//===- BitstreamReader.h - Low-level bitstream reader interface -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This header defines the BitstreamReader class. This class can be used to // read an arbitrary bitstream, regardless of its contents. // //===----------------------------------------------------------------------===// #ifndef LLVM_BITCODE_BITSTREAMREADER_H #define LLVM_BITCODE_BITSTREAMREADER_H #include "llvm/ADT/OwningPtr.h" #include "llvm/Bitcode/BitCodes.h" #include "llvm/Support/Endian.h" #include "llvm/Support/StreamableMemoryObject.h" #include <climits> #include <string> #include <vector> namespace llvm { class Deserializer; /// BitstreamReader - This class is used to read from an LLVM bitcode stream, /// maintaining information that is global to decoding the entire file. While /// a file is being read, multiple cursors can be independently advanced or /// skipped around within the file. These are represented by the /// BitstreamCursor class. class BitstreamReader { public: /// BlockInfo - This contains information emitted to BLOCKINFO_BLOCK blocks. /// These describe abbreviations that all blocks of the specified ID inherit. struct BlockInfo { unsigned BlockID; std::vector<BitCodeAbbrev*> Abbrevs; std::string Name; std::vector<std::pair<unsigned, std::string> > RecordNames; }; private: OwningPtr<StreamableMemoryObject> BitcodeBytes; std::vector<BlockInfo> BlockInfoRecords; /// IgnoreBlockInfoNames - This is set to true if we don't care about the /// block/record name information in the BlockInfo block. Only llvm-bcanalyzer /// uses this. bool IgnoreBlockInfoNames; BitstreamReader(const BitstreamReader&) LLVM_DELETED_FUNCTION; void operator=(const BitstreamReader&) LLVM_DELETED_FUNCTION; public: BitstreamReader() : IgnoreBlockInfoNames(true) { } BitstreamReader(const unsigned char *Start, const unsigned char *End) { IgnoreBlockInfoNames = true; init(Start, End); } BitstreamReader(StreamableMemoryObject *bytes) { BitcodeBytes.reset(bytes); } void init(const unsigned char *Start, const unsigned char *End) { assert(((End-Start) & 3) == 0 &&"Bitcode stream not a multiple of 4 bytes"); BitcodeBytes.reset(getNonStreamedMemoryObject(Start, End)); } StreamableMemoryObject &getBitcodeBytes() { return *BitcodeBytes; } ~BitstreamReader() { // Free the BlockInfoRecords. while (!BlockInfoRecords.empty()) { BlockInfo &Info = BlockInfoRecords.back(); // Free blockinfo abbrev info. for (unsigned i = 0, e = static_cast<unsigned>(Info.Abbrevs.size()); i != e; ++i) Info.Abbrevs[i]->dropRef(); BlockInfoRecords.pop_back(); } } /// CollectBlockInfoNames - This is called by clients that want block/record /// name information. void CollectBlockInfoNames() { IgnoreBlockInfoNames = false; } bool isIgnoringBlockInfoNames() { return IgnoreBlockInfoNames; } //===--------------------------------------------------------------------===// // Block Manipulation //===--------------------------------------------------------------------===// /// hasBlockInfoRecords - Return true if we've already read and processed the /// block info block for this Bitstream. We only process it for the first /// cursor that walks over it. bool hasBlockInfoRecords() const { return !BlockInfoRecords.empty(); } /// getBlockInfo - If there is block info for the specified ID, return it, /// otherwise return null. const BlockInfo *getBlockInfo(unsigned BlockID) const { // Common case, the most recent entry matches BlockID. if (!BlockInfoRecords.empty() && BlockInfoRecords.back().BlockID == BlockID) return &BlockInfoRecords.back(); for (unsigned i = 0, e = static_cast<unsigned>(BlockInfoRecords.size()); i != e; ++i) if (BlockInfoRecords[i].BlockID == BlockID) return &BlockInfoRecords[i]; return 0; } BlockInfo &getOrCreateBlockInfo(unsigned BlockID) { if (const BlockInfo *BI = getBlockInfo(BlockID)) return *const_cast<BlockInfo*>(BI); // Otherwise, add a new record. BlockInfoRecords.push_back(BlockInfo()); BlockInfoRecords.back().BlockID = BlockID; return BlockInfoRecords.back(); } }; /// BitstreamEntry - When advancing through a bitstream cursor, each advance can /// discover a few different kinds of entries: /// Error - Malformed bitcode was found. /// EndBlock - We've reached the end of the current block, (or the end of the /// file, which is treated like a series of EndBlock records. /// SubBlock - This is the start of a new subblock of a specific ID. /// Record - This is a record with a specific AbbrevID. /// struct BitstreamEntry { enum { Error, EndBlock, SubBlock, Record } Kind; unsigned ID; static BitstreamEntry getError() { BitstreamEntry E; E.Kind = Error; return E; } static BitstreamEntry getEndBlock() { BitstreamEntry E; E.Kind = EndBlock; return E; } static BitstreamEntry getSubBlock(unsigned ID) { BitstreamEntry E; E.Kind = SubBlock; E.ID = ID; return E; } static BitstreamEntry getRecord(unsigned AbbrevID) { BitstreamEntry E; E.Kind = Record; E.ID = AbbrevID; return E; } }; /// BitstreamCursor - This represents a position within a bitcode file. There /// may be multiple independent cursors reading within one bitstream, each /// maintaining their own local state. /// /// Unlike iterators, BitstreamCursors are heavy-weight objects that should not /// be passed by value. class BitstreamCursor { friend class Deserializer; BitstreamReader *BitStream; size_t NextChar; /// CurWord/word_t - This is the current data we have pulled from the stream /// but have not returned to the client. This is specifically and /// intentionally defined to follow the word size of the host machine for /// efficiency. We use word_t in places that are aware of this to make it /// perfectly explicit what is going on. typedef uint32_t word_t; word_t CurWord; /// BitsInCurWord - This is the number of bits in CurWord that are valid. This /// is always from [0...31/63] inclusive (depending on word size). unsigned BitsInCurWord; // CurCodeSize - This is the declared size of code values used for the current // block, in bits. unsigned CurCodeSize; /// CurAbbrevs - Abbrevs installed at in this block. std::vector<BitCodeAbbrev*> CurAbbrevs; struct Block { unsigned PrevCodeSize; std::vector<BitCodeAbbrev*> PrevAbbrevs; explicit Block(unsigned PCS) : PrevCodeSize(PCS) {} }; /// BlockScope - This tracks the codesize of parent blocks. SmallVector<Block, 8> BlockScope; public: BitstreamCursor() : BitStream(0), NextChar(0) { } BitstreamCursor(const BitstreamCursor &RHS) : BitStream(0), NextChar(0) { operator=(RHS); } explicit BitstreamCursor(BitstreamReader &R) : BitStream(&R) { NextChar = 0; CurWord = 0; BitsInCurWord = 0; CurCodeSize = 2; } void init(BitstreamReader &R) { freeState(); BitStream = &R; NextChar = 0; CurWord = 0; BitsInCurWord = 0; CurCodeSize = 2; } ~BitstreamCursor() { freeState(); } void operator=(const BitstreamCursor &RHS); void freeState(); bool isEndPos(size_t pos) { return BitStream->getBitcodeBytes().isObjectEnd(static_cast<uint64_t>(pos)); } bool canSkipToPos(size_t pos) const { // pos can be skipped to if it is a valid address or one byte past the end. return pos == 0 || BitStream->getBitcodeBytes().isValidAddress( static_cast<uint64_t>(pos - 1)); } uint32_t getWord(size_t pos) { uint8_t buf[4] = { 0xFF, 0xFF, 0xFF, 0xFF }; BitStream->getBitcodeBytes().readBytes(pos, sizeof(buf), buf); return *reinterpret_cast<support::ulittle32_t *>(buf); } bool AtEndOfStream() { return BitsInCurWord == 0 && isEndPos(NextChar); } /// getAbbrevIDWidth - Return the number of bits used to encode an abbrev #. unsigned getAbbrevIDWidth() const { return CurCodeSize; } /// GetCurrentBitNo - Return the bit # of the bit we are reading. uint64_t GetCurrentBitNo() const { return NextChar*CHAR_BIT - BitsInCurWord; } BitstreamReader *getBitStreamReader() { return BitStream; } const BitstreamReader *getBitStreamReader() const { return BitStream; } /// Flags that modify the behavior of advance(). enum { /// AF_DontPopBlockAtEnd - If this flag is used, the advance() method does /// not automatically pop the block scope when the end of a block is /// reached. AF_DontPopBlockAtEnd = 1, /// AF_DontAutoprocessAbbrevs - If this flag is used, abbrev entries are /// returned just like normal records. AF_DontAutoprocessAbbrevs = 2 }; /// advance - Advance the current bitstream, returning the next entry in the /// stream. BitstreamEntry advance(unsigned Flags = 0) { while (1) { unsigned Code = ReadCode(); if (Code == bitc::END_BLOCK) { // Pop the end of the block unless Flags tells us not to. if (!(Flags & AF_DontPopBlockAtEnd) && ReadBlockEnd()) return BitstreamEntry::getError(); return BitstreamEntry::getEndBlock(); } if (Code == bitc::ENTER_SUBBLOCK) return BitstreamEntry::getSubBlock(ReadSubBlockID()); if (Code == bitc::DEFINE_ABBREV && !(Flags & AF_DontAutoprocessAbbrevs)) { // We read and accumulate abbrev's, the client can't do anything with // them anyway. ReadAbbrevRecord(); continue; } return BitstreamEntry::getRecord(Code); } } /// advanceSkippingSubblocks - This is a convenience function for clients that /// don't expect any subblocks. This just skips over them automatically. BitstreamEntry advanceSkippingSubblocks(unsigned Flags = 0) { while (1) { // If we found a normal entry, return it. BitstreamEntry Entry = advance(Flags); if (Entry.Kind != BitstreamEntry::SubBlock) return Entry; // If we found a sub-block, just skip over it and check the next entry. if (SkipBlock()) return BitstreamEntry::getError(); } } /// JumpToBit - Reset the stream to the specified bit number. void JumpToBit(uint64_t BitNo) { uintptr_t ByteNo = uintptr_t(BitNo/8) & ~(sizeof(word_t)-1); unsigned WordBitNo = unsigned(BitNo & (sizeof(word_t)*8-1)); assert(canSkipToPos(ByteNo) && "Invalid location"); // Move the cursor to the right word. NextChar = ByteNo; BitsInCurWord = 0; CurWord = 0; // Skip over any bits that are already consumed. if (WordBitNo) { if (sizeof(word_t) > 4) Read64(WordBitNo); else Read(WordBitNo); } } uint32_t Read(unsigned NumBits) { assert(NumBits && NumBits <= 32 && "Cannot return zero or more than 32 bits!"); // If the field is fully contained by CurWord, return it quickly. if (BitsInCurWord >= NumBits) { uint32_t R = uint32_t(CurWord) & (~0U >> (32-NumBits)); CurWord >>= NumBits; BitsInCurWord -= NumBits; return R; } // If we run out of data, stop at the end of the stream. if (isEndPos(NextChar)) { CurWord = 0; BitsInCurWord = 0; return 0; } uint32_t R = uint32_t(CurWord); // Read the next word from the stream. uint8_t Array[sizeof(word_t)] = {0}; BitStream->getBitcodeBytes().readBytes(NextChar, sizeof(Array), Array); // Handle big-endian byte-swapping if necessary. support::detail::packed_endian_specific_integral <word_t, support::little, support::unaligned> EndianValue; memcpy(&EndianValue, Array, sizeof(Array)); CurWord = EndianValue; NextChar += sizeof(word_t); // Extract NumBits-BitsInCurWord from what we just read. unsigned BitsLeft = NumBits-BitsInCurWord; // Be careful here, BitsLeft is in the range [1..32]/[1..64] inclusive. R |= uint32_t((CurWord & (word_t(~0ULL) >> (sizeof(word_t)*8-BitsLeft))) << BitsInCurWord); // BitsLeft bits have just been used up from CurWord. BitsLeft is in the // range [1..32]/[1..64] so be careful how we shift. if (BitsLeft != sizeof(word_t)*8) CurWord >>= BitsLeft; else CurWord = 0; BitsInCurWord = sizeof(word_t)*8-BitsLeft; return R; } uint64_t Read64(unsigned NumBits) { if (NumBits <= 32) return Read(NumBits); uint64_t V = Read(32); return V | (uint64_t)Read(NumBits-32) << 32; } uint32_t ReadVBR(unsigned NumBits) { uint32_t