//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the common interface used by the various execution engine // subclasses. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "jit" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/ModuleProvider.h" #include "llvm/ADT/Statistic.h" #include "llvm/Config/alloca.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MutexGuard.h" #include "llvm/System/DynamicLibrary.h" #include "llvm/System/Host.h" #include "llvm/Target/TargetData.h" #include #include using namespace llvm; STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); STATISTIC(NumGlobals , "Number of global vars initialized"); ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0; ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) { LazyCompilationDisabled = false; GVCompilationDisabled = false; SymbolSearchingDisabled = false; DlsymStubsEnabled = false; Modules.push_back(P); assert(P && "ModuleProvider is null?"); } ExecutionEngine::~ExecutionEngine() { clearAllGlobalMappings(); for (unsigned i = 0, e = Modules.size(); i != e; ++i) delete Modules[i]; } char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) { const Type *ElTy = GV->getType()->getElementType(); size_t GVSize = (size_t)getTargetData()->getTypePaddedSize(ElTy); return new char[GVSize]; } /// removeModuleProvider - Remove a ModuleProvider from the list of modules. /// Relases the Module from the ModuleProvider, materializing it in the /// process, and returns the materialized Module. Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P, std::string *ErrInfo) { for(SmallVector::iterator I = Modules.begin(), E = Modules.end(); I != E; ++I) { ModuleProvider *MP = *I; if (MP == P) { Modules.erase(I); clearGlobalMappingsFromModule(MP->getModule()); return MP->releaseModule(ErrInfo); } } return NULL; } /// deleteModuleProvider - Remove a ModuleProvider from the list of modules, /// and deletes the ModuleProvider and owned Module. Avoids materializing /// the underlying module. void ExecutionEngine::deleteModuleProvider(ModuleProvider *P, std::string *ErrInfo) { for(SmallVector::iterator I = Modules.begin(), E = Modules.end(); I != E; ++I) { ModuleProvider *MP = *I; if (MP == P) { Modules.erase(I); clearGlobalMappingsFromModule(MP->getModule()); delete MP; return; } } } /// FindFunctionNamed - Search all of the active modules to find the one that /// defines FnName. This is very slow operation and shouldn't be used for /// general code. Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { for (unsigned i = 0, e = Modules.size(); i != e; ++i) { if (Function *F = Modules[i]->getModule()->getFunction(FnName)) return F; } return 0; } /// addGlobalMapping - Tell the execution engine that the specified global is /// at the specified location. This is used internally as functions are JIT'd /// and as global variables are laid out in memory. It can and should also be /// used by clients of the EE that want to have an LLVM global overlay /// existing data in memory. void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { MutexGuard locked(lock); DOUT << "JIT: Map \'" << GV->getNameStart() << "\' to [" << Addr << "]\n"; void *&CurVal = state.getGlobalAddressMap(locked)[GV]; assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); CurVal = Addr; // If we are using the reverse mapping, add it too if (!state.getGlobalAddressReverseMap(locked).empty()) { const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; assert((V == 0 || GV == 0) && "GlobalMapping already established!"); V = GV; } } /// clearAllGlobalMappings - Clear all global mappings and start over again /// use in dynamic compilation scenarios when you want to move globals void ExecutionEngine::clearAllGlobalMappings() { MutexGuard locked(lock); state.getGlobalAddressMap(locked).clear(); state.getGlobalAddressReverseMap(locked).clear(); } /// clearGlobalMappingsFromModule - Clear all global mappings that came from a /// particular module, because it has been removed from the JIT. void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { MutexGuard locked(lock); for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { state.getGlobalAddressMap(locked).erase(FI); state.getGlobalAddressReverseMap(locked).erase(FI); } for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); GI != GE; ++GI) { state.getGlobalAddressMap(locked).erase(GI); state.getGlobalAddressReverseMap(locked).erase(GI); } } /// updateGlobalMapping - Replace an existing mapping for GV with a new /// address. This updates both maps as required. If "Addr" is null, the /// entry for the global is removed from the mappings. void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { MutexGuard locked(lock); std::map &Map = state.getGlobalAddressMap(locked); // Deleting from the mapping? if (Addr == 0) { std::map::iterator I = Map.find(GV); void *OldVal; if (I == Map.end()) OldVal = 0; else { OldVal = I->second; Map.erase(I); } if (!state.getGlobalAddressReverseMap(locked).empty()) state.getGlobalAddressReverseMap(locked).erase(Addr); return OldVal; } void *&CurVal = Map[GV]; void *OldVal = CurVal; if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) state.getGlobalAddressReverseMap(locked).erase(CurVal); CurVal = Addr; // If we are using the reverse mapping, add it too if (!state.getGlobalAddressReverseMap(locked).empty()) { const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; assert((V == 0 || GV == 0) && "GlobalMapping already established!"); V = GV; } return OldVal; } /// getPointerToGlobalIfAvailable - This returns the address of the specified /// global value if it is has already been codegen'd, otherwise it returns null. /// void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { MutexGuard locked(lock); std::map::iterator I = state.getGlobalAddressMap(locked).find(GV); return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; } /// getGlobalValueAtAddress - Return the LLVM global value object that starts /// at the specified address. /// const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { MutexGuard locked(lock); // If we haven't computed the reverse mapping yet, do so first. if (state.getGlobalAddressReverseMap(locked).empty()) { for (std::map::iterator I = state.getGlobalAddressMap(locked).begin(), E = state.getGlobalAddressMap(locked).end(); I != E; ++I) state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, I->first)); } std::map::iterator I = state.getGlobalAddressReverseMap(locked).find(Addr); return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; } // CreateArgv - Turn a vector of strings into a nice argv style array of // pointers to null terminated strings. // static void *CreateArgv(ExecutionEngine *EE, const std::vector &InputArgv) { unsigned PtrSize = EE->getTargetData()->getPointerSize(); char *Result = new char[(InputArgv.size()+1)*PtrSize]; DOUT << "JIT: ARGV = " << (void*)Result << "\n"; const Type *SBytePtr = PointerType::getUnqual(Type::Int8Ty); for (unsigned i = 0; i != InputArgv.size(); ++i) { unsigned Size = InputArgv[i].size()+1; char *Dest = new char[Size]; DOUT << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"; std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); Dest[Size-1] = 0; // Endian safe: Result[i] = (PointerTy)Dest; EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), SBytePtr); } // Null terminate it EE->StoreValueToMemory(PTOGV(0), (GenericValue*)(Result+InputArgv.size()*PtrSize), SBytePtr); return Result; } /// runStaticConstructorsDestructors - This method is used to execute all of /// the static constructors or destructors for a module, depending on the /// value of isDtors. void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDtors) { const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; // Execute global ctors/dtors for each module in the program. GlobalVariable *GV = module->getNamedGlobal(Name); // If this global has internal linkage, or if it has a use, then it must be // an old-style (llvmgcc3) static ctor with __main linked in and in use. If // this is the case, don't execute any of the global ctors, __main will do // it. if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; // Should be an array of '{ int, void ()* }' structs. The first value is // the init priority, which we ignore. ConstantArray *InitList = dyn_cast(GV->getInitializer()); if (!InitList) return; for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) if (ConstantStruct *CS = dyn_cast(InitList->getOperand(i))) { if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. Constant *FP = CS->getOperand(1); if (FP->isNullValue()) break; // Found a null terminator, exit. if (ConstantExpr *CE = dyn_cast(FP)) if (CE->isCast()) FP = CE->getOperand(0); if (Function *F = dyn_cast(FP)) { // Execute the ctor/dtor function! runFunction(F, std::vector()); } } } /// runStaticConstructorsDestructors - This method is used to execute all of /// the static constructors or destructors for a program, depending on the /// value of isDtors. void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { // Execute global ctors/dtors for each module in the program. for (unsigned m = 0, e = Modules.size(); m != e; ++m) runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors); } #ifndef NDEBUG /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { unsigned PtrSize = EE->getTargetData()->getPointerSize(); for (unsigned i = 0; i < PtrSize; ++i) if (*(i + (uint8_t*)Loc)) return false; return true; } #endif /// runFunctionAsMain - This is a helper function which wraps runFunction to /// handle the common task of starting up main with the specified argc, argv, /// and envp parameters. int ExecutionEngine::runFunctionAsMain(Function *Fn, const std::vector &argv, const char * const * envp) { std::vector GVArgs; GenericValue GVArgc; GVArgc.IntVal = APInt(32, argv.size()); // Check main() type unsigned NumArgs = Fn->getFunctionType()->getNumParams(); const FunctionType *FTy = Fn->getFunctionType(); const Type* PPInt8Ty = PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty)); switch (NumArgs) { case 3: if (FTy->getParamType(2) != PPInt8Ty) { cerr << "Invalid type for third argument of main() supplied\n"; abort(); } // FALLS THROUGH case 2: if (FTy->getParamType(1) != PPInt8Ty) { cerr << "Invalid type for second argument of main() supplied\n"; abort(); } // FALLS THROUGH case 1: if (FTy->getParamType(0) != Type::Int32Ty) { cerr << "Invalid type for first argument of main() supplied\n"; abort(); } // FALLS THROUGH case 0: if (!isa(FTy->getReturnType()) && FTy->getReturnType() != Type::VoidTy) { cerr << "Invalid return type of main() supplied\n"; abort(); } break; default: cerr << "Invalid number of arguments of main() supplied\n"; abort(); } if (NumArgs) { GVArgs.push_back(GVArgc); // Arg #0 = argc. if (NumArgs > 1) { GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && "argv[0] was null after CreateArgv"); if (NumArgs > 2) { std::vector EnvVars; for (unsigned i = 0; envp[i]; ++i) EnvVars.push_back(envp[i]); GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. } } } return runFunction(Fn, GVArgs).IntVal.getZExtValue(); } /// If possible, create a JIT, unless the caller specifically requests an /// Interpreter or there's an error. If even an Interpreter cannot be created, /// NULL is returned. /// ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, bool ForceInterpreter, std::string *ErrorStr, bool Fast) { ExecutionEngine *EE = 0; // Make sure we can resolve symbols in the program as well. The zero arg // to the function tells DynamicLibrary to load the program, not a library. if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) return 0; // Unless the interpreter was explicitly selected, try making a JIT. if (!ForceInterpreter && JITCtor) EE = JITCtor(MP, ErrorStr, Fast); // If we can't make a JIT, make an interpreter instead. if (EE == 0 && InterpCtor) EE = InterpCtor(MP, ErrorStr, Fast); return EE; } ExecutionEngine *ExecutionEngine::create(Module *M) { return create(new ExistingModuleProvider(M)); } /// getPointerToGlobal - This returns the address of the specified global /// value. This may involve code generation if it's a function. /// void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { if (Function *F = const_cast(dyn_cast(GV))) return getPointerToFunction(F); MutexGuard locked(lock); void *p = state.getGlobalAddressMap(locked)[GV]; if (p) return p; // Global variable might have been added since interpreter started. if (GlobalVariable *GVar = const_cast(dyn_cast(GV))) EmitGlobalVariable(GVar); else assert(0 && "Global hasn't had an address allocated yet!"); return state.getGlobalAddressMap(locked)[GV]; } /// This function converts a Constant* into a