStringConstant(AsmStr)) return true; const std::string &AsmSoFar = M->getModuleInlineAsm(); if (AsmSoFar.empty()) M->setModuleInlineAsm(AsmStr); else M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr); return false; } /// toplevelentity /// ::= 'target' 'triple' '=' STRINGCONSTANT /// ::= 'target' 'datalayout' '=' STRINGCONSTANT bool LLParser::ParseTargetDefinition() { assert(Lex.getKind() == lltok::kw_target); std::string Str; switch (Lex.Lex()) { default: return TokError("unknown target property"); case lltok::kw_triple: Lex.Lex(); if (ParseToken(lltok::equal, "expected '=' after target triple") || ParseStringConstant(Str)) return true; M->setTargetTriple(Str); return false; case lltok::kw_datalayout: Lex.Lex(); if (ParseToken(lltok::equal, "expected '=' after target datalayout") || ParseStringConstant(Str)) return true; M->setDataLayout(Str); return false; } } /// toplevelentity /// ::= 'deplibs' '=' '[' ']' /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' bool LLParser::ParseDepLibs() { assert(Lex.getKind() == lltok::kw_deplibs); Lex.Lex(); if (ParseToken(lltok::equal, "expected '=' after deplibs") || ParseToken(lltok::lsquare, "expected '=' after deplibs")) return true; if (EatIfPresent(lltok::rsquare)) return false; std::string Str; if (ParseStringConstant(Str)) return true; M->addLibrary(Str); while (EatIfPresent(lltok::comma)) { if (ParseStringConstant(Str)) return true; M->addLibrary(Str); } return ParseToken(lltok::rsquare, "expected ']' at end of list"); } /// toplevelentity /// ::= 'type' type bool LLParser::ParseUnnamedType() { assert(Lex.getKind() == lltok::kw_type); LocTy TypeLoc = Lex.getLoc(); Lex.Lex(); // eat kw_type PATypeHolder Ty(Type::VoidTy); if (ParseType(Ty)) return true; unsigned TypeID = NumberedTypes.size(); // See if this type was previously referenced. std::map >::iterator FI = ForwardRefTypeIDs.find(TypeID); if (FI != ForwardRefTypeIDs.end()) { if (FI->second.first.get() == Ty) return Error(TypeLoc, "self referential type is invalid"); cast(FI->second.first.get())->refineAbstractTypeTo(Ty); Ty = FI->second.first.get(); ForwardRefTypeIDs.erase(FI); } NumberedTypes.push_back(Ty); return false; } /// toplevelentity /// ::= LocalVar '=' 'type' type bool LLParser::ParseNamedType() { std::string Name = Lex.getStrVal(); LocTy NameLoc = Lex.getLoc(); Lex.Lex(); // eat LocalVar. PATypeHolder Ty(Type::VoidTy); if (ParseToken(lltok::equal, "expected '=' after name") || ParseToken(lltok::kw_type, "expected 'type' after name") || ParseType(Ty)) return true; // Set the type name, checking for conflicts as we do so. bool AlreadyExists = M->addTypeName(Name, Ty); if (!AlreadyExists) return false; // See if this type is a forward reference. We need to eagerly resolve // types to allow recursive type redefinitions below. std::map >::iterator FI = ForwardRefTypes.find(Name); if (FI != ForwardRefTypes.end()) { if (FI->second.first.get() == Ty) return Error(NameLoc, "self referential type is invalid"); cast(FI->second.first.get())->refineAbstractTypeTo(Ty); Ty = FI->second.first.get(); ForwardRefTypes.erase(FI); } // Inserting a name that is already defined, get the existing name. const Type *Existing = M->getTypeByName(Name); assert(Existing && "Conflict but no matching type?!"); // Otherwise, this is an attempt to redefine a type. That's okay if // the redefinition is identical to the original. // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0 if (Existing == Ty) return false; // Any other kind of (non-equivalent) redefinition is an error. return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" + Ty->getDescription() + "'"); } /// toplevelentity /// ::= 'declare' FunctionHeader bool LLParser::ParseDeclare() { assert(Lex.getKind() == lltok::kw_declare); Lex.Lex(); Function *F; return ParseFunctionHeader(F, false); } /// toplevelentity /// ::= 'define' FunctionHeader '{' ... bool LLParser::ParseDefine() { assert(Lex.getKind() == lltok::kw_define); Lex.Lex(); Function *F; return ParseFunctionHeader(F, true) || ParseFunctionBody(*F); } /// ParseGlobalType /// ::= 'constant' /// ::= 'global' bool LLParser::ParseGlobalType(bool &IsConstant) { if (Lex.getKind() == lltok::kw_constant) IsConstant = true; else if (Lex.getKind() == lltok::kw_global) IsConstant = false; else { IsConstant = false; return TokError("expected 'global' or 'constant'"); } Lex.Lex(); return false; } /// ParseNamedGlobal: /// GlobalVar '=' OptionalVisibility ALIAS ... /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable bool LLParser::ParseNamedGlobal() { assert(Lex.getKind() == lltok::GlobalVar); LocTy NameLoc = Lex.getLoc(); std::string Name = Lex.getStrVal(); Lex.Lex(); bool HasLinkage; unsigned Linkage, Visibility; if (ParseToken(lltok::equal, "expected '=' in global variable") || ParseOptionalLinkage(Linkage, HasLinkage) || ParseOptionalVisibility(Visibility)) return true; if (HasLinkage || Lex.getKind() != lltok::kw_alias) return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); return ParseAlias(Name, NameLoc, Visibility); } /// ParseAlias: /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee /// Aliasee /// ::= TypeAndValue | 'bitcast' '(' TypeAndValue 'to' Type ')' /// /// Everything through visibility has already been parsed. /// bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, unsigned Visibility) { assert(Lex.getKind() == lltok::kw_alias); Lex.Lex(); unsigned Linkage; LocTy LinkageLoc = Lex.getLoc(); if (ParseOptionalLinkage(Linkage)) return true; if (Linkage != GlobalValue::ExternalLinkage && Linkage != GlobalValue::WeakAnyLinkage && Linkage != GlobalValue::WeakODRLinkage && Linkage != GlobalValue::InternalLinkage && Linkage != GlobalValue::PrivateLinkage) return Error(LinkageLoc, "invalid linkage type for alias"); Constant *Aliasee; LocTy AliaseeLoc = Lex.getLoc(); if (Lex.getKind() != lltok::kw_bitcast) { if (ParseGlobalTypeAndValue(Aliasee)) return true; } else { // The bitcast dest type is not present, it is implied by the dest type. ValID ID; if (ParseValID(ID)) return true; if (ID.Kind != ValID::t_Constant) return Error(AliaseeLoc, "invalid aliasee"); Aliasee = ID.ConstantVal; } if (!isa(Aliasee->getType())) return Error(AliaseeLoc, "alias must have pointer type"); // Okay, create the alias but do not insert it into the module yet. GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), (GlobalValue::LinkageTypes)Linkage, Name, Aliasee); GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); // See if this value already exists in the symbol table. If so, it is either // a redefinition or a definition of a forward reference. if (GlobalValue *Val = cast_or_null(M->getValueSymbolTable().lookup(Name))) { // See if this was a redefinition. If so, there is no entry in // ForwardRefVals. std::map >::iterator I = ForwardRefVals.find(Name); if (I == ForwardRefVals.end()) return Error(NameLoc, "redefinition of global named '@" + Name + "'"); // Otherwise, this was a definition of forward ref. Verify that types // agree. if (Val->getType() != GA->getType()) return Error(NameLoc, "forward reference and definition of alias have different types"); // If they agree, just RAUW the old value with the alias and remove the // forward ref info. Val->replaceAllUsesWith(GA); Val->eraseFromParent(); ForwardRefVals.erase(I); } // Insert into the module, we know its name won't collide now. M->getAliasList().push_back(GA); assert(GA->getNameStr() == Name && "Should not be a name conflict!"); return false; } /// ParseGlobal /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal /// OptionalAddrSpace GlobalType Type Const /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal /// OptionalAddrSpace GlobalType Type Const /// /// Everything through visibility has been parsed already. /// bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, unsigned Linkage, bool HasLinkage, unsigned Visibility) { unsigned AddrSpace; bool ThreadLocal, IsConstant; LocTy TyLoc; PATypeHolder Ty(Type::VoidTy); if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) || ParseOptionalAddrSpace(AddrSpace) || ParseGlobalType(IsConstant) || ParseType(Ty, TyLoc)) return true; // If the linkage is specified and is external, then no initializer is // present. Constant *Init = 0; if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage && Linkage != GlobalValue::ExternalWeakLinkage && Linkage != GlobalValue::ExternalLinkage)) { if (ParseGlobalValue(Ty, Init)) return true; } if (isa(Ty) || Ty == Type::LabelTy) return Error(TyLoc, "invalid type for global variable"); GlobalVariable *GV = 0; // See if the global was forward referenced, if so, use the global. if (!Name.empty()) { if ((GV = M->getGlobalVariable(Name, true)) && !ForwardRefVals.erase(Name)) return Error(NameLoc, "redefinition of global '@" + Name + "'"); } else { std::map >::iterator I = ForwardRefValIDs.find(NumberedVals.size()); if (I != ForwardRefValIDs.end()) { GV = cast(I->second.first); ForwardRefValIDs.erase(I); } } if (GV == 0) { GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name, M, false, AddrSpace); } else { if (GV->getType()->getElementType() != Ty) return Error(TyLoc, "forward reference and definition of global have different types"); // Move the forward-reference to the correct spot in the module. M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); } if (Name.empty()) NumberedVals.push_back(GV); // Set the parsed properties on the global. if (Init) GV->setInitializer(Init); GV->setConstant(IsConstant); GV->setLinkage((GlobalValue::LinkageTypes)Linkage); GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); GV->setThreadLocal(ThreadLocal); // Parse attributes on the global. while (Lex.getKind() == lltok::comma) { Lex.Lex(); if (Lex.getKind() == lltok::kw_section) { Lex.Lex(); GV->setSection(Lex.getStrVal()); if (ParseToken(lltok::StringConstant, "expected global section string")) return true; } else if (Lex.getKind() == lltok::kw_align) { unsigned Alignment; if (ParseOptionalAlignment(Alignment)) return true; GV->setAlignment(Alignment); } else { TokError("unknown global variable property!"); } } return false; } //===----------------------------------------------------------------------===// // GlobalValue Reference/Resolution Routines. //===----------------------------------------------------------------------===// /// GetGlobalVal - Get a value with the specified name or ID, creating a /// forward reference record if needed. This can return null if the value /// exists but does not have the right type. GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty, LocTy Loc) { const PointerType *PTy = dyn_cast(Ty); if (PTy == 0) { Error(Loc, "global variable reference must have pointer type"); return 0; } // Look this name up in the normal function symbol table. GlobalValue *Val = cast_or_null(M->getValueSymbolTable().lookup(Name)); // If this is a forward reference for the value, see if we already created a // forward ref record. if (Val == 0) { std::map >::iterator I = ForwardRefVals.find(Name); if (I != ForwardRefVals.end()) Val = I->second.first; } // If we have the value in the symbol table or fwd-ref table, return it. if (Val) { if (Val->getType() == Ty) return Val; Error(Loc, "'@" + Name + "' defined with type '" + Val->getType()->getDescription() + "'"); return 