//===-- PTXISelLowering.cpp - PTX DAG Lowering Implementation -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the PTXTargetLowering class. // //===----------------------------------------------------------------------===// #include "PTX.h" #include "PTXISelLowering.h" #include "PTXMachineFunctionInfo.h" #include "PTXRegisterInfo.h" #include "PTXSubtarget.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; //===----------------------------------------------------------------------===// // Calling Convention Implementation //===----------------------------------------------------------------------===// #include "PTXGenCallingConv.inc" //===----------------------------------------------------------------------===// // TargetLowering Implementation //===----------------------------------------------------------------------===// PTXTargetLowering::PTXTargetLowering(TargetMachine &TM) : TargetLowering(TM, new TargetLoweringObjectFileELF()) { // Set up the register classes. addRegisterClass(MVT::i1, PTX::RegPredRegisterClass); addRegisterClass(MVT::i8, PTX::RegI8RegisterClass); addRegisterClass(MVT::i16, PTX::RegI16RegisterClass); addRegisterClass(MVT::i32, PTX::RegI32RegisterClass); addRegisterClass(MVT::i64, PTX::RegI64RegisterClass); addRegisterClass(MVT::f32, PTX::RegF32RegisterClass); addRegisterClass(MVT::f64, PTX::RegF64RegisterClass); setBooleanContents(ZeroOrOneBooleanContent); setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); setOperationAction(ISD::ConstantFP, MVT::f32, Legal); setOperationAction(ISD::ConstantFP, MVT::f64, Legal); // Promote i1 type setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); setTruncStoreAction(MVT::i8, MVT::i1, Promote); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); // Turn i16 (z)extload into load + (z)extend setLoadExtAction(ISD::EXTLOAD, MVT::i16, Expand); setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Expand); setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Expand); // Turn f32 extload into load + fextend setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); // Turn f64 truncstore into trunc + store. setTruncStoreAction(MVT::f64, MVT::f32, Expand); // Customize translation of memory addresses setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); // Expand BR_CC into BRCOND setOperationAction(ISD::BR_CC, MVT::Other, Expand); // Expand SELECT_CC into SETCC setOperationAction(ISD::SELECT_CC, MVT::Other, Expand); setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); // need to lower SETCC of RegPred into bitwise logic setOperationAction(ISD::SETCC, MVT::i1, Custom); setMinFunctionAlignment(2); // Compute derived properties from the register classes computeRegisterProperties(); } MVT::SimpleValueType PTXTargetLowering::getSetCCResultType(EVT VT) const { return MVT::i1; } SDValue PTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: llvm_unreachable("Unimplemented operand"); case ISD::SETCC: return LowerSETCC(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); } } const char *PTXTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: llvm_unreachable("Unknown opcode"); case PTXISD::COPY_ADDRESS: return "PTXISD::COPY_ADDRESS"; case PTXISD::LOAD_PARAM: return "PTXISD::LOAD_PARAM"; case PTXISD::STORE_PARAM: return "PTXISD::STORE_PARAM"; case PTXISD::EXIT: return "PTXISD::EXIT"; case PTXISD::RET: return "PTXISD::RET"; } } //===----------------------------------------------------------------------===// // Custom Lower Operation //===----------------------------------------------------------------------===// SDValue PTXTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { assert(Op.getValueType() == MVT::i1 && "SetCC type must be 1-bit integer"); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue Op2 = Op.getOperand(2); DebugLoc dl = Op.getDebugLoc(); ISD::CondCode CC = cast(Op.getOperand(2))->get(); // Look for X == 0, X == 1, X != 0, or X != 1 // We can simplify these to bitwise logic if (Op1.getOpcode() == ISD::Constant && (cast(Op1)->getZExtValue() == 1 || cast(Op1)->isNullValue()) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { return DAG.getNode(ISD::AND, dl, MVT::i1, Op0, Op1); } return DAG.getNode(ISD::SETCC, dl, MVT::i1, Op0, Op1, Op2); } SDValue PTXTargetLowering:: LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = getPointerTy(); DebugLoc dl = Op.getDebugLoc(); const GlobalValue *GV = cast(Op)->getGlobal(); assert(PtrVT.isSimple() && "Pointer must be to primitive type."); SDValue targetGlobal = DAG.getTargetGlobalAddress(GV, dl, PtrVT); SDValue movInstr = DAG.getNode(PTXISD::COPY_ADDRESS, dl, PtrVT.getSimpleVT(), targetGlobal); return movInstr; } //===----------------------------------------------------------------------===// // Calling Convention