GenericValue. The interesting /// part is if C is a ConstantExpr. /// @brief Get a GenericValue for a Constant* GenericValue ExecutionEngine::getConstantValue(const Constant *C) { // If its undefined, return the garbage. if (isa(C)) return GenericValue(); // If the value is a ConstantExpr if (const ConstantExpr *CE = dyn_cast(C)) { Constant *Op0 = CE->getOperand(0); switch (CE->getOpcode()) { case Instruction::GetElementPtr: { // Compute the index GenericValue Result = getConstantValue(Op0); SmallVector Indices(CE->op_begin()+1, CE->op_end()); uint64_t Offset = TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); char* tmp = (char*) Result.PointerVal; Result = PTOGV(tmp + Offset); return Result; } case Instruction::Trunc: { GenericValue GV = getConstantValue(Op0); uint32_t BitWidth = cast(CE->getType())->getBitWidth(); GV.IntVal = GV.IntVal.trunc(BitWidth); return GV; } case Instruction::ZExt: { GenericValue GV = getConstantValue(Op0); uint32_t BitWidth = cast(CE->getType())->getBitWidth(); GV.IntVal = GV.IntVal.zext(BitWidth); return GV; } case Instruction::SExt: { GenericValue GV = getConstantValue(Op0); uint32_t BitWidth = cast(CE->getType())->getBitWidth(); GV.IntVal = GV.IntVal.sext(BitWidth); return GV; } case Instruction::FPTrunc: { // FIXME long double GenericValue GV = getConstantValue(Op0); GV.FloatVal = float(GV.DoubleVal); return GV; } case Instruction::FPExt:{ // FIXME long double GenericValue GV = getConstantValue(Op0); GV.DoubleVal = double(GV.FloatVal); return GV; } case Instruction::UIToFP: { GenericValue GV = getConstantValue(Op0); if (CE->getType() == Type::FloatTy) GV.FloatVal = float(GV.IntVal.roundToDouble()); else if (CE->getType() == Type::DoubleTy) GV.DoubleVal = GV.IntVal.roundToDouble(); else if (CE->getType() == Type::X86_FP80Ty) { const uint64_t zero[] = {0, 0}; APFloat apf = APFloat(APInt(80, 2, zero)); (void)apf.convertFromAPInt(GV.IntVal, false, APFloat::rmNearestTiesToEven); GV.IntVal = apf.bitcastToAPInt(); } return GV; } case Instruction::SIToFP: { GenericValue GV = getConstantValue(Op0); if (CE->getType() == Type::FloatTy) GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); else if (CE->getType() == Type::DoubleTy) GV.DoubleVal = GV.IntVal.signedRoundToDouble(); else if (CE->getType() == Type::X86_FP80Ty) { const uint64_t zero[] = { 0, 0}; APFloat apf = APFloat(APInt(80, 2, zero)); (void)apf.convertFromAPInt(GV.IntVal, true, APFloat::rmNearestTiesToEven); GV.IntVal = apf.bitcastToAPInt(); } return GV; } case Instruction::FPToUI: // double->APInt conversion handles sign case Instruction::FPToSI: { GenericValue GV = getConstantValue(Op0); uint32_t BitWidth = cast(CE->getType())->getBitWidth(); if (Op0->getType() == Type::FloatTy) GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); else if (Op0->getType() == Type::DoubleTy) GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); else if (Op0->getType() == Type::X86_FP80Ty) { APFloat apf = APFloat(GV.IntVal); uint64_t v; bool ignored; (void)apf.convertToInteger(&v, BitWidth, CE->getOpcode()==Instruction::FPToSI, APFloat::rmTowardZero, &ignored); GV.IntVal = v; // endian? } return GV; } case Instruction::PtrToInt: { GenericValue GV = getConstantValue(Op0); uint32_t PtrWidth = TD->getPointerSizeInBits(); GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); return GV; } case Instruction::IntToPtr: { GenericValue GV = getConstantValue(Op0); uint32_t PtrWidth = TD->getPointerSizeInBits(); if (PtrWidth != GV.IntVal.getBitWidth()) GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); return GV; } case Instruction::BitCast: { GenericValue GV = getConstantValue(Op0); const Type* DestTy = CE->getType(); switch (Op0->getType()->getTypeID()) { default: assert(0 && "Invalid bitcast operand"); case Type::IntegerTyID: assert(DestTy->isFloatingPoint() && "invalid bitcast"); if (DestTy == Type::FloatTy) GV.FloatVal = GV.IntVal.bitsToFloat(); else if (DestTy == Type::DoubleTy) GV.DoubleVal = GV.IntVal.bitsToDouble(); break; case Type::FloatTyID: assert(DestTy == Type::Int32Ty && "Invalid bitcast"); GV.IntVal.floatToBits(GV.FloatVal); break; case Type::DoubleTyID: assert(DestTy == Type::Int64Ty && "Invalid bitcast"); GV.IntVal.doubleToBits(GV.DoubleVal); break; case