0; } // Otherwise, create a new forward reference for this value and remember it. GlobalValue *FwdVal; if (const FunctionType *FT = dyn_cast(PTy->getElementType())) { // Function types can return opaque but functions can't. if (isa(FT->getReturnType())) { Error(Loc, "function may not return opaque type"); return 0; } FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); } else { FwdVal = new GlobalVariable(PTy->getElementType(), false, GlobalValue::ExternalWeakLinkage, 0, Name, M); } ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); return FwdVal; } GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) { const PointerType *PTy = dyn_cast(Ty); if (PTy == 0) { Error(Loc, "global variable reference must have pointer type"); return 0; } GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; // If this is a forward reference for the value, see if we already created a // forward ref record. if (Val == 0) { std::map >::iterator I = ForwardRefValIDs.find(ID); if (I != ForwardRefValIDs.end()) Val = I->second.first; } // If we have the value in the symbol table or fwd-ref table, return it. if (Val) { if (Val->getType() == Ty) return Val; Error(Loc, "'@" + utostr(ID) + "' defined with type '" + Val->getType()->getDescription() + "'"); return 0; } // Otherwise, create a new forward reference for this value and remember it. GlobalValue *FwdVal; if (const FunctionType *FT = dyn_cast(PTy->getElementType())) { // Function types can return opaque but functions can't. if (isa(FT->getReturnType())) { Error(Loc, "function may not return opaque type"); return 0; } FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M); } else { FwdVal = new GlobalVariable(PTy->getElementType(), false, GlobalValue::ExternalWeakLinkage, 0, "", M); } ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); return FwdVal; } //===----------------------------------------------------------------------===// // Helper Routines. //===----------------------------------------------------------------------===// /// ParseToken - If the current token has the specified kind, eat it and return /// success. Otherwise, emit the specified error and return failure. bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { if (Lex.getKind() != T) return TokError(ErrMsg); Lex.Lex(); return false; } /// ParseStringConstant /// ::= StringConstant bool LLParser::ParseStringConstant(std::string &Result) { if (Lex.getKind() != lltok::StringConstant) return TokError("expected string constant"); Result = Lex.getStrVal(); Lex.Lex(); return false; } /// ParseUInt32 /// ::= uint32 bool LLParser::ParseUInt32(unsigned &Val) { if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) return TokError("expected integer"); uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); if (Val64 != unsigned(Val64)) return TokError("expected 32-bit integer (too large)"); Val = Val64; Lex.Lex(); return false; } /// ParseOptionalAddrSpace /// := /*empty*/ /// := 'addrspace' '(' uint32 ')' bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { AddrSpace = 0; if (!EatIfPresent(lltok::kw_addrspace)) return false; return ParseToken(lltok::lparen, "expected '(' in address space") || ParseUInt32(AddrSpace) || ParseToken(lltok::rparen, "expected ')' in address space"); } /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind /// indicates what kind of attribute list this is: 0: function arg, 1: result, /// 2: function attr. /// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0 bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) { Attrs = Attribute::None; LocTy AttrLoc = Lex.getLoc(); while (1) { switch (Lex.getKind()) { case lltok::kw_sext: case lltok::kw_zext: // Treat these as signext/zeroext if they occur in the argument list after // the value, as in "call i8 @foo(i8 10 sext)". If they occur before the // value, as in "call i8 @foo(i8 sext (" then it is part of a constant // expr. // FIXME: REMOVE THIS IN LLVM 3.0 if (AttrKind == 3) { if (Lex.getKind() == lltok::kw_sext) Attrs |= Attribute::SExt; else Attrs |= Attribute::ZExt; break; } // FALL THROUGH. default: // End of attributes. if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly)) return Error(AttrLoc, "invalid use of function-only attribute"); if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly)) return Error(AttrLoc, "invalid use of parameter-only attribute"); return false; case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break; case lltok::kw_signext: Attrs |= Attribute::SExt; break; case lltok::kw_inreg: Attrs |= Attribute::InReg; break; case lltok::kw_sret: Attrs |= Attribute::StructRet; break; case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break; case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break; case lltok::kw_byval: Attrs |= Attribute::ByVal; break; case lltok::kw_nest: Attrs |= Attribute::Nest; break; case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break; case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break; case lltok::kw_noinline: Attrs |= Attribute::NoInline; break; case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break; case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break; case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break; case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break; case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break; case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break; case lltok::kw_align: { unsigned Alignment; if (ParseOptionalAlignment(Alignment)) return true; Attrs |= Attribute::constructAlignmentFromInt(Alignment); continue; } } Lex.Lex(); } } /// ParseOptionalLinkage /// ::= /*empty*/ /// ::= 'private' /// ::= 'internal' /// ::= 'weak' /// ::= 'weak_odr' /// ::= 'linkonce' /// ::= 'linkonce_odr' /// ::= 'appending' /// ::= 'dllexport' /// ::= 'common' /// ::= 'dllimport' /// ::= 'extern_weak' /// ::= 'external' bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { HasLinkage = false; switch (Lex.getKind()) { default: Res = GlobalValue::ExternalLinkage; return false; case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break; case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break; case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; } Lex.Lex(); HasLinkage = true; return false; } /// ParseOptionalVisibility /// ::= /*empty*/ /// ::= 'default' /// ::= 'hidden' /// ::= 'protected' /// bool LLParser::ParseOptionalVisibility(unsigned &Res) { switch (Lex.getKind()) { default: Res = GlobalValue::DefaultVisibility; return false; case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; } Lex.Lex(); return false; } /// ParseOptionalCallingConv /// ::= /*empty*/ /// ::= 'ccc' /// ::= 'fastcc' /// ::= 'coldcc' /// ::= 'x86_stdcallcc' /// ::= 'x86_fastcallcc' /// ::= 'cc' UINT /// bool LLParser::ParseOptionalCallingConv(unsigned &CC) { switch (Lex.getKind()) { default: CC = CallingConv::C; return false; case lltok::kw_ccc: CC = CallingConv::C; break; case lltok::kw_fastcc: CC = CallingConv::Fast; break; case lltok::kw_coldcc: CC = CallingConv::Cold; break; case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; case lltok::kw_cc: Lex.Lex(); return ParseUInt32(CC); } Lex.Lex(); return false; } /// ParseOptionalAlignment /// ::= /* empty */ /// ::= 'align' 4 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { Alignment = 0; if (!EatIfPresent(lltok::kw_align)) return false; LocTy AlignLoc = Lex.getLoc(); if (ParseUInt32(Alignment)) return true; if (!isPowerOf2_32(Alignment)) return Error(AlignLoc, "alignment is not a power of two"); return false; } /// ParseOptionalCommaAlignment /// ::= /* empty */ /// ::= ',' 'align' 4 bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) { Alignment = 0; if (!EatIfPresent(lltok::comma)) return false; return ParseToken(lltok::kw_align, "expected 'align'") || ParseUInt32(Alignment); } /// ParseIndexList /// ::= (',' uint32)+ bool LLParser::ParseIndexList(SmallVectorImpl &Indices) { if (Lex.getKind() != lltok::comma) return TokError("expected ',' as start of index list"); while (EatIfPresent(lltok::comma)) { unsigned Idx; if (ParseUInt32(Idx)) return true; Indices.push_back(Idx); } return false; } //===----------------------------------------------------------------------===// // Type Parsing. //===----------------------------------------------------------------------===// /// ParseType - Parse and resolve a full type. bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) { LocTy TypeLoc = Lex.getLoc(); if (ParseTypeRec(Result)) return true; // Verify no unresolved uprefs. if (!UpRefs.empty()) return Error(UpRefs.back().Loc, "invalid unresolved type up reference"); if (!AllowVoid && Result.get() == Type::VoidTy) return Error(TypeLoc, "void type only allowed for function results"); return false; } /// HandleUpRefs - Every time we finish a new layer of types, this function is /// called. It loops through the UpRefs vector, which is a list of the /// currently active types. For each type, if the up-reference is contained in /// the newly completed type, we decrement the level count. When the level /// count reaches zero, the up-referenced type is the type that is passed in: /// thus we can complete the cycle. /// PATypeHolder LLParser::HandleUpRefs(const Type *ty) { // If Ty isn't abstract, or if there are no up-references in it, then there is // nothing to resolve here. if (!ty->isAbstract() || UpRefs.empty()) return ty; PATypeHolder Ty(ty); #if 0 errs() << "Type '" << Ty->getDescription() << "' newly formed. Resolving upreferences.\n" << UpRefs.size() << " upreferences active!\n"; #endif // If we find any resolvable upreferences (i.e., those whose NestingLevel goes // to zero), we resolve them all together before we resolve them to Ty. At // the end of the loop, if there is anything to resolve to Ty, it will be in // this variable. OpaqueType *TypeToResolve = 0; for (unsigned i = 0; i != UpRefs.size(); ++i) { // Determine if 'Ty' directly contains this up-references 'LastContainedTy'. bool ContainsType = std::find(Ty->subtype_begin(), Ty->subtype_end(), UpRefs[i].LastContainedTy) != Ty->subtype_end(); #if 0 errs() << " UR#" << i << " - TypeContains(" << Ty->getDescription() << ", " << UpRefs[i].LastContainedTy->getDescription() << ") = " << (ContainsType ? "true" : "false") << " level=" << UpRefs[i].NestingLevel << "\n"; #endif if (!ContainsType) continue; // Decrement level of upreference unsigned Level = --UpRefs[i].NestingLevel; UpRefs[i].LastContainedTy = Ty; // If the Up-reference has a non-zero level, it shouldn't be resolved yet. if (Level != 0) continue; #if 0 errs() << " * Resolving upreference for " << UpRefs[i].UpRefTy << "\n"; #endif if (!TypeToResolve) TypeToResolve = UpRefs[i].UpRefTy; else UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve); UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list. --i; // Do not skip the next element. } if (TypeToResolve) TypeToResolve->refineAbstractTypeTo(Ty); return Ty; } /// ParseTypeRec - The recursive function used to process the internal /// implementation details of types. bool LLParser::ParseTypeRec(PATypeHolder &Result) { switch (Lex.getKind()) { default: return TokError("expected type"); case lltok::Type: // TypeRec ::= 'float' | 'void' (etc) Result = Lex.getTyVal(); Lex.Lex(); break; case