//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes how to lower LLVM code to machine code. This has two // main components: // // 1. Which ValueTypes are natively supported by the target. // 2. Which operations are supported for supported ValueTypes. // 3. Cost thresholds for alternative implementations of certain operations. // // In addition it has a few other components, like information about FP // immediates. // //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_TARGETLOWERING_H #define LLVM_TARGET_TARGETLOWERING_H #include "llvm/Type.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include namespace llvm { class Value; class Function; class TargetMachine; class TargetData; class TargetRegisterClass; class SDNode; class SDOperand; class SelectionDAG; class MachineBasicBlock; class MachineInstr; //===----------------------------------------------------------------------===// /// TargetLowering - This class defines information used to lower LLVM code to /// legal SelectionDAG operators that the target instruction selector can accept /// natively. /// /// This class also defines callbacks that targets must implement to lower /// target-specific constructs to SelectionDAG operators. /// class TargetLowering { public: /// LegalizeAction - This enum indicates whether operations are valid for a /// target, and if not, what action should be used to make them valid. enum LegalizeAction { Legal, // The target natively supports this operation. Promote, // This operation should be executed in a larger type. Expand, // Try to expand this to other ops, otherwise use a libcall. Custom // Use the LowerOperation hook to implement custom lowering. }; enum OutOfRangeShiftAmount { Undefined, // Oversized shift amounts are undefined (default). Mask, // Shift amounts are auto masked (anded) to value size. Extend // Oversized shift pulls in zeros or sign bits. }; enum SetCCResultValue { UndefinedSetCCResult, // SetCC returns a garbage/unknown extend. ZeroOrOneSetCCResult, // SetCC returns a zero extended result. ZeroOrNegativeOneSetCCResult // SetCC returns a sign extended result. }; enum SchedPreference { SchedulingForLatency, // Scheduling for shortest total latency. SchedulingForRegPressure // Scheduling for lowest register pressure. }; TargetLowering(TargetMachine &TM); virtual ~TargetLowering(); TargetMachine &getTargetMachine() const { return TM; } const TargetData *getTargetData() const { return TD; } bool isLittleEndian() const { return IsLittleEndian; } MVT::ValueType getPointerTy() const { return PointerTy; } MVT::ValueType getShiftAmountTy() const { return ShiftAmountTy; } OutOfRangeShiftAmount getShiftAmountFlavor() const {return ShiftAmtHandling; } /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC /// codegen. bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; } /// isSetCCExpensive - Return true if the setcc operation is expensive for /// this target. bool isSetCCExpensive() const { return SetCCIsExpensive; } /// isIntDivCheap() - Return true if integer divide is usually cheaper than /// a sequence of several shifts, adds, and multiplies for this target. bool isIntDivCheap() const { return IntDivIsCheap; } /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of /// srl/add/sra. bool isPow2DivCheap() const { return Pow2DivIsCheap; } /// getSetCCResultTy - Return the ValueType of the result of setcc operations. /// MVT::ValueType getSetCCResultTy() const { return SetCCResultTy; } /// getSetCCResultContents - For targets without boolean registers, this flag /// returns information about the contents of the high-bits in the setcc /// result register. SetCCResultValue getSetCCResultContents() const { return SetCCResultContents;} /// getSchedulingPreference - Return target scheduling preference. SchedPreference getSchedulingPreference() const { return SchedPreferenceInfo; } /// getRegClassFor - Return the register class that should be used for the /// specified value type. This may only be called on legal types. TargetRegisterClass *getRegClassFor(MVT::ValueType VT) const { TargetRegisterClass *RC = RegClassForVT[VT]; assert(RC && "This value type is not natively supported!"); return RC; } /// isTypeLegal - Return true if the target has native support for the /// specified value type. This means that it has a register that directly /// holds it without promotions or expansions. bool isTypeLegal(MVT::ValueType VT) const { return RegClassForVT[VT] != 0; } class ValueTypeActionImpl { /// ValueTypeActions - This is a bitvector that