//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains some functions that are useful for math stuff. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_MATHEXTRAS_H #define LLVM_SUPPORT_MATHEXTRAS_H #include "llvm/Support/DataTypes.h" namespace llvm { // NOTE: The following support functions use the _32/_64 extensions instead of // type overloading so that signed and unsigned integers can be used without // ambiguity. // Hi_32 - This function returns the high 32 bits of a 64 bit value. inline unsigned Hi_32(uint64_t Value) { return (unsigned)(Value >> 32); } // Lo_32 - This function returns the low 32 bits of a 64 bit value. inline unsigned Lo_32(uint64_t Value) { return (unsigned)Value; } // is?Type - these functions produce optimal testing for integer data types. inline bool isInt8 (int Value) { return ( signed char )Value == Value; } inline bool isUInt8 (int Value) { return (unsigned char )Value == Value; } inline bool isInt16 (int Value) { return ( signed short)Value == Value; } inline bool isUInt16(int Value) { return (unsigned short)Value == Value; } inline bool isInt32 (int64_t Value) { return ( signed int )Value == Value; } inline bool isUInt32(int64_t Value) { return (unsigned int )Value == Value; } // isMask_32 - This function returns true if the argument is a sequence of ones // starting at the least significant bit with the remainder zero (32 bit version.) // Ex. isMask_32(0x0000FFFFU) == true. inline const bool isMask_32(unsigned Value) { return Value && ((Value + 1) & Value) == 0; } // isMask_64 - This function returns true if the argument is a sequence of ones // starting at the least significant bit with the remainder zero (64 bit version.) inline const bool isMask_64(uint64_t Value) { return Value && ((Value + 1) & Value) == 0; } // isShiftedMask_32 - This function returns true if the argument contains a // sequence of ones with the remainder zero (32 bit version.) // Ex. isShiftedMask_32(0x0000FF00U) == true. inline const bool isShiftedMask_32(unsigned Value) { return isMask_32((Value - 1) | Value); } // isShiftedMask_64 - This function returns true if the argument contains a // sequence of ones with the remainder zero (64 bit version.) inline const bool isShiftedMask_64(uint64_t Value) { return isMask_64((Value - 1) | Value); } // isPowerOf2_32 - This function returns true if the argument is a power of // two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) inline bool isPowerOf2_32(unsigned Value) { return Value && !(Value & (Value - 1)); } // isPowerOf2_64 - This function returns true if the argument is a power of two // > 0 (64 bit edition.) inline bool isPowerOf2_64(uint64_t Value) { return Value && !(Value & (Value - 1LL)); } // CountLeadingZeros_32 - this function performs the platform optimal form of // counting the number of zeros from the most significant bit to the first one // bit. Ex. CountLeadingZeros_32(0x00F000FF) == 8. // Returns 32 if the word is zero. inline unsigned CountLeadingZeros_32(unsigned Value) { unsigned Count; // result #if __GNUC__ >= 4 // PowerPC is defined for __builtin_clz(0) #if !defined(__ppc__) && !defined(__ppc64__) if (!Value) return 32; #endif Count = __builtin_clz(Value); #else if (!Value) return 32; Count = 0; // bisecton method for count leading zeros for (unsigned Shift = 32 >> 1; Shift; Shift >>= 1) { unsigned Tmp = Value >> Shift; if (Tmp) { Value = Tmp; } else { Count |= Shift; } } #endif return Count; } // CountLeadingZeros_64 - This function performs the platform optimal form // of counting the number of zeros from the most significant bit to the first // one bit (64 bit edition.) // Returns 64 if the word is zero. inline unsigned CountLeadingZeros_64(uint64_t Value) { unsigned Count; // result #if __GNUC__ >= 4 // PowerPC is defined for __builtin_clzll(0) #if !defined(__ppc__) && !defined(__ppc64__) if (!Value) return 64; #endif Count = __builtin_clzll(Value); #else if (sizeof(long) == sizeof(int64_t)) { if (!Value) return 64; Count = 0; // bisecton method for count leading zeros for (uint64_t Shift = 64 >> 1; Shift; Shift >>= 1) { uint64_t Tmp = Value >> Shift; if (Tmp) { Value = Tmp; } else { Count |= Shift; } } } else { // get hi portion unsigned Hi = Hi_32(Value); // if some bits in hi portion if (Hi) { // leading zeros in hi portion plus all bits in lo portion Count = CountLeadingZeros_32(Hi); } else { // get lo portion unsigned Lo = Lo_32(Value); // same as 32 bit value Count = CountLeadingZeros_32(Lo)+32; } } #endif return Count; } // CountTrailingZeros_32 - this function performs the platform optimal form of // counting the number of zeros from the least significant bit to the first one // bit. Ex. CountTrailingZeros_32(0xFF00FF00) == 8. // Returns 32 if the word is zero. inline unsigned CountTrailingZeros_32(unsigned Value) { return 32 - CountLeadingZeros_32(~Value & (Value - 1)); } // CountTrailingZeros_64 - This function performs the platform optimal form // of counting the number of zeros from the least significant bit to the first // one bit (64 bit edition.) // Returns 64 if the word is zero. inline unsigned CountTrailingZeros_64(uint64_t Value) { return 64 - CountLeadingZeros_64(~Value & (Value - 1)); } // CountPopulation_32 - this function counts the number of set bits in a value. // Ex. CountPopulation(0xF000F000) = 8 // Returns 0 if the word is zero. inline unsigned CountPopulation_32(unsigned Value) { unsigned x, t; x = Value - ((Value >> 1) & 0x55555555); t = ((x >> 2) & 0x33333333); x = (x & 0x33333333) + t; x = (x + (x >> 4)) & 0x0F0F0F0F; x = x + (x << 8); x = x + (x << 16); return x >> 24; } // CountPopulation_64 - this function counts the number of set bits in a value, // (64 bit edition.) inline unsigned CountPopulation_64(uint64_t Value) { return CountPopulation_32(unsigned(Value >> 32)) + CountPopulation_32(unsigned(Value)); } // Log2_32 - This function returns the floor log base 2 of the specified value, // -1 if the value is zero. (32 bit edition.) // Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1 inline unsigned Log2_32(unsigned Value) { return 31 - CountLeadingZeros_32(Value); } // Log2_64 - This function returns the floor log base 2 of the specified value, // -1 if the value is zero. (64 bit edition.) inline unsigned Log2_64(uint64_t Value) { return 63 - CountLeadingZeros_64(Value); } // BitsToDouble - This function takes a 64-bit integer and returns the bit // equivalent double. inline double BitsToDouble(uint64_t Bits) { union { uint64_t L; double D; } T; T.L = Bits; return T.D; } // BitsToFloat - This function takes a 32-bit integer and returns the bit // equivalent float. inline float BitsToFloat(uint32_t Bits) { union { uint32_t I; float F; } T; T.I = Bits; return T.F; } // DoubleToBits - This function takes a double and returns the bit // equivalent 64-bit integer. inline uint64_t DoubleToBits(double Double) { union { uint64_t L; double D; } T; T.D = Double; return T.L; } // FloatToBits - This function takes a float and returns the bit // equivalent 32-bit integer. inline uint32_t FloatToBits(float Float) { union { uint32_t I; float F; } T; T.F = Float; return T.I; } // Platform-independent wrappers for the C99 isnan() function. int IsNAN (float f); int IsNAN (double d); // Platform-independent wrappers for the C99 isinf() function. int IsInf (float f); int IsInf (double d); } // End llvm namespace #endif