Type::PointerTyID: assert(isa(DestTy) && "Invalid bitcast"); break; // getConstantValue(Op0) above already converted it } return GV; } case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::URem: case Instruction::SRem: case Instruction::And: case Instruction::Or: case Instruction::Xor: { GenericValue LHS = getConstantValue(Op0); GenericValue RHS = getConstantValue(CE->getOperand(1)); GenericValue GV; switch (CE->getOperand(0)->getType()->getTypeID()) { default: assert(0 && "Bad add type!"); abort(); case Type::IntegerTyID: switch (CE->getOpcode()) { default: assert(0 && "Invalid integer opcode"); case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; } break; case Type::FloatTyID: switch (CE->getOpcode()) { default: assert(0 && "Invalid float opcode"); abort(); case Instruction::Add: GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; case Instruction::Sub: GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; case Instruction::Mul: GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; case Instruction::FDiv: GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; case Instruction::FRem: GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; } break; case Type::DoubleTyID: switch (CE->getOpcode()) { default: assert(0 && "Invalid double opcode"); abort(); case Instruction::Add: GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; case Instruction::Sub: GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; case Instruction::Mul: GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; case Instruction::FDiv: GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; case Instruction::FRem: GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; } break; case Type::X86_FP80TyID: case Type::PPC_FP128TyID: case Type::FP128TyID: { APFloat apfLHS = APFloat(LHS.IntVal); switch (CE->getOpcode()) { default: assert(0 && "Invalid long double opcode"); abort(); case Instruction::Add: apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); GV.IntVal = apfLHS.bitcastToAPInt(); break; case Instruction::Sub: apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); GV.IntVal = apfLHS.bitcastToAPInt(); break; case Instruction::Mul: apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); GV.IntVal = apfLHS.bitcastToAPInt(); break; case Instruction::FDiv: apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); GV.IntVal = apfLHS.bitcastToAPInt(); break; case Instruction::FRem: apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); GV.IntVal = apfLHS.bitcastToAPInt(); break; } } break; } return GV; } default: break; } cerr << "ConstantExpr not handled: " << *CE << "\n"; abort(); } GenericValue Result; switch (C->getType()->getTypeID()) { case Type::FloatTyID: Result.FloatVal = cast(C)->getValueAPF().convertToFloat(); break; case Type::DoubleTyID: Result.DoubleVal = cast(C)->getValueAPF().convertToDouble(); break; case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: Result.IntVal = cast (C)->getValueAPF().bitcastToAPInt(); break; case Type::IntegerTyID: Result.IntVal = cast(C)->getValue(); break; case Type::PointerTyID: if (isa(C)) Result.PointerVal = 0; else if (const Function *F = dyn_cast(C)) Result = PTOGV(getPointerToFunctionOrStub(const_cast(F))); else if (const GlobalVariable* GV = dyn_cast(C)) Result = PTOGV(getOrEmitGlobalVariable(const_cast(GV))); else assert(0 && "Unknown constant pointer type!"); break; default: cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n"; abort(); } return Result; } /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst /// with the integer held in IntVal. static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes) { assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); uint8_t *Src = (uint8_t *)IntVal.getRawData(); if (sys::isLittleEndianHost()) // Little-endian host - the source is ordered from LSB to MSB. Order the // destination from LSB to MSB: Do a straight copy. memcpy(Dst, Src, StoreBytes); else { // Big-endian host - the source is an array of 64 bit words ordered from // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination // from MSB to LSB: Reverse the word order, but not the bytes in a word. while (StoreBytes > sizeof(uint64_t)) { StoreBytes -= sizeof(uint64_t); // May