contains two bits for each /// value type, where the two bits correspond to the LegalizeAction enum. /// This can be queried with "getTypeAction(VT)". uint32_t ValueTypeActions[2]; public: ValueTypeActionImpl() { ValueTypeActions[0] = ValueTypeActions[1] = 0; } ValueTypeActionImpl(const ValueTypeActionImpl &RHS) { ValueTypeActions[0] = RHS.ValueTypeActions[0]; ValueTypeActions[1] = RHS.ValueTypeActions[1]; } LegalizeAction getTypeAction(MVT::ValueType VT) const { return (LegalizeAction)((ValueTypeActions[VT>>4] >> ((2*VT) & 31)) & 3); } void setTypeAction(MVT::ValueType VT, LegalizeAction Action) { assert(unsigned(VT >> 4) < sizeof(ValueTypeActions)/sizeof(ValueTypeActions[0])); ValueTypeActions[VT>>4] |= Action << ((VT*2) & 31); } }; const ValueTypeActionImpl &getValueTypeActions() const { return ValueTypeActions; } /// getTypeAction - Return how we should legalize values of this type, either /// it is already legal (return 'Legal') or we need to promote it to a larger /// type (return 'Promote'), or we need to expand it into multiple registers /// of smaller integer type (return 'Expand'). 'Custom' is not an option. LegalizeAction getTypeAction(MVT::ValueType VT) const { return ValueTypeActions.getTypeAction(VT); } /// getTypeToTransformTo - For types supported by the target, this is an /// identity function. For types that must be promoted to larger types, this /// returns the larger type to promote to. For types that are larger than the /// largest integer register, this contains one step in the expansion to get /// to the smaller register. MVT::ValueType getTypeToTransformTo(MVT::ValueType VT) const { return TransformToType[VT]; } /// getPackedTypeBreakdown - Packed types are broken down into some number of /// legal first class types. For example, <8 x float> maps to 2 MVT::v4f32 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. /// Similarly, <2 x long> turns into 4 MVT::i32 values with both PPC and X86. /// /// This method returns the number of registers needed, and the VT for each /// register. It also returns the VT of the PackedType elements before they /// are promoted/expanded. /// unsigned getPackedTypeBreakdown(const PackedType *PTy, MVT::ValueType &PTyElementVT, MVT::ValueType &PTyLegalElementVT) const; typedef std::vector::const_iterator legal_fpimm_iterator; legal_fpimm_iterator legal_fpimm_begin() const { return LegalFPImmediates.begin(); } legal_fpimm_iterator legal_fpimm_end() const { return LegalFPImmediates.end(); } /// isShuffleMaskLegal - Targets can use this to indicate that they only /// support *some* VECTOR_SHUFFLE operations, those with specific masks. /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values /// are assumed to be legal. virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const { return true; } /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is /// used by Targets can use this to indicate if there is a suitable /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant /// pool entry. virtual bool isVectorClearMaskLegal(std::vector &BVOps, MVT::ValueType EVT, SelectionDAG &DAG) const { return false; } /// getOperationAction - Return how this operation should be treated: either /// it is legal, needs to be promoted to a larger size, needs to be /// expanded to some other code sequence, or the target has a custom expander /// for it. LegalizeAction getOperationAction(unsigned Op, MVT::ValueType VT) const { return (LegalizeAction)((OpActions[Op] >> (2*VT)) & 3); } /// isOperationLegal - Return true if the specified operation is legal on this /// target. bool isOperationLegal(unsigned Op, MVT::ValueType VT) const { return getOperationAction(Op, VT) == Legal || getOperationAction(Op, VT) == Custom; } /// getLoadXAction - Return how this load with extension should be treated: /// either it is legal, needs to be promoted to a larger size, needs to be /// expanded to some other code sequence, or the target has a custom expander /// for it. LegalizeAction getLoadXAction(unsigned LType, MVT::ValueType VT) const { return (LegalizeAction)((LoadXActions[LType] >> (2*VT)) & 3); } /// isLoadXLegal - Return true if the specified load with extension is legal /// on this target. bool isLoadXLegal(unsigned LType, MVT::ValueType VT) const { return getLoadXAction(LType, VT) == Legal || getLoadXAction(LType, VT) == Custom; } /// getStoreXAction - Return how this store with truncation should be treated: /// either it is legal, needs to be promoted to a larger size, needs to be /// expanded to some other code