//===-------- InlineSpiller.cpp - Insert spills and restores inline -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The inline spiller modifies the machine function directly instead of // inserting spills and restores in VirtRegMap. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "Spiller.h" #include "LiveRangeEdit.h" #include "VirtRegMap.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; namespace { class InlineSpiller : public Spiller { MachineFunctionPass &Pass; MachineFunction &MF; LiveIntervals &LIS; LiveStacks &LSS; AliasAnalysis *AA; MachineDominatorTree &MDT; MachineLoopInfo &Loops; VirtRegMap &VRM; MachineFrameInfo &MFI; MachineRegisterInfo &MRI; const TargetInstrInfo &TII; const TargetRegisterInfo &TRI; // Variables that are valid during spill(), but used by multiple methods. LiveRangeEdit *Edit; const TargetRegisterClass *RC; int StackSlot; unsigned Original; // All registers to spill to StackSlot, including the main register. SmallVector RegsToSpill; // All COPY instructions to/from snippets. // They are ignored since both operands refer to the same stack slot. SmallPtrSet SnippetCopies; // Values that failed to remat at some point. SmallPtrSet UsedValues; // Information about a value that was defined by a copy from a sibling // register. struct SibValueInfo { // True when all reaching defs were reloads: No spill is necessary. bool AllDefsAreReloads; // The preferred register to spill. unsigned SpillReg; // The value of SpillReg that should be spilled. VNInfo *SpillVNI; // A defining instruction that is not a sibling copy or a reload, or NULL. // This can be used as a template for rematerialization. MachineInstr *DefMI; SibValueInfo(unsigned Reg, VNInfo *VNI) : AllDefsAreReloads(false), SpillReg(Reg), SpillVNI(VNI), DefMI(0) {} }; // Values in RegsToSpill defined by sibling copies. DenseMap SibValues; ~InlineSpiller() {} public: InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) : Pass(pass), MF(mf), LIS(pass.getAnalysis()), LSS(pass.getAnalysis()), AA(&pass.getAnalysis()), MDT(pass.getAnalysis()), Loops(pass.getAnalysis()), VRM(vrm), MFI(*mf.getFrameInfo()), MRI(mf.getRegInfo()), TII(*mf.getTarget().getInstrInfo()), TRI(*mf.getTarget().getRegisterInfo()) {} void spill(LiveRangeEdit &); private: bool isSnippet(const LiveInterval &SnipLI); void collectRegsToSpill(); void traceSiblingValue(unsigned, VNInfo*, VNInfo*); void analyzeSiblingValues(); bool reMaterializeFor(MachineBasicBlock::iterator MI); void reMaterializeAll(); bool coalesceStackAccess(MachineInstr *MI, unsigned Reg); bool foldMemoryOperand(MachineBasicBlock::iterator MI, const SmallVectorImpl &Ops, MachineInstr *LoadMI = 0); void insertReload(LiveInterval &NewLI, MachineBasicBlock::iterator MI); void insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI, MachineBasicBlock::iterator MI); void spillAroundUses(unsigned Reg); }; } namespace llvm { Spiller *createInlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) { return new InlineSpiller(pass, mf, vrm); } } //===----------------------------------------------------------------------===// // Snippets //===----------------------------------------------------------------------===// // When spilling a virtual register, we also spill any snippets it is connected // to. The snippets are small live ranges that only have a single real use, // leftovers from live range splitting. Spilling them enables memory operand // folding or tightens the live range around the single use. // // This minimizes register pressure and maximizes the store-to-load distance for // spill slots which can be important in tight loops. /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, /// otherwise return 0. static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) { if (!MI->isCopy()) return 0; if (MI->getOperand(0).getSubReg() != 0) return 0; if (MI->getOperand(1).getSubReg() != 0) return 0; if (MI->getOperand(0).getReg() == Reg) return MI->getOperand(1).getReg(); if (MI->getOperand(1).getReg() == Reg) return MI->getOperand(0).getReg(); return 0; } /// isSnippet - Identify if a live interval is a snippet that should be spilled. /// It