//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the target machine instructions to the code generator. // //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_TARGETINSTRINFO_H #define LLVM_TARGET_TARGETINSTRINFO_H #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/Support/DataTypes.h" #include #include namespace llvm { class MachineInstr; class TargetMachine; class TargetRegisterClass; class LiveVariables; class CalleeSavedInfo; class SDNode; class SelectionDAG; template class SmallVectorImpl; //===----------------------------------------------------------------------===// // Data types used to define information about a single machine instruction //===----------------------------------------------------------------------===// typedef short MachineOpCode; //===----------------------------------------------------------------------===// // struct TargetInstrDescriptor: // Predefined information about each machine instruction. // Designed to initialized statically. // const unsigned M_BRANCH_FLAG = 1 << 0; const unsigned M_CALL_FLAG = 1 << 1; const unsigned M_RET_FLAG = 1 << 2; const unsigned M_BARRIER_FLAG = 1 << 3; const unsigned M_DELAY_SLOT_FLAG = 1 << 4; /// M_SIMPLE_LOAD_FLAG - This flag is set for instructions that are simple loads /// from memory. This should only be set on instructions that load a value from /// memory and return it in their only virtual register definition. const unsigned M_SIMPLE_LOAD_FLAG = 1 << 5; /// M_MAY_STORE_FLAG - This flag is set to any instruction that could possibly /// modify memory. Instructions with this flag set are not necessarily simple /// store instructions, they may store a modified value based on their operands, /// or may not actually modify anything, for example. const unsigned M_MAY_STORE_FLAG = 1 << 6; const unsigned M_INDIRECT_FLAG = 1 << 7; const unsigned M_IMPLICIT_DEF_FLAG = 1 << 8; // M_CONVERTIBLE_TO_3_ADDR - This is a 2-address instruction which can be // changed into a 3-address instruction if the first two operands cannot be // assigned to the same register. The target must implement the // TargetInstrInfo::convertToThreeAddress method for this instruction. const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 9; // This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y, // Z), which produces the same result if Y and Z are exchanged. const unsigned M_COMMUTABLE = 1 << 10; // M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic // block? Typically this is things like return and branch instructions. // Various passes use this to insert code into the bottom of a basic block, but // before control flow occurs. const unsigned M_TERMINATOR_FLAG = 1 << 11; // M_USES_CUSTOM_DAG_SCHED_INSERTION - Set if this instruction requires custom // insertion support when the DAG scheduler is inserting it into a machine basic // block. const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 12; // M_VARIABLE_OPS - Set if this instruction can have a variable number of extra // operands in addition to the minimum number operands specified. const unsigned M_VARIABLE_OPS = 1 << 13; // M_PREDICABLE - Set if this instruction has a predicate operand that // controls execution. It may be set to 'always'. const unsigned M_PREDICABLE = 1 << 14; // M_REMATERIALIZIBLE - Set if this instruction can be trivally re-materialized // at any time, e.g. constant generation, load from constant pool. const unsigned M_REMATERIALIZIBLE = 1 << 15; // M_NOT_DUPLICABLE - Set if this instruction cannot be safely duplicated. // (e.g. instructions with unique labels attached). const unsigned M_NOT_DUPLICABLE = 1 << 16; // M_HAS_OPTIONAL_DEF - Set if this instruction has an optional definition, e.g. // ARM instructions which can set condition code if 's' bit is set. const unsigned M_HAS_OPTIONAL_DEF = 1 << 17; // M_NEVER_HAS_SIDE_EFFECTS - Set if this instruction has no side effects that // are not captured by any operands of the instruction or other flags, and when // *all* instances of the instruction of that opcode have no side effects. // // Note: This and M_MAY_HAVE_SIDE_EFFECTS are mutually exclusive. You can't set // both! If neither flag is set, then the instruction *always* has side effects. const unsigned M_NEVER_HAS_SIDE_EFFECTS = 1 << 18; // M_MAY_HAVE_SIDE_EFFECTS - Set if some instances of this instruction can have // side effects. The virtual method "isReallySideEffectFree" is called to // determine this. Load instructions are an example of where this is useful. In // general, loads always have side effects. However, loads from constant pools // don't. We let the specific back end make this determination. // // Note: This and M_NEVER_HAS_SIDE_EFFECTS are mutually exclusive. You can't set // both! If neither flag is set, then the instruction *always* has side effects. const unsigned M_MAY_HAVE_SIDE_EFFECTS = 1 << 19; //===----------------------------------------------------------------------===// // Machine