sequence, or the target has a custom expander /// for it. LegalizeAction getStoreXAction(MVT::ValueType VT) const { return (LegalizeAction)((StoreXActions >> (2*VT)) & 3); } /// isStoreXLegal - Return true if the specified store with truncation is /// legal on this target. bool isStoreXLegal(MVT::ValueType VT) const { return getStoreXAction(VT) == Legal || getStoreXAction(VT) == Custom; } /// getTypeToPromoteTo - If the action for this operation is to promote, this /// method returns the ValueType to promote to. MVT::ValueType getTypeToPromoteTo(unsigned Op, MVT::ValueType VT) const { assert(getOperationAction(Op, VT) == Promote && "This operation isn't promoted!"); // See if this has an explicit type specified. std::map, MVT::ValueType>::const_iterator PTTI = PromoteToType.find(std::make_pair(Op, VT)); if (PTTI != PromoteToType.end()) return PTTI->second; assert((MVT::isInteger(VT) || MVT::isFloatingPoint(VT)) && "Cannot autopromote this type, add it with AddPromotedToType."); MVT::ValueType NVT = VT; do { NVT = (MVT::ValueType)(NVT+1); assert(MVT::isInteger(NVT) == MVT::isInteger(VT) && NVT != MVT::isVoid && "Didn't find type to promote to!"); } while (!isTypeLegal(NVT) || getOperationAction(Op, NVT) == Promote); return NVT; } /// getValueType - Return the MVT::ValueType corresponding to this LLVM type. /// This is fixed by the LLVM operations except for the pointer size. MVT::ValueType getValueType(const Type *Ty) const { switch (Ty->getTypeID()) { default: assert(0 && "Unknown type!"); case Type::VoidTyID: return MVT::isVoid; case Type::BoolTyID: return MVT::i1; case Type::UByteTyID: case Type::SByteTyID: return MVT::i8; case Type::ShortTyID: case Type::UShortTyID: return MVT::i16; case Type::IntTyID: case Type::UIntTyID: return MVT::i32; case Type::LongTyID: case Type::ULongTyID: return MVT::i64; case Type::FloatTyID: return MVT::f32; case Type::DoubleTyID: return MVT::f64; case Type::PointerTyID: return PointerTy; case Type::PackedTyID: return MVT::Vector; } } /// getNumElements - Return the number of registers that this ValueType will /// eventually require. This is always one for all non-integer types, is /// one for any types promoted to live in larger registers, but may be more /// than one for types (like i64) that are split into pieces. unsigned getNumElements(MVT::ValueType VT) const { return NumElementsForVT[VT]; } /// hasTargetDAGCombine - If true, the target has custom DAG combine /// transformations that it can perform for the specified node. bool hasTargetDAGCombine(ISD::NodeType NT) const { return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7)); } /// This function returns the maximum number of store operations permitted /// to replace a call to llvm.memset. The value is set by the target at the /// performance threshold for such a replacement. /// @brief Get maximum # of store operations permitted for llvm.memset unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; } /// This function returns the maximum number of store operations permitted /// to replace a call to llvm.memcpy. The value is set by the target at the /// performance threshold for such a replacement. /// @brief Get maximum # of store operations permitted for llvm.memcpy unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; } /// This function returns the maximum number of store operations permitted /// to replace a call to llvm.memmove. The value is set by the target at the /// performance threshold for such a replacement. /// @brief Get maximum # of store operations permitted for llvm.memmove unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; } /// This function returns true if the target allows unaligned memory accesses. /// This is used, for example, in situations where an array copy/move/set is /// converted to a sequence of store operations. It's use helps to ensure that /// such replacements don't generate code that causes an alignment error /// (trap) on the target machine. /// @brief Determine if the target supports unaligned memory accesses. bool allowsUnalignedMemoryAccesses() const { return allowUnalignedMemoryAccesses; } /// usesUnderscoreSetJmpLongJmp - Determine if we should use _setjmp or setjmp /// to implement llvm.setjmp. bool usesUnderscoreSetJmpLongJmp() const { return UseUnderscoreSetJmpLongJmp; } /// getStackPointerRegisterToSaveRestore - If a physical register, this /// specifies the register that llvm.savestack/llvm.restorestack should save /// and restore. unsigned getStackPointerRegisterToSaveRestore() const { return