Piece = Read(NumBits); if ((Piece & (1U << (NumBits-1))) == 0) return Piece; uint32_t Result = 0; unsigned NextBit = 0; while (1) { Result |= (Piece & ((1U << (NumBits-1))-1)) << NextBit; if ((Piece & (1U << (NumBits-1))) == 0) return Result; NextBit += NumBits-1; Piece = Read(NumBits); } } // ReadVBR64 - Read a VBR that may have a value up to 64-bits in size. The // chunk size of the VBR must still be <= 32 bits though. uint64_t ReadVBR64(unsigned NumBits) { uint32_t Piece = Read(NumBits); if ((Piece & (1U << (NumBits-1))) == 0) return uint64_t(Piece); uint64_t Result = 0; unsigned NextBit = 0; while (1) { Result |= uint64_t(Piece & ((1U << (NumBits-1))-1)) << NextBit; if ((Piece & (1U << (NumBits-1))) == 0) return Result; NextBit += NumBits-1; Piece = Read(NumBits); } } private: void SkipToFourByteBoundary() { // If word_t is 64-bits and if we've read less than 32 bits, just dump // the bits we have up to the next 32-bit boundary. if (sizeof(word_t) > 4 && BitsInCurWord >= 32) { CurWord >>= BitsInCurWord-32; BitsInCurWord = 32; return; } BitsInCurWord = 0; CurWord = 0; } public: unsigned ReadCode() { return Read(CurCodeSize); } // Block header: // [ENTER_SUBBLOCK, blockid, newcodelen, <align4bytes>, blocklen] /// ReadSubBlockID - Having read the ENTER_SUBBLOCK code, read the BlockID for /// the block. unsigned ReadSubBlockID() { return ReadVBR(bitc::BlockIDWidth); } /// SkipBlock - Having read the ENTER_SUBBLOCK abbrevid and a BlockID, skip /// over the body of this block. If the block record is malformed, return /// true. bool SkipBlock() { // Read and ignore the codelen value. Since we are skipping this block, we // don't care what code widths are used inside of it. ReadVBR(bitc::CodeLenWidth); SkipToFourByteBoundary(); unsigned NumFourBytes = Read(bitc::BlockSizeWidth); // Check that the block wasn't partially defined, and that the offset isn't // bogus. size_t SkipTo = GetCurrentBitNo() + NumFourBytes*4*8; if (AtEndOfStream() || !canSkipToPos(SkipTo/8)) return true; JumpToBit(SkipTo); return false; } /// EnterSubBlock - Having read the ENTER_SUBBLOCK abbrevid, enter /// the block, and return true if the block has an error. bool EnterSubBlock(unsigned BlockID, unsigned *NumWordsP = 0); bool ReadBlockEnd() { if (BlockScope.empty()) return true; // Block tail: // [END_BLOCK, <align4bytes>] SkipToFourByteBoundary(); popBlockScope(); return false; } private: void popBlockScope() { CurCodeSize = BlockScope.back().PrevCodeSize; // Delete abbrevs from popped scope. for (unsigned i = 0, e = static_cast<unsigned>(CurAbbrevs.size()); i != e; ++i) CurAbbrevs[i]->dropRef(); BlockScope.back().PrevAbbrevs.swap(CurAbbrevs); BlockScope.pop_back(); } //===--------------------------------------------------------------------===// // Record Processing //===--------------------------------------------------------------------===// private: void readAbbreviatedLiteral(const BitCodeAbbrevOp &Op, SmallVectorImpl<uint64_t> &Vals); void readAbbreviatedField(const BitCodeAbbrevOp &Op, SmallVectorImpl<uint64_t> &Vals); void skipAbbreviatedField(const BitCodeAbbrevOp &Op); public: /// getAbbrev - Return the abbreviation for the specified AbbrevId. const BitCodeAbbrev *getAbbrev(unsigned AbbrevID) { unsigned AbbrevNo = AbbrevID-bitc::FIRST_APPLICATION_ABBREV; assert(AbbrevNo < CurAbbrevs.size() && "Invalid abbrev #!"); return CurAbbrevs[AbbrevNo]; } /// skipRecord - Read the current record and discard it. void skipRecord(unsigned AbbrevID); unsigned readRecord(unsigned AbbrevID, SmallVectorImpl<uint64_t> &Vals, StringRef *Blob = 0); //===--------------------------------------------------------------------===// // Abbrev Processing //===--------------------------------------------------------------------===// void ReadAbbrevRecord(); bool ReadBlockInfoBlock(); }; } // End llvm namespace #endif