operand flags //===----------------------------------------------------------------------===// namespace TOI { // Operand constraints: only "tied_to" for now. enum OperandConstraint { TIED_TO = 0 // Must be allocated the same register as. }; /// OperandFlags - These are flags set on operands, but should be considered /// private, all access should go through the TargetOperandInfo accessors. /// See the accessors for a description of what these are. enum OperandFlags { LookupPtrRegClass = 1 << 0, Predicate = 1 << 1, OptionalDef = 1 << 2 }; } /// TargetOperandInfo - This holds information about one operand of a machine /// instruction, indicating the register class for register operands, etc. /// class TargetOperandInfo { public: /// RegClass - This specifies the register class enumeration of the operand /// if the operand is a register. If not, this contains 0. unsigned short RegClass; unsigned short Flags; /// Lower 16 bits are used to specify which constraints are set. The higher 16 /// bits are used to specify the value of constraints (4 bits each). unsigned int Constraints; /// Currently no other information. /// isLookupPtrRegClass - Set if this operand is a pointer value and it /// requires a callback to look up its register class. bool isLookupPtrRegClass() const { return Flags & TOI::LookupPtrRegClass; } /// isPredicate - Set if this is one of the operands that made up of /// the predicate operand that controls an M_PREDICATED instruction. bool isPredicate() const { return Flags & TOI::Predicate; } /// isOptionalDef - Set if this operand is a optional def. /// bool isOptionalDef() const { return Flags & TOI::OptionalDef; } }; class TargetInstrDescriptor { public: unsigned short Opcode; // The opcode. unsigned short numOperands; // Num of args (may be more if variable_ops). unsigned short numDefs; // Num of args that are definitions. const char * Name; // Assembly language mnemonic for the opcode. unsigned SchedClass; // enum identifying instr sched class unsigned Flags; // flags identifying machine instr class unsigned TSFlags; // Target Specific Flag values const unsigned *ImplicitUses; // Registers implicitly read by this instr const unsigned *ImplicitDefs; // Registers implicitly defined by this instr const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands. /// getOperandConstraint - Returns the value of the specific constraint if /// it is set. Returns -1 if it is not set. int getOperandConstraint(unsigned OpNum, TOI::OperandConstraint Constraint) const { assert((OpNum < numOperands || (Flags & M_VARIABLE_OPS)) && "Invalid operand # of TargetInstrInfo"); if (OpNum < numOperands && (OpInfo[OpNum].Constraints & (1 << Constraint))) { unsigned Pos = 16 + Constraint * 4; return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf; } return -1; } /// findTiedToSrcOperand - Returns the operand that is tied to the specified /// dest operand. Returns -1 if there isn't one. int findTiedToSrcOperand(unsigned OpNum) const; bool isCall() const { return Flags & M_CALL_FLAG; } bool isBranch() const { return Flags & M_BRANCH_FLAG; } bool isTerminator() const { return Flags & M_TERMINATOR_FLAG; } bool isIndirectBranch() const { return Flags & M_INDIRECT_FLAG; } bool isPredicable() const { return Flags & M_PREDICABLE; } bool isNotDuplicable() const { return Flags & M_NOT_DUPLICABLE; } /// isSimpleLoad - Return true for instructions that are simple loads from /// memory. This should only be set on instructions that load a value from /// memory and return it in their only virtual register definition. /// Instructions that return a value loaded from memory and then modified in /// some way should not return true for this. bool isSimpleLoad() const { return Flags & M_SIMPLE_LOAD_FLAG; } /// mayStore - Return true if this instruction could possibly modify memory. /// Instructions with this flag set are not necessarily simple store /// instructions, they may store a modified value based on their operands, or /// may not actually modify anything, for example. bool mayStore() const { return Flags & M_MAY_STORE_FLAG; } /// isBarrier - Returns true if the specified instruction stops control flow /// from executing the instruction immediately following it. Examples include /// unconditional branches and return instructions. bool isBarrier() const { return Flags & M_BARRIER_FLAG; } /// hasDelaySlot - Returns true if the specified instruction has a delay slot /// which must be filled by the code generator. bool hasDelaySlot() const { return Flags & M_DELAY_SLOT_FLAG; } unsigned getSchedClass() const { return SchedClass; } }; //--------------------------------------------------------------------------- /// /// TargetInstrInfo - Interface to description of machine instructions /// class TargetInstrInfo { const TargetInstrDescriptor* desc; // raw array to allow static init'n unsigned NumOpcodes; // number of entries in the desc