StackPointerRegisterToSaveRestore; } /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never /// set, the default is 200) unsigned getJumpBufSize() const { return JumpBufSize; } /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes /// (if never set, the default is 0) unsigned getJumpBufAlignment() const { return JumpBufAlignment; } /// getLegalPreIndexedAddressBase - returns true by value, base pointer and /// offset pointer and addressing mode by reference if the node's address /// can be legally represented as pre-indexed load / store address. virtual bool getLegalPreIndexedAddressBase(SDNode *N, SDOperand &Base, SDOperand &Offset, ISD::MemOpAddrMode &AM, SelectionDAG &DAG) { return false; } //===--------------------------------------------------------------------===// // TargetLowering Optimization Methods // /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two /// SDOperands for returning information from TargetLowering to its clients /// that want to combine struct TargetLoweringOpt { SelectionDAG &DAG; SDOperand Old; SDOperand New; TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {} bool CombineTo(SDOperand O, SDOperand N) { Old = O; New = N; return true; } /// ShrinkDemandedConstant - Check to see if the specified operand of the /// specified instruction is a constant integer. If so, check to see if there /// are any bits set in the constant that are not demanded. If so, shrink the /// constant and return true. bool ShrinkDemandedConstant(SDOperand Op, uint64_t Demanded); }; /// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero. We /// use this predicate to simplify operations downstream. Op and Mask are /// known to be the same type. bool MaskedValueIsZero(SDOperand Op, uint64_t Mask, unsigned Depth = 0) const; /// ComputeMaskedBits - Determine which of the bits specified in Mask are /// known to be either zero or one and return them in the KnownZero/KnownOne /// bitsets. This code only analyzes bits in Mask, in order to short-circuit /// processing. Targets can implement the computeMaskedBitsForTargetNode /// method, to allow target nodes to be understood. void ComputeMaskedBits(SDOperand Op, uint64_t Mask, uint64_t &KnownZero, uint64_t &KnownOne, unsigned Depth = 0) const; /// SimplifyDemandedBits - Look at Op. At this point, we know that only the /// DemandedMask bits of the result of Op are ever used downstream. If we can /// use this information to simplify Op, create a new simplified DAG node and /// return true, returning the original and new nodes in Old and New. /// Otherwise, analyze the expression and return a mask of KnownOne and /// KnownZero bits for the expression (used to simplify the caller). /// The KnownZero/One bits may only be accurate for those bits in the /// DemandedMask. bool SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask, uint64_t &KnownZero, uint64_t &KnownOne, TargetLoweringOpt &TLO, unsigned Depth = 0) const; /// computeMaskedBitsForTargetNode - Determine which of the bits specified in /// Mask are known to be either zero or one and return them in the /// KnownZero/KnownOne bitsets. virtual void computeMaskedBitsForTargetNode(const SDOperand Op, uint64_t Mask, uint64_t &KnownZero, uint64_t &KnownOne, unsigned Depth = 0) const; /// ComputeNumSignBits - Return the number of times the sign bit of the /// register is replicated into the other bits. We know that at least 1 bit /// is always equal to the sign bit (itself), but other cases can give us /// information. For example, immediately after an "SRA X, 2", we know that /// the top 3 bits are all equal to each other, so we return 3. unsigned ComputeNumSignBits(SDOperand Op, unsigned Depth = 0) const; /// ComputeNumSignBitsForTargetNode - This method can be implemented by /// targets that want to expose additional information about sign bits to the /// DAG Combiner. virtual unsigned ComputeNumSignBitsForTargetNode(SDOperand Op, unsigned Depth = 0) const; struct DAGCombinerInfo { void *DC; // The DAG Combiner object. bool BeforeLegalize; public: SelectionDAG &DAG; DAGCombinerInfo(SelectionDAG &dag, bool bl, void *dc) : DC(dc), BeforeLegalize(bl), DAG(dag) {} bool isBeforeLegalize() const { return BeforeLegalize; } void AddToWorklist(SDNode *N); SDOperand CombineTo(SDNode *N, const std::vector &To); SDOperand CombineTo(SDNode *N, SDOperand Res); SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1); }; /// PerformDAGCombine - This method will be invoked for all target nodes and /// for any target-independent nodes that the target