not be aligned so use memcpy. memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); Src += sizeof(uint64_t); } memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); } } /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr /// is the address of the memory at which to store Val, cast to GenericValue *. /// It is not a pointer to a GenericValue containing the address at which to /// store Val. void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, const Type *Ty) { const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); switch (Ty->getTypeID()) { case Type::IntegerTyID: StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); break; case Type::FloatTyID: *((float*)Ptr) = Val.FloatVal; break; case Type::DoubleTyID: *((double*)Ptr) = Val.DoubleVal; break; case Type::X86_FP80TyID: memcpy(Ptr, Val.IntVal.getRawData(), 10); break; case Type::PointerTyID: // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. if (StoreBytes != sizeof(PointerTy)) memset(Ptr, 0, StoreBytes); *((PointerTy*)Ptr) = Val.PointerVal; break; default: cerr << "Cannot store value of type " << *Ty << "!\n"; } if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) // Host and target are different endian - reverse the stored bytes. std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); } /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting /// from Src into IntVal, which is assumed to be wide enough and to hold zero. static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); uint8_t *Dst = (uint8_t *)IntVal.getRawData(); if (sys::isLittleEndianHost()) // Little-endian host - the destination must be ordered from LSB to MSB. // The source is ordered from LSB to MSB: Do a straight copy. memcpy(Dst, Src, LoadBytes); else { // Big-endian - the destination is an array of 64 bit words ordered from // LSW to MSW. Each word must be ordered from MSB to LSB. The source is // ordered from MSB to LSB: Reverse the word order, but not the bytes in // a word. while (LoadBytes > sizeof(uint64_t)) { LoadBytes -= sizeof(uint64_t); // May not be aligned so use memcpy. memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); Dst += sizeof(uint64_t); } memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); } } /// FIXME: document /// void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr, const Type *Ty) { const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) { // Host and target are different endian - reverse copy the stored // bytes into a buffer, and load from that. uint8_t *Src = (uint8_t*)Ptr; uint8_t *Buf = (uint8_t*)alloca(LoadBytes); std::reverse_copy(Src, Src + LoadBytes, Buf); Ptr = (GenericValue*)Buf; } switch (Ty->getTypeID()) { case Type::IntegerTyID: // An APInt with all words initially zero. Result.IntVal = APInt(cast(Ty)->getBitWidth(), 0); LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); break; case Type::FloatTyID: Result.FloatVal = *((float*)Ptr); break; case Type::DoubleTyID: Result.DoubleVal = *((double*)Ptr); break; case Type::PointerTyID: Result.PointerVal = *((PointerTy*)Ptr); break; case Type::X86_FP80TyID: { // This is endian dependent, but it will only work on x86 anyway. // FIXME: Will not trap if loading a signaling NaN. uint64_t y[2]; memcpy(y, Ptr, 10); Result.IntVal = APInt(80, 2, y); break; } default: cerr << "Cannot load value of type " << *Ty << "!\n"; abort(); } } // InitializeMemory - Recursive function to apply a Constant value into the // specified memory location... // void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { DOUT << "JIT: Initializing " << Addr << " "; DEBUG(Init->dump()); if (isa(Init)) { return; } else if (const ConstantVector *CP = dyn_cast(Init)) { unsigned ElementSize = getTargetData()->getTypePaddedSize(CP->getType()->getElementType()); for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); return; } else if (isa(Init)) { memset(Addr, 0, (size_t)getTargetData()->getTypePaddedSize(Init->getType())); return; } else if (const ConstantArray *CPA = dyn_cast(Init)) { unsigned ElementSize = getTargetData()->getTypePaddedSize(CPA->getType()->getElementType()); for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); return; } else if (const ConstantStruct *CPS = dyn_cast(Init)) { const