Implementation //===----------------------------------------------------------------------===// namespace { struct argmap_entry { MVT::SimpleValueType VT; TargetRegisterClass *RC; TargetRegisterClass::iterator loc; argmap_entry(MVT::SimpleValueType _VT, TargetRegisterClass *_RC) : VT(_VT), RC(_RC), loc(_RC->begin()) {} void reset() { loc = RC->begin(); } bool operator==(MVT::SimpleValueType _VT) const { return VT == _VT; } } argmap[] = { argmap_entry(MVT::i1, PTX::RegPredRegisterClass), argmap_entry(MVT::i8, PTX::RegI8RegisterClass), argmap_entry(MVT::i16, PTX::RegI16RegisterClass), argmap_entry(MVT::i32, PTX::RegI32RegisterClass), argmap_entry(MVT::i64, PTX::RegI64RegisterClass), argmap_entry(MVT::f32, PTX::RegF32RegisterClass), argmap_entry(MVT::f64, PTX::RegF64RegisterClass) }; } // end anonymous namespace SDValue PTXTargetLowering:: LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { if (isVarArg) llvm_unreachable("PTX does not support varargs"); MachineFunction &MF = DAG.getMachineFunction(); const PTXSubtarget& ST = getTargetMachine().getSubtarget(); PTXMachineFunctionInfo *MFI = MF.getInfo(); switch (CallConv) { default: llvm_unreachable("Unsupported calling convention"); break; case CallingConv::PTX_Kernel: MFI->setKernel(true); break; case CallingConv::PTX_Device: MFI->setKernel(false); break; } // We do one of two things here: // IsKernel || SM >= 2.0 -> Use param space for arguments // SM < 2.0 -> Use registers for arguments if (MFI->isKernel() || ST.useParamSpaceForDeviceArgs()) { // We just need to emit the proper LOAD_PARAM ISDs for (unsigned i = 0, e = Ins.size(); i != e; ++i) { assert((!MFI->isKernel() || Ins[i].VT != MVT::i1) && "Kernels cannot take pred operands"); SDValue ArgValue = DAG.getNode(PTXISD::LOAD_PARAM, dl, Ins[i].VT, Chain, DAG.getTargetConstant(i, MVT::i32)); InVals.push_back(ArgValue); // Instead of storing a physical register in our argument list, we just // store the total size of the parameter, in bits. The ASM printer // knows how to process this. MFI->addArgReg(Ins[i].VT.getStoreSizeInBits()); } } else { // For device functions, we use the PTX calling convention to do register // assignments then create CopyFromReg ISDs for the allocated registers SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_PTX); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign& VA = ArgLocs[i]; EVT RegVT = VA.getLocVT(); TargetRegisterClass* TRC = 0; assert(VA.isRegLoc() && "CCValAssign must be RegLoc"); // Determine which register class we need if (RegVT == MVT::i1) { TRC = PTX::RegPredRegisterClass; } else if (RegVT == MVT::i8) { TRC = PTX::RegI8RegisterClass; } else if (RegVT == MVT::i16) { TRC = PTX::RegI16RegisterClass; } else if (RegVT == MVT::i32) { TRC = PTX::RegI32RegisterClass; } else if (RegVT == MVT::i64) { TRC = PTX::RegI64RegisterClass; } else if (RegVT == MVT::f32) { TRC = PTX::RegF32RegisterClass; } else if (RegVT == MVT::f64) { TRC = PTX::RegF64RegisterClass; } else { llvm_unreachable("Unknown parameter type"); } unsigned Reg = MF.getRegInfo().createVirtualRegister(TRC); MF.getRegInfo().addLiveIn(VA.getLocReg(), Reg); SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); InVals.push_back(ArgValue); MFI->addArgReg(VA.getLocReg()); } } return Chain; } SDValue PTXTargetLowering:: LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, DebugLoc dl, SelectionDAG &DAG) const { if (isVarArg) llvm_unreachable("PTX does not support varargs"); switch (CallConv) { default: llvm_unreachable("Unsupported calling convention."); case CallingConv::PTX_Kernel: assert(Outs.size() == 0 && "Kernel must return void."); return DAG.getNode(PTXISD::EXIT, dl, MVT::Other, Chain); case CallingConv::PTX_Device: //assert(Outs.size() <= 1 && "Can at most return one value."); break; } MachineFunction& MF = DAG.getMachineFunction(); PTXMachineFunctionInfo *MFI = MF.getInfo(); SDValue Flag; // Even though we could use the .param space for return arguments for // device functions if SM >= 2.0 and the number of return arguments is // only 1, we just always use registers since this makes the codegen // easier. SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeReturn(Outs, RetCC_PTX); for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { CCValAssign& VA = RVLocs[i]; assert(VA.isRegLoc() && "CCValAssign must be RegLoc"); unsigned Reg = VA.getLocReg(); DAG.getMachineFunction().getRegInfo().addLiveOut(Reg); Chain = DAG.getCopyToReg(Chain, dl, Reg, OutVals[i], Flag); // Guarantee that all emitted copies are stuck together, // avoiding something bad Flag = Chain.getValue(1); MFI->addRetReg(Reg); } if (Flag.getNode() == 0) { return DAG.getNode(PTXISD::RET, dl, MVT::Other, Chain); } else { return DAG.getNode(PTXISD::RET, dl, MVT::Other, Chain, Flag); } }