has registered with /// invoke it for. /// /// The semantics are as follows: /// Return Value: /// SDOperand.Val == 0 - No change was made /// SDOperand.Val == N - N was replaced, is dead, and is already handled. /// otherwise - N should be replaced by the returned Operand. /// /// In addition, methods provided by DAGCombinerInfo may be used to perform /// more complex transformations. /// virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const; //===--------------------------------------------------------------------===// // TargetLowering Configuration Methods - These methods should be invoked by // the derived class constructor to configure this object for the target. // protected: /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a /// GOT for PC-relative code. void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; } /// setShiftAmountType - Describe the type that should be used for shift /// amounts. This type defaults to the pointer type. void setShiftAmountType(MVT::ValueType VT) { ShiftAmountTy = VT; } /// setSetCCResultType - Describe the type that shoudl be used as the result /// of a setcc operation. This defaults to the pointer type. void setSetCCResultType(MVT::ValueType VT) { SetCCResultTy = VT; } /// setSetCCResultContents - Specify how the target extends the result of a /// setcc operation in a register. void setSetCCResultContents(SetCCResultValue Ty) { SetCCResultContents = Ty; } /// setSchedulingPreference - Specify the target scheduling preference. void setSchedulingPreference(SchedPreference Pref) { SchedPreferenceInfo = Pref; } /// setShiftAmountFlavor - Describe how the target handles out of range shift /// amounts. void setShiftAmountFlavor(OutOfRangeShiftAmount OORSA) { ShiftAmtHandling = OORSA; } /// setUseUnderscoreSetJmpLongJmp - Indicate whether this target prefers to /// use _setjmp and _longjmp to or implement llvm.setjmp/llvm.longjmp or /// the non _ versions. Defaults to false. void setUseUnderscoreSetJmpLongJmp(bool Val) { UseUnderscoreSetJmpLongJmp = Val; } /// setStackPointerRegisterToSaveRestore - If set to a physical register, this /// specifies the register that llvm.savestack/llvm.restorestack should save /// and restore. void setStackPointerRegisterToSaveRestore(unsigned R) { StackPointerRegisterToSaveRestore = R; } /// setSetCCIxExpensive - This is a short term hack for targets that codegen /// setcc as a conditional branch. This encourages the code generator to fold /// setcc operations into other operations if possible. void setSetCCIsExpensive() { SetCCIsExpensive = true; } /// setIntDivIsCheap - Tells the code generator that integer divide is /// expensive, and if possible, should be replaced by an alternate sequence /// of instructions not containing an integer divide. void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; } /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate /// srl/add/sra for a signed divide by power of two, and let the target handle /// it. void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; } /// addRegisterClass - Add the specified register class as an available /// regclass for the specified value type. This indicates the selector can /// handle values of that class natively. void addRegisterClass(MVT::ValueType VT, TargetRegisterClass *RC) { AvailableRegClasses.push_back(std::make_pair(VT, RC)); RegClassForVT[VT] = RC; } /// computeRegisterProperties - Once all of the register classes are added, /// this allows us to compute derived properties we expose. void computeRegisterProperties(); /// setOperationAction - Indicate that the specified operation does not work /// with the specified type and indicate what to do about it. void setOperationAction(unsigned Op, MVT::ValueType VT, LegalizeAction Action) { assert(VT < 32 && Op < sizeof(OpActions)/sizeof(OpActions[0]) && "Table isn't big enough!"); OpActions[Op] &= ~(uint64_t(3UL) << VT*2); OpActions[Op] |= (uint64_t)Action << VT*2; } /// setLoadXAction - Indicate that the specified load with extension does not /// work with the with specified type and indicate what to do about it. void setLoadXAction(unsigned ExtType, MVT::ValueType VT, LegalizeAction Action) { assert(VT < 32 && ExtType < sizeof(LoadXActions)/sizeof(LoadXActions[0]) && "Table isn't big enough!"); LoadXActions[ExtType] &= ~(uint64_t(3UL) << VT*2); LoadXActions[ExtType] |= (uint64_t)Action << VT*2; } /// setStoreXAction - Indicate that the specified store with truncation does /// not work with the with specified type and indicate