is assumed that SnipLI is a virtual register with the same original as /// Edit->getReg(). bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { unsigned Reg = Edit->getReg(); // A snippet is a tiny live range with only a single instruction using it // besides copies to/from Reg or spills/fills. We accept: // // %snip = COPY %Reg / FILL fi# // %snip = USE %snip // %Reg = COPY %snip / SPILL %snip, fi# // if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) return false; MachineInstr *UseMI = 0; // Check that all uses satisfy our criteria. for (MachineRegisterInfo::reg_nodbg_iterator RI = MRI.reg_nodbg_begin(SnipLI.reg); MachineInstr *MI = RI.skipInstruction();) { // Allow copies to/from Reg. if (isFullCopyOf(MI, Reg)) continue; // Allow stack slot loads. int FI; if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) continue; // Allow stack slot stores. if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) continue; // Allow a single additional instruction. if (UseMI && MI != UseMI) return false; UseMI = MI; } return true; } /// collectRegsToSpill - Collect live range snippets that only have a single /// real use. void InlineSpiller::collectRegsToSpill() { unsigned Reg = Edit->getReg(); // Main register always spills. RegsToSpill.assign(1, Reg); SnippetCopies.clear(); // Snippets all have the same original, so there can't be any for an original // register. if (Original == Reg) return; for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg); MachineInstr *MI = RI.skipInstruction();) { unsigned SnipReg = isFullCopyOf(MI, Reg); if (!SnipReg) continue; if (!TargetRegisterInfo::isVirtualRegister(SnipReg)) continue; if (VRM.getOriginal(SnipReg) != Original) continue; LiveInterval &SnipLI = LIS.getInterval(SnipReg); if (!isSnippet(SnipLI)) continue; SnippetCopies.insert(MI); if (std::find(RegsToSpill.begin(), RegsToSpill.end(), SnipReg) == RegsToSpill.end()) RegsToSpill.push_back(SnipReg); DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); } } //===----------------------------------------------------------------------===// // Sibling Values //===----------------------------------------------------------------------===// // After live range splitting, some values to be spilled may be defined by // copies from sibling registers. We trace the sibling copies back to the // original value if it still exists. We need it for rematerialization. // // Even when the value can't be rematerialized, we still want to determine if // the value has already been spilled, or we may want to hoist the spill from a // loop. /// traceSiblingValue - Trace a value that is about to be spilled back to the /// real defining instructions by looking through sibling copies. Always stay /// within the range of OrigVNI so the registers are known to carry the same /// value. /// /// Determine if the value is defined by all reloads, so spilling isn't /// necessary - the value is already in the stack slot. /// /// Find a defining instruction that may be a candidate for rematerialization. /// void InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI, VNInfo *OrigVNI) { DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':' << UseVNI->id << '@' << UseVNI->def << '\n'); SmallPtrSet Visited; SmallVector, 8> WorkList; WorkList.push_back(std::make_pair(UseReg, UseVNI)); // Best spill candidate seen so far. This must dominate UseVNI. SibValueInfo SVI(UseReg, UseVNI); MachineBasicBlock *UseMBB = LIS.getMBBFromIndex(UseVNI->def); MachineBasicBlock *SpillMBB = UseMBB; unsigned SpillDepth = Loops.getLoopDepth(SpillMBB); bool SeenOrigPHI = false; // Original PHI met. do { unsigned Reg; VNInfo *VNI; tie(Reg, VNI) = WorkList.pop_back_val(); if (!Visited.insert(VNI)) continue; // Is this value a better spill candidate? if (VNI != SVI.SpillVNI) { MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); if (MBB == SpillMBB) { // Prefer to spill a previous value in the same block. if (VNI->def < SVI.SpillVNI->def) SVI.SpillReg = Reg, SVI.SpillVNI = VNI; } else if (MDT.dominates(MBB, UseMBB)) { // This is a valid spill location dominating UseVNI. // Prefer to spill at a smaller loop depth. unsigned