lltok::kw_opaque: // TypeRec ::= 'opaque' Result = OpaqueType::get(); Lex.Lex(); break; case lltok::lbrace: // TypeRec ::= '{' ... '}' if (ParseStructType(Result, false)) return true; break; case lltok::lsquare: // TypeRec ::= '[' ... ']' Lex.Lex(); // eat the lsquare. if (ParseArrayVectorType(Result, false)) return true; break; case lltok::less: // Either vector or packed struct. // TypeRec ::= '<' ... '>' Lex.Lex(); if (Lex.getKind() == lltok::lbrace) { if (ParseStructType(Result, true) || ParseToken(lltok::greater, "expected '>' at end of packed struct")) return true; } else if (ParseArrayVectorType(Result, true)) return true; break; case lltok::LocalVar: case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0 // TypeRec ::= %foo if (const Type *T = M->getTypeByName(Lex.getStrVal())) { Result = T; } else { Result = OpaqueType::get(); ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(), std::make_pair(Result, Lex.getLoc()))); M->addTypeName(Lex.getStrVal(), Result.get()); } Lex.Lex(); break; case lltok::LocalVarID: // TypeRec ::= %4 if (Lex.getUIntVal() < NumberedTypes.size()) Result = NumberedTypes[Lex.getUIntVal()]; else { std::map >::iterator I = ForwardRefTypeIDs.find(Lex.getUIntVal()); if (I != ForwardRefTypeIDs.end()) Result = I->second.first; else { Result = OpaqueType::get(); ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(), std::make_pair(Result, Lex.getLoc()))); } } Lex.Lex(); break; case lltok::backslash: { // TypeRec ::= '\' 4 Lex.Lex(); unsigned Val; if (ParseUInt32(Val)) return true; OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder. UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT)); Result = OT; break; } } // Parse the type suffixes. while (1) { switch (Lex.getKind()) { // End of type. default: return false; // TypeRec ::= TypeRec '*' case lltok::star: if (Result.get() == Type::LabelTy) return TokError("basic block pointers are invalid"); if (Result.get() == Type::VoidTy) return TokError("pointers to void are invalid; use i8* instead"); Result = HandleUpRefs(PointerType::getUnqual(Result.get())); Lex.Lex(); break; // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*' case lltok::kw_addrspace: { if (Result.get() == Type::LabelTy) return TokError("basic block pointers are invalid"); if (Result.get() == Type::VoidTy) return TokError("pointers to void are invalid; use i8* instead"); unsigned AddrSpace; if (ParseOptionalAddrSpace(AddrSpace) || ParseToken(lltok::star, "expected '*' in address space")) return true; Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace)); break; } /// Types '(' ArgTypeListI ')' OptFuncAttrs case lltok::lparen: if (ParseFunctionType(Result)) return true; break; } } } /// ParseParameterList /// ::= '(' ')' /// ::= '(' Arg (',' Arg)* ')' /// Arg /// ::= Type OptionalAttributes Value OptionalAttributes bool LLParser::ParseParameterList(SmallVectorImpl &ArgList, PerFunctionState &PFS) { if (ParseToken(lltok::lparen, "expected '(' in call")) return true; while (Lex.getKind() != lltok::rparen) { // If this isn't the first argument, we need a comma. if (!ArgList.empty() && ParseToken(lltok::comma, "expected ',' in argument list")) return true; // Parse the argument. LocTy ArgLoc; PATypeHolder ArgTy(Type::VoidTy); unsigned ArgAttrs1, ArgAttrs2; Value *V; if (ParseType(ArgTy, ArgLoc) || ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS) || // FIXME: Should not allow attributes after the argument, remove this in // LLVM 3.0. ParseOptionalAttrs(ArgAttrs2, 3)) return true; ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2)); } Lex.Lex(); // Lex the ')'. return false; } /// ParseArgumentList - Parse the argument list for a function type or function /// prototype. If 'inType' is true then we are parsing a FunctionType. /// ::= '(' ArgTypeListI ')' /// ArgTypeListI /// ::= /*empty*/ /// ::= '...' /// ::= ArgTypeList ',' '...' /// ::= ArgType (',' ArgType)* /// bool LLParser::ParseArgumentList(std::vector &ArgList, bool &isVarArg, bool inType) { isVarArg = false; assert(Lex.getKind() == lltok::lparen); Lex.Lex(); // eat the (. if (Lex.getKind() == lltok::rparen) { // empty } else if (Lex.getKind() == lltok::dotdotdot) { isVarArg = true; Lex.Lex(); } else { LocTy TypeLoc = Lex.getLoc(); PATypeHolder ArgTy(Type::VoidTy); unsigned Attrs; std::string Name; // If we're parsing a type, use ParseTypeRec, because we allow recursive // types (such as a function returning a pointer to itself). If parsing a // function prototype, we require fully resolved types. if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) || ParseOptionalAttrs(Attrs, 0)) return true; if (ArgTy == Type::VoidTy) return Error(TypeLoc, "argument can not have void type"); if (Lex.getKind() == lltok::LocalVar || Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0 Name = Lex.getStrVal(); Lex.Lex(); } if (!ArgTy->isFirstClassType() && !isa(ArgTy)) return Error(TypeLoc, "invalid type for function argument"); ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); while (EatIfPresent(lltok::comma)) { // Handle ... at end of arg list. if (EatIfPresent(lltok::dotdotdot)) { isVarArg = true; break; } // Otherwise must be an argument type. TypeLoc = Lex.getLoc(); if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) || ParseOptionalAttrs(Attrs, 0)) return true; if (ArgTy == Type::VoidTy) return Error(TypeLoc, "argument can not have void type"); if (Lex.getKind() == lltok::LocalVar || Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0 Name = Lex.getStrVal(); Lex.Lex(); } else { Name = ""; } if (!ArgTy->isFirstClassType() && !isa(ArgTy)) return Error(TypeLoc, "invalid type for function argument"); ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); } } return ParseToken(lltok::rparen, "expected ')' at end of argument list"); } /// ParseFunctionType /// ::= Type ArgumentList OptionalAttrs bool LLParser::ParseFunctionType(PATypeHolder &Result) { assert(Lex.getKind() == lltok::lparen); if (!FunctionType::isValidReturnType(Result)) return TokError("invalid function return type"); std::vector ArgList; bool isVarArg; unsigned Attrs; if (ParseArgumentList(ArgList, isVarArg, true) || // FIXME: Allow, but ignore attributes on function types! // FIXME: Remove in LLVM 3.0 ParseOptionalAttrs(Attrs, 2)) return true; // Reject names on the arguments lists. for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { if (!ArgList[i].Name.empty()) return Error(ArgList[i].Loc, "argument name invalid in function type"); if (!ArgList[i].Attrs != 0) { // Allow but ignore attributes on function types; this permits // auto-upgrade. // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0 } } std::vector ArgListTy; for (unsigned i = 0, e = ArgList.size(); i != e; ++i) ArgListTy.push_back(ArgList[i].Type); Result = HandleUpRefs(FunctionType::get(Result.get(), ArgListTy, isVarArg)); return false; } /// ParseStructType: Handles packed and unpacked types. parsed elsewhere. /// TypeRec /// ::= '{' '}' /// ::= '{' TypeRec (',' TypeRec)* '}' /// ::= '<' '{' '}' '>' /// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>' bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) { assert(Lex.getKind() == lltok::lbrace); Lex.Lex(); // Consume the '{' if (EatIfPresent(lltok::rbrace)) { Result = StructType::get(std::vector(), Packed); return false; } std::vector ParamsList; LocTy EltTyLoc = Lex.getLoc(); if (ParseTypeRec(Result)) return true; ParamsList.push_back(Result); if (Result == Type::VoidTy) return Error(EltTyLoc, "struct element can not have void type"); while (EatIfPresent(lltok::comma)) { EltTyLoc = Lex.getLoc(); if (ParseTypeRec(Result)) return true; if (Result == Type::VoidTy) return Error(EltTyLoc, "struct element can not have void type"); ParamsList.push_back(Result); } if (ParseToken(lltok::rbrace, "expected '}' at end of struct")) return true; std::vector ParamsListTy; for (unsigned i = 0, e = ParamsList.size(); i != e; ++i) ParamsListTy.push_back(ParamsList[i].get()); Result = HandleUpRefs(StructType::get(ParamsListTy, Packed)); return false; } /// ParseArrayVectorType - Parse an array or vector type, assuming the first /// token has already been consumed. /// TypeRec /// ::= '[' APSINTVAL 'x' Types ']' /// ::= '<' APSINTVAL 'x' Types '>' bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) { if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || Lex.getAPSIntVal().getBitWidth() > 64) return TokError("expected number in address space"); LocTy SizeLoc = Lex.getLoc(); uint64_t Size = Lex.getAPSIntVal().getZExtValue(); Lex.Lex(); if (ParseToken(lltok::kw_x, "expected 'x' after element count")) return true; LocTy TypeLoc = Lex.getLoc(); PATypeHolder EltTy(Type::VoidTy); if (ParseTypeRec(EltTy)) return true; if (EltTy == Type::VoidTy) return Error(TypeLoc, "array and vector element type cannot be void"); if (ParseToken(isVector ? lltok::greater : lltok::rsquare, "expected end of sequential type")) return true; if (isVector) { if (Size == 0) return Error(SizeLoc, "zero element vector is illegal"); if ((unsigned)Size != Size) return Error(SizeLoc, "size too large for vector"); if (!EltTy->isFloatingPoint() && !EltTy->isInteger()) return Error(TypeLoc, "vector element type must be fp or integer"); Result = VectorType::get(EltTy, unsigned(Size)); } else { if (!EltTy->isFirstClassType() && !isa(EltTy)) return Error(TypeLoc, "invalid array element type"); Result = HandleUpRefs(ArrayType::get(EltTy, Size)); } return false; } //===----------------------------------------------------------------------===// // Function Semantic Analysis. //===----------------------------------------------------------------------===// LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f) : P(p), F(f) { // Insert unnamed arguments into the NumberedVals list. for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; ++AI) if (!AI->hasName()) NumberedVals.push_back(AI); } LLParser::PerFunctionState::~PerFunctionState() { // If there were any forward referenced non-basicblock values, delete them. for (std::map >::iterator I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I) if (!isa(I->second.first)) { I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first ->getType())); delete I->second.first; I->second.first = 0; } for (std::map >::iterator I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I) if (!isa(I->second.first)) { I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first ->getType())); delete I->second.first; I->second.first = 0; } } bool LLParser::PerFunctionState::VerifyFunctionComplete() { if (!ForwardRefVals.empty()) return P.Error(ForwardRefVals.begin()->second.second, "use of undefined value '%" + ForwardRefVals.begin()->first + "'"); if (!ForwardRefValIDs.empty()) return P.Error(ForwardRefValIDs.begin()->second.second, "use of undefined value '%" + utostr(ForwardRefValIDs.begin()->first) + "'"); return false; } /// GetVal - Get a value with the specified name or ID, creating a /// forward reference record if needed. This can return null if the value /// exists but does not have the right type. Value *LLParser::PerFunctionState::GetVal(const std::string &Name, const Type *Ty, LocTy Loc) { // Look this name up in the normal function symbol table. Value *Val = F.getValueSymbolTable().lookup(Name); // If this is a forward reference for the value, see if we already created a // forward ref record. if (Val == 0) { std::map >::iterator I = ForwardRefVals.find(Name); if (I != ForwardRefVals.end()) Val = I->second.first; } // If we have the value in the symbol table or fwd-ref table, return it. if (Val) { if (Val->getType() == Ty) return Val; if (Ty == Type::LabelTy) P.Error(Loc, "'%" + Name + "' is not a basic block"); else P.Error(Loc, "'%" + Name + "' defined with type '" + Val->getType()->getDescription() + "'"); return 0; } // Don't make placeholders with invalid type. if (!Ty->isFirstClassType() && !isa(Ty) && Ty != Type::LabelTy) { P.Error(Loc, "invalid use of a non-first-class type"); return 0; } // Otherwise, create a new forward reference for this value and remember it. Value *FwdVal; if (Ty == Type::LabelTy) FwdVal = BasicBlock::Create(Name, &F); else FwdVal = new Argument(Ty, Name); ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); return FwdVal; } Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty, LocTy Loc) { // Look this name up in the normal function symbol table. Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; // If this is a forward reference for the value, see if we already created a // forward ref record. if (Val == 0) { std::map >::iterator I = ForwardRefValIDs.find(ID); if (I != ForwardRefValIDs.end()) Val = I->second.first; } // If we have the value in the symbol table or fwd-ref table, return it. if (Val) { if (Val->getType() == Ty) return Val; if (Ty == Type::LabelTy) P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block"); else P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" + Val->getType()->getDescription() + "'"); return 0; } if (!Ty->isFirstClassType() && !isa(Ty) && Ty != Type::LabelTy) { P.Error(Loc, "invalid use of a non-first-class type"); return 0; } // Otherwise, create a new forward reference for this value and remember it. Value *FwdVal; if (Ty == Type::LabelTy) FwdVal = BasicBlock::Create("", &F); else FwdVal = new Argument(Ty); ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); return FwdVal; } /// SetInstName - After an instruction is parsed and inserted into its /// basic block, this installs its name. bool LLParser::PerFunctionState::SetInstName(int NameID, const std::string &NameStr, LocTy NameLoc, Instruction *Inst) { // If this instruction has void type, it cannot have a name or ID specified. if (Inst->getType() == Type::VoidTy) { if (NameID != -1 || !NameStr.empty()) return P.Error(NameLoc, "instructions returning void cannot have a name"); return false; } // If this was a numbered instruction, verify that the instruction is the // expected value and resolve any forward references. if (NameStr.empty()) { // If neither a name nor an ID was specified, just use the next ID. if (NameID == -1) NameID = NumberedVals.size(); if (unsigned(NameID) != NumberedVals.size()) return P.Error(NameLoc, "instruction expected to be numbered '%" + utostr(NumberedVals.size()) + "'"); std::map >::iterator FI = ForwardRefValIDs.find(NameID); if (FI != ForwardRefValIDs.end()) { if (FI->second.first->getType() != Inst->getType()) return P.Error(NameLoc, "instruction forward referenced with type '" + FI->second.first->getType()->getDescription() + "'"); FI->second.first->replaceAllUsesWith(Inst); ForwardRefValIDs.erase(FI); } NumberedVals.push_back(Inst); return false; } // Otherwise, the instruction had a name. Resolve forward refs and set it. std::map >::iterator FI = ForwardRefVals.find(NameStr); if (FI != ForwardRefVals.end()) { if (FI->second.first->getType() != Inst->getType()) return P.Error(NameLoc, "instruction forward referenced with type '" + FI->second.first->getType()->getDescription() + "'"); FI->second.first->replaceAllUsesWith(Inst); ForwardRefVals.erase(FI); } // Set the name on the instruction. Inst->setName(NameStr); if (Inst->getNameStr() != NameStr) return P.Error(NameLoc, "multiple definition of local value named '" + NameStr + "'"); return false; } /// GetBB - Get a basic block with the specified name or ID, creating a /// forward reference record if needed. BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, LocTy Loc) { return cast_or_null(GetVal(Name, Type::LabelTy, Loc)); } BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { return cast_or_null(GetVal(ID, Type::LabelTy, Loc)); } /// DefineBB - Define the specified basic block, which is either named or /// unnamed. If there is an error, this returns null otherwise it returns /// the block being defined. BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, LocTy Loc) { BasicBlock *BB; if (Name.empty()) BB = GetBB(NumberedVals.size(), Loc); else BB = GetBB(Name, Loc); if (BB == 0) return 0; // Already diagnosed error. // Move the block to the end of the function. Forward ref'd blocks are // inserted wherever they happen to be referenced. F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); // Remove the block from forward ref sets. if (Name.empty()) { ForwardRefValIDs.erase(NumberedVals.size()); NumberedVals.push_back(BB); } else { // BB forward references are already in the function symbol table. ForwardRefVals.erase(Name); } return BB; } //===----------------------------------------------------------------------===// // Constants. //===----------------------------------------------------------------------===// /// ParseValID - Parse an abstract value that doesn't necessarily have a /// type implied. For example, if we parse "4" we don't know what integer type /// it has. The value will later be combined with its type and checked for /// sanity. bool LLParser::ParseValID(ValID &ID) { ID.Loc = Lex.getLoc(); switch (Lex.getKind()) { default: return TokError("expected value token"); case lltok::GlobalID: // @42 ID.UIntVal = Lex.getUIntVal(); ID.Kind = ValID::t_GlobalID; break; case lltok::GlobalVar: // @foo ID.StrVal = Lex.getStrVal(); ID.Kind = ValID::t_GlobalName; break; case lltok::LocalVarID: // %42 ID.UIntVal = Lex.getUIntVal(); ID.Kind = ValID::t_LocalID; break; case lltok::LocalVar: // %foo case lltok::StringConstant: // "foo" - FIXME: REMOVE IN LLVM 3.0 ID.StrVal = Lex.getStrVal(); ID.Kind = ValID::t_LocalName; break; case lltok::APSInt: ID.APSIntVal = Lex.getAPSIntVal(); ID.Kind = ValID::t_APSInt; break; case lltok::APFloat: ID.APFloatVal = Lex.getAPFloatVal(); ID.Kind = ValID::t_APFloat; break; case lltok::kw_true: ID.ConstantVal = ConstantInt::getTrue(); ID.Kind = ValID::t_Constant; break; case lltok::kw_false: ID.ConstantVal = ConstantInt::getFalse(); ID.Kind = ValID::t_Constant; break; case lltok::kw_null: ID.Kind = ValID::t_Null; break; case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; case lltok::lbrace: { // ValID ::= '{' ConstVector '}' Lex.Lex(); SmallVector Elts; if (ParseGlobalValueVector(Elts) || ParseToken(lltok::rbrace, "expected end of struct constant")) return true; ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), false); ID.Kind = ValID::t_Constant; return false; } case lltok::less: { // ValID ::= '<' ConstVector '>' --> Vector. // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. Lex.Lex(); bool isPackedStruct = EatIfPresent(lltok::lbrace); SmallVector Elts; LocTy FirstEltLoc = Lex.getLoc(); if (ParseGlobalValueVector(Elts) || (isPackedStruct && ParseToken(lltok::rbrace, "expected end of packed struct")) || ParseToken(lltok::greater, "expected end of constant")) return true; if (isPackedStruct) { ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), true); ID.Kind = ValID::t_Constant; return false; } if (Elts.empty()) return Error(ID.Loc, "constant vector must not be empty"); if (!Elts[0]->getType()->isInteger() && !Elts[0]->getType()->isFloatingPoint()) return Error(FirstEltLoc, "vector elements must have integer or floating point type"); // Verify that all the vector elements have the same type. for (unsigned i = 1, e = Elts.size(); i != e; ++i) if (Elts[i]->getType() != Elts[0]->getType()) return Error(FirstEltLoc, "vector element #" + utostr(i) + " is not of type '" + Elts[0]->getType()->getDescription()); ID.ConstantVal = ConstantVector::get(&Elts[0], Elts.size()); ID.Kind = ValID::t_Constant; return false; } case lltok::lsquare: { // Array Constant Lex.Lex(); SmallVector Elts; LocTy FirstEltLoc = Lex.getLoc(); if (ParseGlobalValueVector(Elts) || ParseToken(lltok::rsquare, "expected end of array constant")) return true; // Handle empty element. if (Elts.empty()) { // Use undef instead of an array because it's inconvenient to determine // the element type at this point, there being no elements to examine. ID.Kind = ValID::t_EmptyArray; return false; } if (!Elts[0]->getType()->isFirstClassType()) return Error(FirstEltLoc, "invalid array element type: " + Elts[0]->getType()->getDescription()); ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); // Verify all elements are correct type! for (unsigned i = 0, e = Elts.size(); i != e; ++i) { if (Elts[i]->getType() != Elts[0]->getType()) return Error(FirstEltLoc, "array element #" + utostr(i) + " is not of type '" +Elts[0]->getType()->getDescription()); } ID.ConstantVal = ConstantArray::get(ATy, &Elts[0], Elts.size()); ID.Kind = ValID::t_Constant; return false; } case lltok::kw_c: // c "foo" Lex.Lex(); ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false); if (ParseToken(lltok::StringConstant, "expected string")) return true; ID.Kind = ValID::t_Constant; return false; case lltok::kw_asm: { // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT bool HasSideEffect; Lex.Lex(); if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || ParseStringConstant(ID.StrVal) || ParseToken(lltok::comma, "expected comma in inline asm expression") || ParseToken(lltok::StringConstant, "expected constraint string")) return true; ID.StrVal2 = Lex.getStrVal(); ID.UIntVal = HasSideEffect; ID.Kind = ValID::t_InlineAsm; return false; } case lltok::kw_trunc: case lltok::kw_zext: case lltok::kw_sext: case lltok::kw_fptrunc: case lltok::kw_fpext: case lltok::kw_bitcast: case lltok::kw_uitofp: case lltok::kw_sitofp: case lltok::kw_fptoui: case lltok::kw_fptosi: case lltok::kw_inttoptr: case lltok::kw_ptrtoint: { unsigned Opc = Lex.getUIntVal(); PATypeHolder DestTy(Type::VoidTy); Constant *SrcVal; Lex.Lex(); if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || ParseGlobalTypeAndValue(SrcVal) || ParseToken(lltok::kw_to, "expected 'to' int constantexpr cast") || ParseType(DestTy) || ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) return true; if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) return Error(ID.Loc, "invalid cast opcode for cast from '" + SrcVal->getType()->getDescription() + "' to '" + DestTy->getDescription() + "'"); ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal, DestTy); ID.Kind = ValID::t_Constant; return false; } case lltok::kw_extractvalue: { Lex.Lex(); Constant *Val; SmallVector Indices; if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| ParseGlobalTypeAndValue(Val) || ParseIndexList(Indices) || ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) return true; if (!isa(Val->getType()) && !isa(Val->getType())) return Error(ID.Loc, "extractvalue operand must be array or struct"); if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(), Indices.end())) return