what to do about it. void setStoreXAction(MVT::ValueType VT, LegalizeAction Action) { assert(VT < 32 && "Table isn't big enough!"); StoreXActions &= ~(uint64_t(3UL) << VT*2); StoreXActions |= (uint64_t)Action << VT*2; } /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the /// promotion code defaults to trying a larger integer/fp until it can find /// one that works. If that default is insufficient, this method can be used /// by the target to override the default. void AddPromotedToType(unsigned Opc, MVT::ValueType OrigVT, MVT::ValueType DestVT) { PromoteToType[std::make_pair(Opc, OrigVT)] = DestVT; } /// addLegalFPImmediate - Indicate that this target can instruction select /// the specified FP immediate natively. void addLegalFPImmediate(double Imm) { LegalFPImmediates.push_back(Imm); } /// setTargetDAGCombine - Targets should invoke this method for each target /// independent node that they want to provide a custom DAG combiner for by /// implementing the PerformDAGCombine virtual method. void setTargetDAGCombine(ISD::NodeType NT) { TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7); } /// setJumpBufSize - Set the target's required jmp_buf buffer size (in /// bytes); default is 200 void setJumpBufSize(unsigned Size) { JumpBufSize = Size; } /// setJumpBufAlignment - Set the target's required jmp_buf buffer /// alignment (in bytes); default is 0 void setJumpBufAlignment(unsigned Align) { JumpBufAlignment = Align; } public: //===--------------------------------------------------------------------===// // Lowering methods - These methods must be implemented by targets so that // the SelectionDAGLowering code knows how to lower these. // /// LowerArguments - This hook must be implemented to indicate how we should /// lower the arguments for the specified function, into the specified DAG. virtual std::vector LowerArguments(Function &F, SelectionDAG &DAG); /// LowerCallTo - This hook lowers an abstract call to a function into an /// actual call. This returns a pair of operands. The first element is the /// return value for the function (if RetTy is not VoidTy). The second /// element is the outgoing token chain. typedef std::vector > ArgListTy; virtual std::pair LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CallingConv, bool isTailCall, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG); /// LowerFrameReturnAddress - This hook lowers a call to llvm.returnaddress or /// llvm.frameaddress (depending on the value of the first argument). The /// return values are the result pointer and the resultant token chain. If /// not implemented, both of these intrinsics will return null. virtual std::pair LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth, SelectionDAG &DAG); /// LowerOperation - This callback is invoked for operations that are /// unsupported by the target, which are registered to use 'custom' lowering, /// and whose defined values are all legal. /// If the target has no operations that require custom lowering, it need not /// implement this. The default implementation of this aborts. virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG); /// CustomPromoteOperation - This callback is invoked for operations that are /// unsupported by the target, are registered to use 'custom' lowering, and /// whose type needs to be promoted. virtual SDOperand CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG); /// getTargetNodeName() - This method returns the name of a target specific /// DAG node. virtual const char *getTargetNodeName(unsigned Opcode) const; //===--------------------------------------------------------------------===// // Inline Asm Support hooks // enum ConstraintType { C_Register, // Constraint represents a single register. C_RegisterClass, // Constraint represents one or more registers. C_Memory, // Memory constraint. C_Other, // Something else. C_Unknown // Unsupported constraint. }; /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. virtual ConstraintType getConstraintType(char ConstraintLetter) const; /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"), /// return a list of registers that can be used to satisfy the constraint. /// This should only be used for C_RegisterClass constraints. virtual std::vector getRegClassForInlineAsmConstraint(const std::string &Constraint, MVT::ValueType VT) const; /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g. /// {edx}), return the register number and the register class for the /// register. /// /// Given a register class constraint, like 'r', if this