array unsigned numRealOpCodes; // number of non-dummy op codes TargetInstrInfo(const TargetInstrInfo &); // DO NOT IMPLEMENT void operator=(const TargetInstrInfo &); // DO NOT IMPLEMENT public: TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes); virtual ~TargetInstrInfo(); // Invariant opcodes: All instruction sets have these as their low opcodes. enum { PHI = 0, INLINEASM = 1, LABEL = 2, EXTRACT_SUBREG = 3, INSERT_SUBREG = 4 }; unsigned getNumOpcodes() const { return NumOpcodes; } /// get - Return the machine instruction descriptor that corresponds to the /// specified instruction opcode. /// const TargetInstrDescriptor& get(unsigned Opcode) const { assert(Opcode < NumOpcodes); return desc[Opcode]; } const char *getName(unsigned Opcode) const { return get(Opcode).Name; } int getNumOperands(unsigned Opcode) const { return get(Opcode).numOperands; } int getNumDefs(unsigned Opcode) const { return get(Opcode).numDefs; } const unsigned *getImplicitUses(unsigned Opcode) const { return get(Opcode).ImplicitUses; } const unsigned *getImplicitDefs(unsigned Opcode) const { return get(Opcode).ImplicitDefs; } // // Query instruction class flags according to the machine-independent // flags listed above. // bool isReturn(unsigned Opcode) const { return get(Opcode).Flags & M_RET_FLAG; } bool isCommutableInstr(unsigned Opcode) const { return get(Opcode).Flags & M_COMMUTABLE; } /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires /// custom insertion support when the DAG scheduler is inserting it into a /// machine basic block. bool usesCustomDAGSchedInsertionHook(unsigned Opcode) const { return get(Opcode).Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION; } bool hasVariableOperands(unsigned Opcode) const { return get(Opcode).Flags & M_VARIABLE_OPS; } bool hasOptionalDef(unsigned Opcode) const { return get(Opcode).Flags & M_HAS_OPTIONAL_DEF; } /// isTriviallyReMaterializable - Return true if the instruction is trivially /// rematerializable, meaning it has no side effects and requires no operands /// that aren't always available. bool isTriviallyReMaterializable(MachineInstr *MI) const { return (MI->getDesc()->Flags & M_REMATERIALIZIBLE) && isReallyTriviallyReMaterializable(MI); } /// hasUnmodelledSideEffects - Returns true if the instruction has side /// effects that are not captured by any operands of the instruction or other /// flags. bool hasUnmodelledSideEffects(MachineInstr *MI) const { const TargetInstrDescriptor *TID = MI->getDesc(); if (TID->Flags & M_NEVER_HAS_SIDE_EFFECTS) return false; if (!(TID->Flags & M_MAY_HAVE_SIDE_EFFECTS)) return true; return !isReallySideEffectFree(MI); // May have side effects } protected: /// isReallyTriviallyReMaterializable - For instructions with opcodes for /// which the M_REMATERIALIZABLE flag is set, this function tests whether the /// instruction itself is actually trivially rematerializable, considering /// its operands. This is used for targets that have instructions that are /// only trivially rematerializable for specific uses. This predicate must /// return false if the instruction has any side effects other than /// producing a value, or if it requres any address registers that are not /// always available. virtual bool isReallyTriviallyReMaterializable(MachineInstr *MI) const { return true; } /// isReallySideEffectFree - If the M_MAY_HAVE_SIDE_EFFECTS flag is set, this /// method is called to determine if the specific instance of this /// instruction has side effects. This is useful in cases of instructions, /// like loads, which generally always have side effects. A load from a /// constant pool doesn't have side effects, though. So we need to /// differentiate it from the general case. virtual bool isReallySideEffectFree(MachineInstr *MI) const { return false; } public: /// getOperandConstraint - Returns the value of the specific constraint if /// it is set. Returns -1 if it is not set. int getOperandConstraint(unsigned Opcode, unsigned OpNum, TOI::OperandConstraint Constraint) const { return get(Opcode).getOperandConstraint(OpNum, Constraint); } /// Return true if the instruction is a register to register move /// and leave the source and dest operands in the passed parameters. virtual bool isMoveInstr(const MachineInstr& MI, unsigned& sourceReg, unsigned& destReg) const { return false; } /// isLoadFromStackSlot - If the specified machine instruction is a direct /// load from a stack slot, return the virtual or physical register number of /// the destination along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than loading from the stack slot. virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{ return 0; } /// isStoreToStackSlot - If the specified machine instruction is a direct /// store to a stack slot, return the virtual or physical register number of /// the source reg along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than storing to the stack