Error(ID.Loc, "invalid indices for extractvalue"); ID.ConstantVal = ConstantExpr::getExtractValue(Val, &Indices[0], Indices.size()); ID.Kind = ValID::t_Constant; return false; } case lltok::kw_insertvalue: { Lex.Lex(); Constant *Val0, *Val1; SmallVector Indices; if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| ParseGlobalTypeAndValue(Val0) || ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| ParseGlobalTypeAndValue(Val1) || ParseIndexList(Indices) || ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) return true; if (!isa(Val0->getType()) && !isa(Val0->getType())) return Error(ID.Loc, "extractvalue operand must be array or struct"); if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(), Indices.end())) return Error(ID.Loc, "invalid indices for insertvalue"); ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, &Indices[0], Indices.size()); ID.Kind = ValID::t_Constant; return false; } case lltok::kw_icmp: case lltok::kw_fcmp: case lltok::kw_vicmp: case lltok::kw_vfcmp: { unsigned PredVal, Opc = Lex.getUIntVal(); Constant *Val0, *Val1; Lex.Lex(); if (ParseCmpPredicate(PredVal, Opc) || ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || ParseGlobalTypeAndValue(Val0) || ParseToken(lltok::comma, "expected comma in compare constantexpr") || ParseGlobalTypeAndValue(Val1) || ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) return true; if (Val0->getType() != Val1->getType()) return Error(ID.Loc, "compare operands must have the same type"); CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; if (Opc == Instruction::FCmp) { if (!Val0->getType()->isFPOrFPVector()) return Error(ID.Loc, "fcmp requires floating point operands"); ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); } else if (Opc == Instruction::ICmp) { if (!Val0->getType()->isIntOrIntVector() && !isa(Val0->getType())) return Error(ID.Loc, "icmp requires pointer or integer operands"); ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); } else if (Opc == Instruction::VFCmp) { // FIXME: REMOVE VFCMP Support if (!Val0->getType()->isFPOrFPVector() || !isa(Val0->getType())) return Error(ID.Loc, "vfcmp requires vector floating point operands"); ID.ConstantVal = ConstantExpr::getVFCmp(Pred, Val0, Val1); } else if (Opc == Instruction::VICmp) { // FIXME: REMOVE VICMP Support if (!Val0->getType()->isIntOrIntVector() || !isa(Val0->getType())) return Error(ID.Loc, "vicmp requires vector floating point operands"); ID.ConstantVal = ConstantExpr::getVICmp(Pred, Val0, Val1); } ID.Kind = ValID::t_Constant; return false; } // Binary Operators. case lltok::kw_add: case lltok::kw_sub: case lltok::kw_mul: case lltok::kw_udiv: case lltok::kw_sdiv: case lltok::kw_fdiv: case lltok::kw_urem: case lltok::kw_srem: case lltok::kw_frem: { unsigned Opc = Lex.getUIntVal(); Constant *Val0, *Val1; Lex.Lex(); if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || ParseGlobalTypeAndValue(Val0) || ParseToken(lltok::comma, "expected comma in binary constantexpr") || ParseGlobalTypeAndValue(Val1) || ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) return true; if (Val0->getType() != Val1->getType()) return Error(ID.Loc, "operands of constexpr must have same type"); if (!Val0->getType()->isIntOrIntVector() && !Val0->getType()->isFPOrFPVector()) return Error(ID.Loc,"constexpr requires integer, fp, or vector operands"); ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); ID.Kind = ValID::t_Constant; return false; } // Logical Operations case lltok::kw_shl: case lltok::kw_lshr: case lltok::kw_ashr: case lltok::kw_and: case lltok::kw_or: case lltok::kw_xor: { unsigned Opc = Lex.getUIntVal(); Constant *Val0, *Val1; Lex.Lex(); if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || ParseGlobalTypeAndValue(Val0) || ParseToken(lltok::comma, "expected comma in logical constantexpr") || ParseGlobalTypeAndValue(Val1) || ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) return true; if (Val0->getType() != Val1->getType()) return Error(ID.Loc, "operands of constexpr must have same type"); if (!Val0->getType()->isIntOrIntVector()) return Error(ID.Loc, "constexpr requires integer or integer vector operands"); ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); ID.Kind = ValID::t_Constant; return false; } case lltok::kw_getelementptr: case lltok::kw_shufflevector: case lltok::kw_insertelement: case lltok::kw_extractelement: case lltok::kw_select: { unsigned Opc = Lex.getUIntVal(); SmallVector Elts; Lex.Lex(); if (ParseToken(lltok::lparen, "expected '(' in constantexpr") || ParseGlobalValueVector(Elts) || ParseToken(lltok::rparen, "expected ')' in constantexpr")) return true; if (Opc == Instruction::GetElementPtr) { if (Elts.size() == 0 || !isa(Elts[0]->getType())) return Error(ID.Loc, "getelementptr requires pointer operand"); if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), (Value**)&Elts[1], Elts.size()-1)) return Error(ID.Loc, "invalid indices for getelementptr"); ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1); } else if (Opc == Instruction::Select) { if (Elts.size() != 3) return Error(ID.Loc, "expected three operands to select"); if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], Elts[2])) return Error(ID.Loc, Reason); ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); } else if (Opc == Instruction::ShuffleVector) { if (Elts.size() != 3) return Error(ID.Loc, "expected three operands to shufflevector"); if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) return Error(ID.Loc, "invalid operands to shufflevector"); ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); } else if (Opc == Instruction::ExtractElement) { if (Elts.size() != 2) return Error(ID.Loc, "expected two operands to extractelement"); if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) return Error(ID.Loc, "invalid extractelement operands"); ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); } else { assert(Opc == Instruction::InsertElement && "Unknown opcode"); if (Elts.size() != 3) return Error(ID.Loc, "expected three operands to insertelement"); if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) return Error(ID.Loc, "invalid insertelement operands"); ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); } ID.Kind = ValID::t_Constant; return false; } } Lex.Lex(); return false; } /// ParseGlobalValue - Parse a global value with the specified type. bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) { V = 0; ValID ID; return ParseValID(ID) || ConvertGlobalValIDToValue(Ty, ID, V); } /// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved /// constant. bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID, Constant *&V) { if (isa(Ty)) return Error(ID.Loc, "functions are not values, refer to them as pointers"); switch (ID.Kind) { default: assert(0 && "Unknown ValID!"); case ValID::t_LocalID: case ValID::t_LocalName: return Error(ID.Loc, "invalid use of function-local name"); case ValID::t_InlineAsm: return Error(ID.Loc, "inline asm can only be an operand of call/invoke"); case ValID::t_GlobalName: V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); return V == 0; case ValID::t_GlobalID: V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); return V == 0; case ValID::t_APSInt: if (!isa(Ty)) return Error(ID.Loc, "integer constant must have integer type"); ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); V = ConstantInt::get(ID.APSIntVal); return false; case ValID::t_APFloat: if (!Ty->isFloatingPoint() || !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) return Error(ID.Loc, "floating point constant invalid for type"); // The lexer has no type info, so builds all float and double FP constants // as double. Fix this here. Long double does not need this. if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble && Ty == Type::FloatTy) { bool Ignored; ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Ignored); } V = ConstantFP::get(ID.APFloatVal); if (V->getType() != Ty) return Error(ID.Loc, "floating point constant does not have type '" + Ty->getDescription() + "'"); return false; case ValID::t_Null: if (!isa(Ty)) return Error(ID.Loc, "null must be a pointer type"); V = ConstantPointerNull::get(cast(Ty)); return false; case ValID::t_Undef: // FIXME: LabelTy should not be a first-class type. if ((!Ty->isFirstClassType() || Ty == Type::LabelTy) && !isa(Ty)) return Error(ID.Loc, "invalid type for undef constant"); V = UndefValue::get(Ty); return false; case ValID::t_EmptyArray: if (!isa(Ty) || cast(Ty)->getNumElements() != 0) return Error(ID.Loc, "invalid empty array initializer"); V = UndefValue::get(Ty); return false; case ValID::t_Zero: // FIXME: LabelTy should not be a first-class type. if (!Ty->isFirstClassType() || Ty == Type::LabelTy) return Error(ID.Loc, "invalid type for null constant"); V = Constant::getNullValue(Ty); return false; case ValID::t_Constant: if (ID.ConstantVal->getType() != Ty) return Error(ID.Loc, "constant expression type mismatch"); V = ID.ConstantVal; return false; } } bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { PATypeHolder Type(Type::VoidTy); return ParseType(Type) || ParseGlobalValue(Type, V); } /// ParseGlobalValueVector /// ::= /*empty*/ /// ::= TypeAndValue (',' TypeAndValue)* bool LLParser::ParseGlobalValueVector(SmallVectorImpl &Elts) { // Empty list. if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::rsquare || Lex.getKind() == lltok::greater || Lex.getKind() == lltok::rparen) return false; Constant *C; if (ParseGlobalTypeAndValue(C)) return true; Elts.push_back(C); while (EatIfPresent(lltok::comma)) { if (ParseGlobalTypeAndValue(C)) return true; Elts.push_back(C); } return false; } //===----------------------------------------------------------------------===// // Function Parsing. //===----------------------------------------------------------------------===// bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V, PerFunctionState &PFS) { if (ID.Kind == ValID::t_LocalID) V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc); else if (ID.Kind == ValID::t_LocalName) V = PFS.GetVal(ID.StrVal, Ty, ID.Loc); else if (ID.Kind == ValID::t_InlineAsm) { const PointerType *PTy = dyn_cast(Ty); const FunctionType *FTy = PTy ? dyn_cast(PTy->getElementType()) : 0; if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2)) return Error(ID.Loc, "invalid type for inline asm constraint string"); V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal); return false; } else { Constant *C; if (ConvertGlobalValIDToValue(Ty, ID, C)) return true; V = C; return false; } return V == 0; } bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) { V = 0; ValID ID; return ParseValID(ID) || ConvertValIDToValue(Ty, ID, V, PFS); } bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) { PATypeHolder T(Type::VoidTy); return ParseType(T) || ParseValue(T, V, PFS); } /// FunctionHeader /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs /// Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection /// OptionalAlign OptGC bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { // Parse the linkage. LocTy LinkageLoc = Lex.getLoc(); unsigned Linkage; unsigned Visibility, CC, RetAttrs; PATypeHolder RetType(Type::VoidTy); LocTy RetTypeLoc = Lex.getLoc(); if (ParseOptionalLinkage(Linkage) || ParseOptionalVisibility(Visibility) || ParseOptionalCallingConv(CC) || ParseOptionalAttrs(RetAttrs, 1) || ParseType(RetType, RetTypeLoc, true /*void allowed*/)) return true; // Verify that the linkage is ok. switch ((GlobalValue::LinkageTypes)Linkage) { case GlobalValue::ExternalLinkage: break; // always ok. case GlobalValue::DLLImportLinkage: case GlobalValue::ExternalWeakLinkage: if (isDefine) return Error(LinkageLoc, "invalid linkage for function definition"); break; case GlobalValue::PrivateLinkage: case GlobalValue::InternalLinkage: case GlobalValue::LinkOnceAnyLinkage: case GlobalValue::LinkOnceODRLinkage: case GlobalValue::WeakAnyLinkage: case GlobalValue::WeakODRLinkage: case GlobalValue::DLLExportLinkage: if (!isDefine) return Error(LinkageLoc, "invalid linkage for function declaration"); break; case GlobalValue::AppendingLinkage: case GlobalValue::GhostLinkage: case GlobalValue::CommonLinkage: return Error(LinkageLoc, "invalid function linkage type"); } if (!FunctionType::isValidReturnType(RetType) || isa(RetType)) return Error(RetTypeLoc, "invalid function return type"); LocTy NameLoc = Lex.getLoc(); std::string FunctionName; if (Lex.getKind() == lltok::GlobalVar) { FunctionName = Lex.getStrVal(); } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. unsigned NameID = Lex.getUIntVal(); if (NameID != NumberedVals.size()) return TokError("function expected to be numbered '%" + utostr(NumberedVals.size()) + "'"); } else { return TokError("expected function name"); } Lex.Lex(); if (Lex.getKind() != lltok::lparen) return TokError("expected '(' in function argument list"); std::vector ArgList; bool isVarArg; unsigned FuncAttrs; std::string Section; unsigned Alignment; std::string GC; if (ParseArgumentList(ArgList, isVarArg, false) || ParseOptionalAttrs(FuncAttrs, 2) || (EatIfPresent(lltok::kw_section) && ParseStringConstant(Section)) || ParseOptionalAlignment(Alignment) || (EatIfPresent(lltok::kw_gc) && ParseStringConstant(GC))) return true; // If the alignment was parsed as an attribute, move to the alignment field. if (FuncAttrs & Attribute::Alignment) { Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs); FuncAttrs &= ~Attribute::Alignment; } // Okay, if we got here, the function is syntactically valid. Convert types // and do semantic checks. std::vector ParamTypeList; SmallVector Attrs; // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function // attributes. unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg; if (FuncAttrs & ObsoleteFuncAttrs) { RetAttrs |= FuncAttrs & ObsoleteFuncAttrs; FuncAttrs &= ~ObsoleteFuncAttrs; } if (RetAttrs != Attribute::None) Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { ParamTypeList.push_back(ArgList[i].Type); if (ArgList[i].Attrs != Attribute::None) Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); } if (FuncAttrs != Attribute::None) Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs)); AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); if (PAL.paramHasAttr(1, Attribute::StructRet) && RetType != Type::VoidTy) return Error(RetTypeLoc, "functions with 'sret' argument must return void"); const FunctionType *FT = FunctionType::get(RetType, ParamTypeList, isVarArg); const PointerType *PFT = PointerType::getUnqual(FT); Fn = 0; if (!FunctionName.empty()) { // If this was a definition of a forward reference, remove the definition // from the forward reference table and fill in the forward ref. std::map >::iterator FRVI = ForwardRefVals.find(FunctionName); if (FRVI != ForwardRefVals.end()) { Fn = M->getFunction(FunctionName); ForwardRefVals.erase(FRVI); } else if ((Fn = M->getFunction(FunctionName))) { // If this function already exists in the symbol table, then it is // multiply defined. We accept a few cases for old backwards compat. // FIXME: Remove this stuff for LLVM 3.0. if (Fn->getType() != PFT || Fn->getAttributes() != PAL || (!Fn->isDeclaration() && isDefine)) { // If the redefinition has different type or different attributes, // reject it. If both have bodies, reject it. return Error(NameLoc, "invalid redefinition of function '" + FunctionName + "'"); } else if (Fn->isDeclaration()) { // Make sure to strip off any argument names so we can't get conflicts. for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end(); AI != AE; ++AI) AI->setName(""); } } } else if (FunctionName.empty()) { // If this is a definition of a forward referenced function, make sure the // types agree. std::map >::iterator I = ForwardRefValIDs.find(NumberedVals.size()); if (I != ForwardRefValIDs.end()) { Fn = cast(I->second.first); if (Fn->getType() != PFT) return Error(NameLoc, "type of definition and forward reference of '@" + utostr(NumberedVals.size()) +"' disagree"); ForwardRefValIDs.erase(I); } } if (Fn == 0) Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); else // Move the forward-reference to the correct spot in the module. M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); if (FunctionName.empty()) NumberedVals.push_back(Fn); Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); Fn->setCallingConv(CC); Fn->setAttributes(PAL); Fn->setAlignment(Alignment); Fn->setSection(Section); if (!GC.empty()) Fn->setGC(GC.c_str()); // Add all of the arguments we parsed to the function. Function::arg_iterator ArgIt = Fn->arg_begin(); for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { // If the argument has a name, insert it into the argument symbol table. if (ArgList[i].Name.empty()) continue; // Set the name, if it conflicted, it will be auto-renamed. ArgIt->setName(ArgList[i].Name); if (ArgIt->getNameStr() != ArgList[i].Name) return Error(ArgList[i].Loc, "redefinition of argument '%" + ArgList[i].Name + "'"); } return false; } /// ParseFunctionBody /// ::= '{' BasicBlock+ '}' /// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0 /// bool LLParser::ParseFunctionBody(Function &Fn) { if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin) return TokError("expected '{' in function body"); Lex.Lex(); // eat the {. PerFunctionState PFS(*this, Fn); while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end) if (ParseBasicBlock(PFS)) return true; // Eat the }. Lex.Lex(); // Verify function is ok. return PFS.VerifyFunctionComplete(); } /// ParseBasicBlock /// ::= LabelStr? Instruction* bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { // If this basic block starts out with a name, remember it. std::string Name; LocTy NameLoc = Lex.getLoc(); if (Lex.getKind() == lltok::LabelStr) { Name = Lex.getStrVal(); Lex.Lex(); } BasicBlock *BB = PFS.DefineBB(Name, NameLoc); if (BB == 0) return true; std::string NameStr; // Parse the instructions in this block until we get a terminator. Instruction *Inst; do { // This instruction may have three possibilities for a name: a) none // specified, b) name specified "%foo =", c) number specified: "%4 =". LocTy NameLoc = Lex.getLoc(); int NameID = -1; NameStr = ""; if (Lex.getKind() == lltok::LocalVarID) { NameID = Lex.getUIntVal(); Lex.Lex(); if (ParseToken(lltok::equal, "expected '=' after instruction id")) return true; } else if (Lex.getKind() == lltok::LocalVar || // FIXME: REMOVE IN LLVM 3.0 Lex.getKind() == lltok::StringConstant) { NameStr = Lex.getStrVal(); Lex.Lex(); if (ParseToken(lltok::equal, "expected '=' after instruction name")) return true; } if (ParseInstruction(Inst, BB, PFS)) return true; BB->getInstList().push_back(Inst); // Set the name on the instruction. if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; } while (!isa(Inst)); return false; } //===----------------------------------------------------------------------===// // Instruction Parsing. //===----------------------------------------------------------------------===// /// ParseInstruction - Parse one of the many different instructions. /// bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, PerFunctionState &PFS) { lltok::Kind Token = Lex.getKind(); if (Token == lltok::Eof) return TokError("found end of file when expecting more instructions"); LocTy Loc = Lex.getLoc(); unsigned KeywordVal = Lex.getUIntVal(); Lex.Lex(); // Eat the keyword. switch (Token) { default: return Error(Loc, "expected instruction opcode"); // Terminator Instructions. case lltok::kw_unwind: Inst = new UnwindInst(); return false; case lltok::kw_unreachable: Inst = new UnreachableInst(); return false; case lltok::kw_ret: return ParseRet(Inst, BB, PFS); case lltok::kw_br: return ParseBr(Inst, PFS); case lltok::kw_switch: return ParseSwitch(Inst, PFS); case lltok::kw_invoke: return ParseInvoke(Inst, PFS); // Binary Operators. case lltok::kw_add: case lltok::kw_sub: case lltok::kw_mul: return ParseArithmetic(Inst, PFS, KeywordVal, 0); case lltok::kw_udiv: case lltok::kw_sdiv: case lltok::kw_urem: case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); case lltok::kw_fdiv: case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2); case lltok::kw_shl: case lltok::kw_lshr: case lltok::kw_ashr: case lltok::kw_and: case lltok::kw_or: case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); case lltok::kw_icmp: case lltok::kw_fcmp: case lltok::kw_vicmp: case lltok::kw_vfcmp: return ParseCompare(Inst, PFS, KeywordVal); // Casts. case lltok::kw_trunc: case lltok::kw_zext: case lltok::kw_sext: case lltok::kw_fptrunc: case lltok::kw_fpext: case lltok::kw_bitcast: case lltok::kw_uitofp: case lltok::kw_sitofp: case lltok::kw_fptoui: case lltok::kw_fptosi: case lltok::kw_inttoptr: case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); // Other. case lltok::kw_select: return ParseSelect(Inst, PFS); case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); case lltok::kw_phi: return ParsePHI(Inst, PFS); case lltok::kw_call: return ParseCall(Inst, PFS, false); case lltok::kw_tail: return ParseCall(Inst, PFS, true); // Memory. case lltok::kw_alloca: case lltok::kw_malloc: return ParseAlloc(Inst, PFS, KeywordVal); case lltok::kw_free: return ParseFree(Inst, PFS); case lltok::kw_load: return ParseLoad(Inst, PFS, false); case lltok::kw_store: return ParseStore(Inst, PFS, false); case lltok::kw_volatile: if (EatIfPresent(lltok::kw_load)) return ParseLoad(Inst, PFS, true); else if (EatIfPresent(lltok::kw_store)) return ParseStore(Inst, PFS, true); else return TokError("expected 'load' or 'store'"); case lltok::kw_getresult: return ParseGetResult(Inst, PFS); case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); } } /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { // FIXME: REMOVE vicmp/vfcmp! if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) { switch (Lex.getKind()) { default: TokError("expected fcmp predicate (e.g. 'oeq')"); case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; case lltok::kw_one: P = CmpInst::FCMP_ONE; break; case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; case lltok::kw_une: P = CmpInst::FCMP_UNE; break; case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; } } else { switch (Lex.getKind()) { default: TokError("expected icmp predicate (e.g. 