corresponds directly /// to an LLVM register class, return a register of 0 and the register class /// pointer. /// /// This should only be used for C_Register constraints. On error, /// this returns a register number of 0 and a null register class pointer.. virtual std::pair getRegForInlineAsmConstraint(const std::string &Constraint, MVT::ValueType VT) const; /// isOperandValidForConstraint - Return the specified operand (possibly /// modified) if the specified SDOperand is valid for the specified target /// constraint letter, otherwise return null. virtual SDOperand isOperandValidForConstraint(SDOperand Op, char ConstraintLetter, SelectionDAG &DAG); //===--------------------------------------------------------------------===// // Scheduler hooks // // InsertAtEndOfBasicBlock - This method should be implemented by targets that // mark instructions with the 'usesCustomDAGSchedInserter' flag. These // instructions are special in various ways, which require special support to // insert. The specified MachineInstr is created but not inserted into any // basic blocks, and the scheduler passes ownership of it to this method. virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI, MachineBasicBlock *MBB); //===--------------------------------------------------------------------===// // Loop Strength Reduction hooks // /// isLegalAddressImmediate - Return true if the integer value or GlobalValue /// can be used as the offset of the target addressing mode. virtual bool isLegalAddressImmediate(int64_t V) const; virtual bool isLegalAddressImmediate(GlobalValue *GV) const; typedef std::vector::const_iterator legal_am_scale_iterator; legal_am_scale_iterator legal_am_scale_begin() const { return LegalAddressScales.begin(); } legal_am_scale_iterator legal_am_scale_end() const { return LegalAddressScales.end(); } //===--------------------------------------------------------------------===// // Div utility functions // SDOperand BuildSDIV(SDNode *N, SelectionDAG &DAG, std::vector* Created) const; SDOperand BuildUDIV(SDNode *N, SelectionDAG &DAG, std::vector* Created) const; protected: /// addLegalAddressScale - Add a integer (> 1) value which can be used as /// scale in the target addressing mode. Note: the ordering matters so the /// least efficient ones should be entered first. void addLegalAddressScale(unsigned Scale) { LegalAddressScales.push_back(Scale); } private: std::vector LegalAddressScales; TargetMachine &TM; const TargetData *TD; /// IsLittleEndian - True if this is a little endian target. /// bool IsLittleEndian; /// PointerTy - The type to use for pointers, usually i32 or i64. /// MVT::ValueType PointerTy; /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen. /// bool UsesGlobalOffsetTable; /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever /// PointerTy is. MVT::ValueType ShiftAmountTy; OutOfRangeShiftAmount ShiftAmtHandling; /// SetCCIsExpensive - This is a short term hack for targets that codegen /// setcc as a conditional branch. This encourages the code generator to fold /// setcc operations into other operations if possible. bool SetCCIsExpensive; /// IntDivIsCheap - Tells the code generator not to expand integer divides by /// constants into a sequence of muls, adds, and shifts. This is a hack until /// a real cost model is in place. If we ever optimize for size, this will be /// set to true unconditionally. bool IntDivIsCheap; /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate /// srl/add/sra for a signed divide by power of two, and let the target handle /// it. bool Pow2DivIsCheap; /// SetCCResultTy - The type that SetCC operations use. This defaults to the /// PointerTy. MVT::ValueType SetCCResultTy; /// SetCCResultContents - Information about the contents of the high-bits in /// the result of a setcc comparison operation. SetCCResultValue SetCCResultContents; /// SchedPreferenceInfo - The target scheduling preference: shortest possible /// total cycles or lowest register usage. SchedPreference SchedPreferenceInfo; /// UseUnderscoreSetJmpLongJmp - This target prefers to use _setjmp and /// _longjmp to implement llvm.setjmp/llvm.longjmp. Defaults to false. bool UseUnderscoreSetJmpLongJmp; /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers unsigned JumpBufSize; /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf /// buffers unsigned JumpBufAlignment; /// StackPointerRegisterToSaveRestore - If set to a physical register, this /// specifies the register that llvm.savestack/llvm.restorestack should save /// and