StructLayout *SL = getTargetData()->getStructLayout(cast(CPS->getType())); for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); return; } else if (Init->getType()->isFirstClassType()) { GenericValue Val = getConstantValue(Init); StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); return; } cerr << "Bad Type: " << *Init->getType() << "\n"; assert(0 && "Unknown constant type to initialize memory with!"); } /// EmitGlobals - Emit all of the global variables to memory, storing their /// addresses into GlobalAddress. This must make sure to copy the contents of /// their initializers into the memory. /// void ExecutionEngine::emitGlobals() { // Loop over all of the global variables in the program, allocating the memory // to hold them. If there is more than one module, do a prepass over globals // to figure out how the different modules should link together. // std::map, const GlobalValue*> LinkedGlobalsMap; if (Modules.size() != 1) { for (unsigned m = 0, e = Modules.size(); m != e; ++m) { Module &M = *Modules[m]->getModule(); for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { const GlobalValue *GV = I; if (GV->hasLocalLinkage() || GV->isDeclaration() || GV->hasAppendingLinkage() || !GV->hasName()) continue;// Ignore external globals and globals with internal linkage. const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; // If this is the first time we've seen this global, it is the canonical // version. if (!GVEntry) { GVEntry = GV; continue; } // If the existing global is strong, never replace it. if (GVEntry->hasExternalLinkage() || GVEntry->hasDLLImportLinkage() || GVEntry->hasDLLExportLinkage()) continue; // Otherwise, we know it's linkonce/weak, replace it if this is a strong // symbol. FIXME is this right for common? if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) GVEntry = GV; } } } std::vector NonCanonicalGlobals; for (unsigned m = 0, e = Modules.size(); m != e; ++m) { Module &M = *Modules[m]->getModule(); for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { // In the multi-module case, see what this global maps to. if (!LinkedGlobalsMap.empty()) { if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { // If something else is the canonical global, ignore this one. if (GVEntry != &*I) { NonCanonicalGlobals.push_back(I); continue; } } } if (!I->isDeclaration()) { addGlobalMapping(I, getMemoryForGV(I)); } else { // External variable reference. Try to use the dynamic loader to // get a pointer to it. if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) addGlobalMapping(I, SymAddr); else { cerr << "Could not resolve external global address: " << I->getName() << "\n"; abort(); } } } // If there are multiple modules, map the non-canonical globals to their // canonical location. if (!NonCanonicalGlobals.empty()) { for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { const GlobalValue *GV = NonCanonicalGlobals[i]; const GlobalValue *CGV = LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; void *Ptr = getPointerToGlobalIfAvailable(CGV); assert(Ptr && "Canonical global wasn't codegen'd!"); addGlobalMapping(GV, Ptr); } } // Now that all of the globals are set up in memory, loop through them all // and initialize their contents. for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { if (!I->isDeclaration()) { if (!LinkedGlobalsMap.empty()) { if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) if (GVEntry != &*I) // Not the canonical variable. continue; } EmitGlobalVariable(I); } } } } // EmitGlobalVariable - This method emits the specified global variable to the // address specified in GlobalAddresses, or allocates new memory if it's not // already in the map. void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { void *GA = getPointerToGlobalIfAvailable(GV); if (GA == 0) { // If it's not already specified, allocate memory for the global. GA = getMemoryForGV(GV); addGlobalMapping(GV, GA); } // Don't initialize if it's thread local, let the client do it. if (!GV->isThreadLocal()) InitializeMemory(GV->getInitializer(), GA); const Type *ElTy = GV->getType()->getElementType(); size_t GVSize = (size_t)getTargetData()->getTypePaddedSize(ElTy); NumInitBytes += (unsigned)GVSize; ++NumGlobals; }