slot. virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const { return 0; } /// convertToThreeAddress - This method must be implemented by targets that /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target /// may be able to convert a two-address instruction into one or more true /// three-address instructions on demand. This allows the X86 target (for /// example) to convert ADD and SHL instructions into LEA instructions if they /// would require register copies due to two-addressness. /// /// This method returns a null pointer if the transformation cannot be /// performed, otherwise it returns the last new instruction. /// virtual MachineInstr * convertToThreeAddress(MachineFunction::iterator &MFI, MachineBasicBlock::iterator &MBBI, LiveVariables &LV) const { return 0; } /// commuteInstruction - If a target has any instructions that are commutable, /// but require converting to a different instruction or making non-trivial /// changes to commute them, this method can overloaded to do this. The /// default implementation of this method simply swaps the first two operands /// of MI and returns it. /// /// If a target wants to make more aggressive changes, they can construct and /// return a new machine instruction. If an instruction cannot commute, it /// can also return null. /// virtual MachineInstr *commuteInstruction(MachineInstr *MI) const = 0; /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning /// true if it cannot be understood (e.g. it's a switch dispatch or isn't /// implemented for a target). Upon success, this returns false and returns /// with the following information in various cases: /// /// 1. If this block ends with no branches (it just falls through to its succ) /// just return false, leaving TBB/FBB null. /// 2. If this block ends with only an unconditional branch, it sets TBB to be /// the destination block. /// 3. If this block ends with an conditional branch and it falls through to /// an successor block, it sets TBB to be the branch destination block and a /// list of operands that evaluate the condition. These /// operands can be passed to other TargetInstrInfo methods to create new /// branches. /// 4. If this block ends with an conditional branch and an unconditional /// block, it returns the 'true' destination in TBB, the 'false' destination /// in FBB, and a list of operands that evaluate the condition. These /// operands can be passed to other TargetInstrInfo methods to create new /// branches. /// /// Note that RemoveBranch and InsertBranch must be implemented to support /// cases where this method returns success. /// virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, std::vector &Cond) const { return true; } /// RemoveBranch - Remove the branching code at the end of the specific MBB. /// this is only invoked in cases where AnalyzeBranch returns success. It /// returns the number of instructions that were removed. virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const { assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!"); return 0; } /// InsertBranch - Insert a branch into the end of the specified /// MachineBasicBlock. This operands to this method are the same as those /// returned by AnalyzeBranch. This is invoked in cases where AnalyzeBranch /// returns success and when an unconditional branch (TBB is non-null, FBB is /// null, Cond is empty) needs to be inserted. It returns the number of /// instructions inserted. virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const std::vector &Cond) const { assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!"); return 0; } /// copyRegToReg - Add a copy between a pair of registers virtual void copyRegToReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, unsigned SrcReg, const TargetRegisterClass *DestRC, const TargetRegisterClass *SrcRC) const { assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!"); } virtual void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC) const { assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!"); } virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill, SmallVectorImpl &Addr, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs) const { assert(0 && "Target didn't implement TargetInstrInfo::storeRegToAddr!"); } virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIndex, const TargetRegisterClass *RC) const { assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!"); } virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg, SmallVectorImpl &Addr, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs) const { assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromAddr!"); } /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee /// saved registers and returns true if it isn't possible / profitable to do /// so by issuing a series of store instructions via /// storeRegToStackSlot(). Returns false otherwise. virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector &CSI) const { return false; } /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee /// saved registers and returns true if it isn't possible / profitable to do /// so by issuing a series of load instructions via loadRegToStackSlot(). /// Returns false otherwise. virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector &CSI) const { return false; } /// foldMemoryOperand - Attempt to fold a load or store of the specified stack /// slot into the specified machine instruction for the specified operand(s). /// If this is possible, a new instruction is returned with the specified /// operand folded, otherwise NULL is returned. The client is responsible for /// removing the old instruction and adding the new one in the instruction /// stream. virtual MachineInstr* foldMemoryOperand(MachineInstr* MI, SmallVectorImpl &Ops, int FrameIndex) const { return 0; } /// foldMemoryOperand - Same as the previous version except it allows folding /// of any load and store from / to any address, not just from a specific /// stack slot. virtual MachineInstr* foldMemoryOperand(MachineInstr* MI, SmallVectorImpl &Ops, MachineInstr* LoadMI) const { return 0; } /// canFoldMemoryOperand - Returns true if the specified load / store is /// folding is possible. virtual bool canFoldMemoryOperand(MachineInstr *MI, SmallVectorImpl &Ops) const{ return false; } /// unfoldMemoryOperand - Separate a single instruction which folded a load or /// a store or a load and a store into two or more instruction. If this is /// possible, returns true as well as the new instructions by reference. virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, unsigned Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl &NewMIs) const{ return false; } virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, SmallVectorImpl &NewNodes) const { return false; } /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new /// instruction after load / store are unfolded from an instruction of the /// specified opcode. It returns zero if the specified unfolding is not /// possible. virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore) const { return 0; } /// BlockHasNoFallThrough - Return true if the specified block does not /// fall-through into its successor block. This is primarily used when a /// branch is unanalyzable. It is useful for things like unconditional /// indirect branches (jump tables). virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const { return false; } /// ReverseBranchCondition - Reverses the branch condition of the specified /// condition list, returning false on success and true if it cannot be /// reversed. virtual bool ReverseBranchCondition(std::vector &Cond) const { return true; } /// insertNoop - Insert a noop into the instruction stream at the specified /// point. virtual void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { assert(0 && "Target didn't implement insertNoop!"); abort(); } /// isPredicated - Returns true if the instruction is already predicated. /// virtual bool isPredicated(const MachineInstr *MI) const { return false; } /// isUnpredicatedTerminator - Returns true if the instruction is a /// terminator instruction that has not been predicated. virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const; /// PredicateInstruction - Convert the instruction into a predicated /// instruction. It returns true if the operation was successful. virtual bool PredicateInstruction(MachineInstr *MI, const std::vector &Pred) const = 0; /// SubsumesPredicate - Returns true if the first specified predicate /// subsumes the second, e.g. GE subsumes GT. virtual bool SubsumesPredicate(const std::vector &Pred1, const std::vector &Pred2) const { return false; } /// DefinesPredicate - If the specified instruction defines any predicate /// or condition code register(s) used for predication, returns true as well /// as the definition predicate(s) by reference. virtual bool DefinesPredicate(MachineInstr *MI, std::vector &Pred) const { return false; } /// getPointerRegClass - Returns a TargetRegisterClass used for pointer /// values. virtual const TargetRegisterClass *getPointerRegClass() const { assert(0 && "Target didn't implement getPointerRegClass!"); abort(); return 0; // Must return a value in order to compile with VS 2005 } }; /// TargetInstrInfoImpl - This is the default implementation of /// TargetInstrInfo, which just provides a couple of default implementations /// for various methods. This separated out because it is implemented in /// libcodegen, not in libtarget. class TargetInstrInfoImpl : public TargetInstrInfo { protected: TargetInstrInfoImpl(const TargetInstrDescriptor *desc, unsigned NumOpcodes) : TargetInstrInfo(desc, NumOpcodes) {} public: virtual MachineInstr *commuteInstruction(MachineInstr *MI) const; virtual bool PredicateInstruction(MachineInstr *MI, const std::vector &Pred) const; }; } // End llvm namespace #endif