'eq')"); case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; case lltok::kw_ne: P = CmpInst::ICMP_NE; break; case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; } } Lex.Lex(); return false; } //===----------------------------------------------------------------------===// // Terminator Instructions. //===----------------------------------------------------------------------===// /// ParseRet - Parse a return instruction. /// ::= 'ret' void /// ::= 'ret' TypeAndValue /// ::= 'ret' TypeAndValue (',' TypeAndValue)+ [[obsolete: LLVM 3.0]] bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, PerFunctionState &PFS) { PATypeHolder Ty(Type::VoidTy); if (ParseType(Ty, true /*void allowed*/)) return true; if (Ty == Type::VoidTy) { Inst = ReturnInst::Create(); return false; } Value *RV; if (ParseValue(Ty, RV, PFS)) return true; // The normal case is one return value. if (Lex.getKind() == lltok::comma) { // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use // of 'ret {i32,i32} {i32 1, i32 2}' SmallVector RVs; RVs.push_back(RV); while (EatIfPresent(lltok::comma)) { if (ParseTypeAndValue(RV, PFS)) return true; RVs.push_back(RV); } RV = UndefValue::get(PFS.getFunction().getReturnType()); for (unsigned i = 0, e = RVs.size(); i != e; ++i) { Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv"); BB->getInstList().push_back(I); RV = I; } } Inst = ReturnInst::Create(RV); return false; } /// ParseBr /// ::= 'br' TypeAndValue /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { LocTy Loc, Loc2; Value *Op0, *Op1, *Op2; if (ParseTypeAndValue(Op0, Loc, PFS)) return true; if (BasicBlock *BB = dyn_cast(Op0)) { Inst = BranchInst::Create(BB); return false; } if (Op0->getType() != Type::Int1Ty) return Error(Loc, "branch condition must have 'i1' type"); if (ParseToken(lltok::comma, "expected ',' after branch condition") || ParseTypeAndValue(Op1, Loc, PFS) || ParseToken(lltok::comma, "expected ',' after true destination") || ParseTypeAndValue(Op2, Loc2, PFS)) return true; if (!isa(Op1)) return Error(Loc, "true destination of branch must be a basic block"); if (!isa(Op2)) return Error(Loc2, "true destination of branch must be a basic block"); Inst = BranchInst::Create(cast(Op1), cast(Op2), Op0); return false; } /// ParseSwitch /// Instruction /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' /// JumpTable /// ::= (TypeAndValue ',' TypeAndValue)* bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { LocTy CondLoc, BBLoc; Value *Cond, *DefaultBB; if (ParseTypeAndValue(Cond, CondLoc, PFS) || ParseToken(lltok::comma, "expected ',' after switch condition") || ParseTypeAndValue(DefaultBB, BBLoc, PFS) || ParseToken(lltok::lsquare, "expected '[' with switch table")) return true; if (!isa(Cond->getType())) return Error(CondLoc, "switch condition must have integer type"); if (!isa(DefaultBB)) return Error(BBLoc, "default destination must be a basic block"); // Parse the jump table pairs. SmallPtrSet SeenCases; SmallVector, 32> Table; while (Lex.getKind() != lltok::rsquare) { Value *Constant, *DestBB; if (ParseTypeAndValue(Constant, CondLoc, PFS) || ParseToken(lltok::comma, "expected ',' after case value") || ParseTypeAndValue(DestBB, BBLoc, PFS)) return true; if (!SeenCases.insert(Constant)) return Error(CondLoc, "duplicate case value in switch"); if (!isa(Constant)) return Error(CondLoc, "case value is not a constant integer"); if (!isa(DestBB)) return Error(BBLoc, "case destination is not a basic block"); Table.push_back(std::make_pair(cast(Constant), cast(DestBB))); } Lex.Lex(); // Eat the ']'. SwitchInst *SI = SwitchInst::Create(Cond, cast(DefaultBB), Table.size()); for (unsigned i = 0, e = Table.size(); i != e; ++i) SI->addCase(Table[i].first, Table[i].second); Inst = SI; return false; } /// ParseInvoke /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { LocTy CallLoc = Lex.getLoc(); unsigned CC, RetAttrs, FnAttrs; PATypeHolder RetType(Type::VoidTy); LocTy RetTypeLoc; ValID CalleeID; SmallVector ArgList; Value *NormalBB, *UnwindBB; if (ParseOptionalCallingConv(CC) || ParseOptionalAttrs(RetAttrs, 1) || ParseType(RetType, RetTypeLoc, true /*void allowed*/) || ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || ParseOptionalAttrs(FnAttrs, 2) || ParseToken(lltok::kw_to, "expected 'to' in invoke") || ParseTypeAndValue(NormalBB, PFS) || ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || ParseTypeAndValue(UnwindBB, PFS)) return true; if (!isa(NormalBB)) return Error(CallLoc, "normal destination is not a basic block"); if (!isa(UnwindBB)) return Error(CallLoc, "unwind destination is not a basic block"); // If RetType is a non-function pointer type, then this is the short syntax // for the call, which means that RetType is just the return type. Infer the // rest of the function argument types from the arguments that are present. const PointerType *PFTy = 0; const FunctionType *Ty = 0; if (!(PFTy = dyn_cast(RetType)) || !(Ty = dyn_cast(PFTy->getElementType()))) { // Pull out the types of all of the arguments... std::vector ParamTypes; for (unsigned i = 0, e = ArgList.size(); i != e; ++i) ParamTypes.push_back(ArgList[i].V->getType()); if (!FunctionType::isValidReturnType(RetType)) return Error(RetTypeLoc, "Invalid result type for LLVM function"); Ty = FunctionType::get(RetType, ParamTypes, false); PFTy = PointerType::getUnqual(Ty); } // Look up the callee. Value *Callee; if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true; // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional // function attributes. unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg; if (FnAttrs & ObsoleteFuncAttrs) { RetAttrs |= FnAttrs & ObsoleteFuncAttrs; FnAttrs &= ~ObsoleteFuncAttrs; } // Set up the Attributes for the function. SmallVector Attrs; if (RetAttrs != Attribute::None) Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); SmallVector Args; // Loop through FunctionType's arguments and ensure they are specified // correctly. Also, gather any parameter attributes. FunctionType::param_iterator I = Ty->param_begin(); FunctionType::param_iterator E = Ty->param_end(); for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { const Type *ExpectedTy = 0; if (I != E) { ExpectedTy = *I++; } else if (!Ty->isVarArg()) { return Error(ArgList[i].Loc, "too many arguments specified"); } if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) return Error(ArgList[i].Loc, "argument is not of expected type '" + ExpectedTy->getDescription() + "'"); Args.push_back(ArgList[i].V); if (ArgList[i].Attrs != Attribute::None) Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); } if (I != E) return Error(CallLoc, "not enough parameters specified for call"); if (FnAttrs != Attribute::None) Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); // Finish off the Attributes and check them AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); InvokeInst *II = InvokeInst::Create(Callee, cast(NormalBB), cast(UnwindBB), Args.begin(), Args.end()); II->setCallingConv(CC); II->setAttributes(PAL); Inst = II; return false; } //===----------------------------------------------------------------------===// // Binary Operators. //===----------------------------------------------------------------------===// /// ParseArithmetic /// ::= ArithmeticOps TypeAndValue ',' Value /// /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, /// then any integer operand is allowed, if it is 2, any fp operand is allowed. bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, unsigned Opc, unsigned OperandType) { LocTy Loc; Value *LHS, *RHS; if (ParseTypeAndValue(LHS, Loc, PFS) || ParseToken(lltok::comma, "expected ',' in arithmetic operation") || ParseValue(LHS->getType(), RHS, PFS)) return true; bool Valid; switch (OperandType) { default: assert(0 && "Unknown operand type!"); case 0: // int or FP. Valid = LHS->getType()->isIntOrIntVector() || LHS->getType()->isFPOrFPVector(); break; case 1: Valid = LHS->getType()->isIntOrIntVector(); break; case 2: Valid = LHS->getType()->isFPOrFPVector(); break; } if (!Valid) return Error(Loc, "invalid operand type for instruction"); Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); return false; } /// ParseLogical /// ::= ArithmeticOps TypeAndValue ',' Value { bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, unsigned Opc) { LocTy Loc; Value *LHS, *RHS; if (ParseTypeAndValue(LHS, Loc, PFS) || ParseToken(lltok::comma, "expected ',' in logical operation") || ParseValue(LHS->getType(), RHS, PFS)) return true; if (!LHS->getType()->isIntOrIntVector()) return Error(Loc,"instruction requires integer or integer vector operands"); Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); return false; } /// ParseCompare /// ::= 'icmp' IPredicates TypeAndValue ',' Value /// ::= 'fcmp' FPredicates TypeAndValue ',' Value /// ::= 'vicmp' IPredicates TypeAndValue ',' Value /// ::= 'vfcmp' FPredicates TypeAndValue ',' Value bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, unsigned Opc) { // Parse the integer/fp comparison predicate. LocTy Loc; unsigned Pred; Value *LHS, *RHS; if (ParseCmpPredicate(Pred, Opc) || ParseTypeAndValue(LHS, Loc, PFS) || ParseToken(lltok::comma, "expected ',' after compare value") || ParseValue(LHS->getType(), RHS, PFS)) return true; if (Opc == Instruction::FCmp) { if (!LHS->getType()->isFPOrFPVector()) return Error(Loc, "fcmp requires floating point operands"); Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); } else if (Opc == Instruction::ICmp) { if (!LHS->getType()->isIntOrIntVector() && !isa(LHS->getType())) return Error(Loc, "icmp requires integer operands"); Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); } else if (Opc == Instruction::VFCmp) { if (!LHS->getType()->isFPOrFPVector() || !isa(LHS->getType())) return Error(Loc, "vfcmp requires vector floating point operands"); Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS); } else if (Opc == Instruction::VICmp) { if (!LHS->getType()->isIntOrIntVector() || !isa(LHS->getType())) return Error(Loc, "vicmp requires vector floating point operands"); Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS); } return false; } //===----------------------------------------------------------------------===// // Other Instructions. //===----------------------------------------------------------------------===// /// ParseCast /// ::= CastOpc TypeAndValue 'to' Type bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, unsigned Opc) { LocTy Loc; Value *Op; PATypeHolder DestTy(Type::VoidTy); if (ParseTypeAndValue(Op, Loc, PFS) || ParseToken(lltok::kw_to, "expected 'to' after cast value") || ParseType(DestTy)) return true; if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); return Error(Loc, "invalid cast opcode for cast from '" + Op->getType()->getDescription() + "' to '" + DestTy->getDescription() + "'"); } Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); return false; } /// ParseSelect /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { LocTy Loc; Value *Op0, *Op1, *Op2; if (ParseTypeAndValue(Op0, Loc, PFS) || ParseToken(lltok::comma, "expected ',' after select condition") || ParseTypeAndValue(Op1, PFS) || ParseToken(lltok::comma, "expected ',' after select value") || ParseTypeAndValue(Op2, PFS)) return true; if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) return Error(Loc, Reason); Inst = SelectInst::Create(Op0, Op1, Op2); return false; } /// ParseVA_Arg /// ::= 'va_arg' TypeAndValue ',' Type bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { Value *Op; PATypeHolder EltTy(Type::VoidTy); LocTy TypeLoc; if (ParseTypeAndValue(Op, PFS) || ParseToken(lltok::comma, "expected ',' after vaarg operand") || ParseType(EltTy, TypeLoc)) return true; if (!EltTy->isFirstClassType()) return Error(TypeLoc, "va_arg requires operand with first class type"); Inst = new VAArgInst(Op, EltTy); return false; } /// ParseExtractElement /// ::= 'extractelement' TypeAndValue ',' TypeAndValue bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { LocTy Loc; Value *Op0, *Op1; if (ParseTypeAndValue(Op0, Loc, PFS) || ParseToken(lltok::comma, "expected ',' after extract value") || ParseTypeAndValue(Op1, PFS)) return true; if (!ExtractElementInst::isValidOperands(Op0, Op1)) return Error(Loc, "invalid extractelement operands"); Inst = new ExtractElementInst(Op0, Op1); return false; } /// ParseInsertElement /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { LocTy Loc; Value *Op0, *Op1, *Op2; if (ParseTypeAndValue(Op0, Loc, PFS) || ParseToken(lltok::comma, "expected ',' after insertelement value") || ParseTypeAndValue(Op1, PFS) || ParseToken(lltok::comma, "expected ',' after insertelement value") || ParseTypeAndValue(Op2, PFS)) return true; if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) return Error(Loc, "invalid extractelement operands"); Inst = InsertElementInst::Create(Op0, Op1, Op2); return false; } /// ParseShuffleVector /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { LocTy Loc; Value *Op0, *Op1, *Op2; if (ParseTypeAndValue(Op0, Loc, PFS) || ParseToken(lltok::comma, "expected ',' after shuffle mask") || ParseTypeAndValue(Op1, PFS) || ParseToken(lltok::comma, "expected ',' after shuffle value") || ParseTypeAndValue(Op2, PFS)) return true; if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) return Error(Loc, "invalid extractelement operands"); Inst = new ShuffleVectorInst(Op0, Op1, Op2); return false; } /// ParsePHI /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')* bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { PATypeHolder Ty(Type::VoidTy); Value *Op0, *Op1; LocTy TypeLoc = Lex.getLoc(); if (ParseType(Ty) || ParseToken(lltok::lsquare, "expected '[' in phi value list") || ParseValue(Ty, Op0, PFS) || ParseToken(lltok::comma, "expected ',' after insertelement value") || ParseValue(Type::LabelTy, Op1, PFS) || ParseToken(lltok::rsquare, "expected ']' in phi value list")) return true; SmallVector, 16> PHIVals; while (1) { PHIVals.push_back(std::make_pair(Op0, cast(Op1))); if (!EatIfPresent(lltok::comma)) break; if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || ParseValue(Ty, Op0, PFS) || ParseToken(lltok::comma, "expected ',' after insertelement value") || ParseValue(Type::LabelTy, Op1, PFS) || ParseToken(lltok::rsquare, "expected ']' in phi value list")) return true; } if (!Ty->isFirstClassType()) return Error(TypeLoc, "phi node must have first class type"); PHINode *PN = PHINode::Create(Ty); PN->reserveOperandSpace(PHIVals.size()); for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) PN->addIncoming(PHIVals[i].first, PHIVals[i].second); Inst = PN; return false; } /// ParseCall /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value /// ParameterList OptionalAttrs bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, bool isTail) { unsigned CC, RetAttrs, FnAttrs; PATypeHolder RetType(Type::VoidTy); LocTy RetTypeLoc; ValID CalleeID; SmallVector ArgList; LocTy CallLoc = Lex.getLoc(); if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) || ParseOptionalCallingConv(CC) || ParseOptionalAttrs(RetAttrs, 1) || ParseType(RetType, RetTypeLoc, true /*void allowed*/) || ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || ParseOptionalAttrs(FnAttrs, 2)) return true; // If RetType is a non-function pointer type, then this is the short syntax // for the call, which means that RetType is just the return type. Infer the // rest of the function argument types from the arguments that are present. const PointerType *PFTy = 0; const FunctionType *Ty = 0; if (!(PFTy = dyn_cast(RetType)) || !(Ty = dyn_cast(PFTy->getElementType()))) { // Pull out the types of all of the arguments... std::vector ParamTypes; for (unsigned i = 0, e = ArgList.size(); i != e; ++i) ParamTypes.push_back(ArgList[i].V->getType()); if (!FunctionType::isValidReturnType(RetType)) return Error(RetTypeLoc, "Invalid result type for LLVM function"); Ty = FunctionType::get(RetType, ParamTypes, false); PFTy = PointerType::getUnqual(Ty); } // Look up the callee. Value *Callee; if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true; // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional // function attributes. unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg; if (FnAttrs & ObsoleteFuncAttrs) { RetAttrs |= FnAttrs & ObsoleteFuncAttrs; FnAttrs &= ~ObsoleteFuncAttrs; } // Set up the Attributes for the function. SmallVector Attrs; if (RetAttrs != Attribute::None) Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); SmallVector Args; // Loop through FunctionType's arguments and ensure they are specified // correctly. Also, gather any parameter attributes. FunctionType::param_iterator I = Ty->param_begin(); FunctionType::param_iterator E = Ty->param_end(); for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { const Type *ExpectedTy = 0; if (I != E) { ExpectedTy = *I++; } else if (!Ty->isVarArg()) { return Error(ArgList[i].Loc, "too many arguments specified"); } if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) return Error(ArgList[i].Loc, "argument is not of expected type '" + ExpectedTy->getDescription() + "'"); Args.push_back(ArgList[i].V); if (ArgList[i].Attrs != Attribute::None) Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); } if (I != E) return Error(CallLoc, "not enough parameters specified for call"); if (FnAttrs != Attribute::None) Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); // Finish off the Attributes and check them AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end()); CI->setTailCall(isTail); CI->setCallingConv(CC); CI->setAttributes(PAL); Inst = CI; return false; } //===----------------------------------------------------------------------===// // Memory Instructions. //===----------------------------------------------------------------------===// /// ParseAlloc /// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)? /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)? bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS, unsigned Opc) { PATypeHolder Ty(Type::VoidTy); Value *Size = 0; LocTy SizeLoc = 0; unsigned Alignment = 0; if (ParseType(Ty)) return true; if (EatIfPresent(lltok::comma)) { if (Lex.getKind() == lltok::kw_align) { if (ParseOptionalAlignment(Alignment)) return true; } else if (ParseTypeAndValue(Size, SizeLoc, PFS) || ParseOptionalCommaAlignment(Alignment)) { return true; } } if (Size && Size->getType() != Type::Int32Ty) return Error(SizeLoc, "element count must be i32"); if (Opc == Instruction::Malloc) Inst = new MallocInst(Ty, Size, Alignment); else Inst = new AllocaInst(Ty, Size, Alignment); return false; } /// ParseFree /// ::= 'free' TypeAndValue bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) { Value *Val; LocTy Loc; if (ParseTypeAndValue(Val, Loc, PFS)) return true; if (!isa(Val->getType())) return Error(Loc, "operand to free must be a pointer"); Inst = new FreeInst(Val); return false; } /// ParseLoad /// ::= 'volatile'? 'load' TypeAndValue (',' 'align' uint)? bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS, bool isVolatile) { Value *Val; LocTy Loc; unsigned Alignment; if (ParseTypeAndValue(Val, Loc, PFS) || ParseOptionalCommaAlignment(Alignment)) return true; if (!isa(Val->getType()) || !cast(Val->getType())->getElementType()->isFirstClassType()) return Error(Loc, "load operand must be a pointer to a first class type"); Inst = new LoadInst(Val, "", isVolatile, Alignment); return false; } /// ParseStore /// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' uint)? bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS, bool isVolatile) { Value *Val, *Ptr; LocTy Loc, PtrLoc; unsigned Alignment; if (ParseTypeAndValue(Val, Loc, PFS) || ParseToken(lltok::comma, "expected ',' after store operand") || ParseTypeAndValue(Ptr, PtrLoc, PFS) || ParseOptionalCommaAlignment(Alignment)) return true; if (!isa(Ptr->getType())) return Error(PtrLoc, "store operand must be a pointer"); if (!Val->getType()->isFirstClassType()) return Error(Loc, "store operand must be a first class value"); if (cast(Ptr->getType())->getElementType() != Val->getType()) return Error(Loc, "stored value and pointer type do not match"); Inst = new StoreInst(Val, Ptr, isVolatile, Alignment); return false; } /// ParseGetResult /// ::= 'getresult' TypeAndValue ',' uint /// FIXME: Remove support for getresult in LLVM 3.0 bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) { Value *Val; LocTy ValLoc, EltLoc; unsigned Element; if (ParseTypeAndValue(Val, ValLoc, PFS) || ParseToken(lltok::comma, "expected ',' after getresult operand") || ParseUInt32(Element, EltLoc)) return true; if (!isa(Val->getType()) && !isa(Val->getType())) return Error(ValLoc, "getresult inst requires an aggregate operand"); if (!ExtractValueInst::getIndexedType(Val->getType(), Element)) return Error(EltLoc, "invalid getresult index for value"); Inst = ExtractValueInst::Create(Val, Element); return false; } /// ParseGetElementPtr /// ::= 'getelementptr' TypeAndValue (',' TypeAndValue)* bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { Value *Ptr, *Val; LocTy Loc, EltLoc; if (ParseTypeAndValue(Ptr, Loc, PFS)) return true; if (!isa(Ptr->getType())) return Error(Loc, "base of getelementptr must be a pointer"); SmallVector Indices; while (EatIfPresent(lltok::comma)) { if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; if (!isa(Val->getType())) return Error(EltLoc, "getelementptr index must be an integer"); Indices.push_back(Val); } if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices.begin(), Indices.end())) return Error(Loc, "invalid getelementptr indices"); Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end()); return false; } /// ParseExtractValue /// ::= 'extractvalue' TypeAndValue (',' uint32)+ bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { Value *Val; LocTy Loc; SmallVector Indices; if (ParseTypeAndValue(Val, Loc, PFS) || ParseIndexList(Indices)) return true; if (!isa(Val->getType()) && !isa(Val->getType())) return Error(Loc, "extractvalue operand must be array or struct"); if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(), Indices.end())) return Error(Loc, "invalid indices for extractvalue"); Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end()); return false; } /// ParseInsertValue /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { Value *Val0, *Val1; LocTy Loc0, Loc1; SmallVector Indices; if (ParseTypeAndValue(Val0, Loc0, PFS) || ParseToken(lltok::comma, "expected comma after insertvalue operand") || ParseTypeAndValue(Val1, Loc1, PFS) || ParseIndexList(Indices)) return true; if (!isa(Val0->getType()) && !isa(Val0->getType())) return Error(Loc0, "extractvalue operand must be array or struct"); if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(), Indices.end())) return Error(Loc0, "invalid indices for insertvalue"); Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end()); return false; }