restore. unsigned StackPointerRegisterToSaveRestore; /// RegClassForVT - This indicates the default register class to use for /// each ValueType the target supports natively. TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE]; unsigned char NumElementsForVT[MVT::LAST_VALUETYPE]; /// TransformToType - For any value types we are promoting or expanding, this /// contains the value type that we are changing to. For Expanded types, this /// contains one step of the expand (e.g. i64 -> i32), even if there are /// multiple steps required (e.g. i64 -> i16). For types natively supported /// by the system, this holds the same type (e.g. i32 -> i32). MVT::ValueType TransformToType[MVT::LAST_VALUETYPE]; /// OpActions - For each operation and each value type, keep a LegalizeAction /// that indicates how instruction selection should deal with the operation. /// Most operations are Legal (aka, supported natively by the target), but /// operations that are not should be described. Note that operations on /// non-legal value types are not described here. uint64_t OpActions[156]; /// LoadXActions - For each load of load extension type and each value type, /// keep a LegalizeAction that indicates how instruction selection should deal /// with the load. uint64_t LoadXActions[ISD::LAST_LOADX_TYPE]; /// StoreXActions - For each store with truncation of each value type, keep a /// LegalizeAction that indicates how instruction selection should deal with /// the store. uint64_t StoreXActions; ValueTypeActionImpl ValueTypeActions; std::vector LegalFPImmediates; std::vector > AvailableRegClasses; /// TargetDAGCombineArray - Targets can specify ISD nodes that they would /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(), /// which sets a bit in this array. unsigned char TargetDAGCombineArray[156/(sizeof(unsigned char)*8)]; /// PromoteToType - For operations that must be promoted to a specific type, /// this holds the destination type. This map should be sparse, so don't hold /// it as an array. /// /// Targets add entries to this map with AddPromotedToType(..), clients access /// this with getTypeToPromoteTo(..). std::map, MVT::ValueType> PromoteToType; protected: /// When lowering %llvm.memset this field specifies the maximum number of /// store operations that may be substituted for the call to memset. Targets /// must set this value based on the cost threshold for that target. Targets /// should assume that the memset will be done using as many of the largest /// store operations first, followed by smaller ones, if necessary, per /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine /// with 16-bit alignment would result in four 2-byte stores and one 1-byte /// store. This only applies to setting a constant array of a constant size. /// @brief Specify maximum number of store instructions per memset call. unsigned maxStoresPerMemset; /// When lowering %llvm.memcpy this field specifies the maximum number of /// store operations that may be substituted for a call to memcpy. Targets /// must set this value based on the cost threshold for that target. Targets /// should assume that the memcpy will be done using as many of the largest /// store operations first, followed by smaller ones, if necessary, per /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store /// and one 1-byte store. This only applies to copying a constant array of /// constant size. /// @brief Specify maximum bytes of store instructions per memcpy call. unsigned maxStoresPerMemcpy; /// When lowering %llvm.memmove this field specifies the maximum number of /// store instructions that may be substituted for a call to memmove. Targets /// must set this value based on the cost threshold for that target. Targets /// should assume that the memmove will be done using as many of the largest /// store operations first, followed by smaller ones, if necessary, per /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine /// with 8-bit alignment would result in nine 1-byte stores. This only /// applies to copying a constant array of constant size. /// @brief Specify maximum bytes of store instructions per memmove call. unsigned maxStoresPerMemmove; /// This field specifies whether the target machine permits unaligned memory /// accesses. This is used, for example, to determine the size of store /// operations when copying small arrays and other similar tasks. /// @brief Indicate whether the target permits unaligned memory accesses. bool allowUnalignedMemoryAccesses; }; } // end llvm namespace #endif