Depth = Loops.getLoopDepth(MBB); if (Depth < SpillDepth) { DEBUG(dbgs() << " spill depth " << Depth << ": " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def << '\n'); SVI.SpillReg = Reg; SVI.SpillVNI = VNI; SpillMBB = MBB; SpillDepth = Depth; } } } // Trace through PHI-defs created by live range splitting. if (VNI->isPHIDef()) { if (VNI->def == OrigVNI->def) { DEBUG(dbgs() << " orig phi value " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def << '\n'); SeenOrigPHI = true; continue; } // Get values live-out of predecessors. LiveInterval &LI = LIS.getInterval(Reg); MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); PI != PE; ++PI) { VNInfo *PVNI = LI.getVNInfoAt(LIS.getMBBEndIdx(*PI).getPrevSlot()); if (PVNI) WorkList.push_back(std::make_pair(Reg, PVNI)); } continue; } MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); assert(MI && "Missing def"); // Trace through sibling copies. if (unsigned SrcReg = isFullCopyOf(MI, Reg)) { if (TargetRegisterInfo::isVirtualRegister(SrcReg) && VRM.getOriginal(SrcReg) == Original) { LiveInterval &SrcLI = LIS.getInterval(SrcReg); VNInfo *SrcVNI = SrcLI.getVNInfoAt(VNI->def.getUseIndex()); assert(SrcVNI && "Copy from non-existing value"); DEBUG(dbgs() << " copy of " << PrintReg(SrcReg) << ':' << SrcVNI->id << '@' << SrcVNI->def << '\n'); WorkList.push_back(std::make_pair(SrcReg, SrcVNI)); continue; } } // Track reachable reloads. int FI; if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) { DEBUG(dbgs() << " reload " << PrintReg(Reg) << ':' << VNI->id << "@" << VNI->def << '\n'); SVI.AllDefsAreReloads = true; continue; } // We have an 'original' def. Don't record trivial cases. if (VNI == UseVNI) { DEBUG(dbgs() << "Not a sibling copy.\n"); return; } // Potential remat candidate. DEBUG(dbgs() << " def " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def << '\t' << *MI); SVI.DefMI = MI; } while (!WorkList.empty()); if (SeenOrigPHI || SVI.DefMI) SVI.AllDefsAreReloads = false; DEBUG({ if (SVI.AllDefsAreReloads) dbgs() << "All defs are reloads.\n"; else dbgs() << "Prefer to spill " << PrintReg(SVI.SpillReg) << ':' << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def << '\n'; }); SibValues.insert(std::make_pair(UseVNI, SVI)); } /// analyzeSiblingValues - Trace values defined by sibling copies back to /// something that isn't a sibling copy. void InlineSpiller::analyzeSiblingValues() { SibValues.clear(); // No siblings at all? if (Edit->getReg() == Original) return; LiveInterval &OrigLI = LIS.getInterval(Original); for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { unsigned Reg = RegsToSpill[i]; LiveInterval &LI = LIS.getInterval(Reg); for (LiveInterval::const_vni_iterator VI = LI.vni_begin(), VE = LI.vni_end(); VI != VE; ++VI) { VNInfo *VNI = *VI; if (VNI->isUnused() || !(VNI->isPHIDef() || VNI->getCopy())) continue; VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def); if (OrigVNI->def != VNI->def) traceSiblingValue(Reg, VNI, OrigVNI); } } } /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. bool InlineSpiller::reMaterializeFor(MachineBasicBlock::iterator MI) { SlotIndex UseIdx = LIS.getInstructionIndex(MI).getUseIndex(); VNInfo *OrigVNI = Edit->getParent().getVNInfoAt(UseIdx); if (!OrigVNI) { DEBUG(dbgs() << "\tadding flags: "); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isUse() && MO.getReg() == Edit->getReg()) MO.setIsUndef(); } DEBUG(dbgs() << UseIdx << '\t' << *MI); return true; } // FIXME: Properly remat for snippets as well. if (SnippetCopies.count(MI)) { UsedValues.insert(OrigVNI); return false; } LiveRangeEdit::Remat RM(OrigVNI); if (!Edit->canRematerializeAt(RM, UseIdx, false, LIS)) { UsedValues.insert(OrigVNI); DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI); return false; } // If the instruction also writes Edit->getReg(), it had better not require // the same register for uses and defs. bool Reads, Writes; SmallVector Ops; tie(Reads, Writes) = MI->readsWritesVirtualRegister(Edit->getReg(), &Ops); if (Writes) { for (unsigned i = 0, e = Ops.size(); i != e; ++i) { MachineOperand &MO = MI->getOperand(Ops[i]); if (MO.isUse() ? MI->isRegTiedToDefOperand(Ops[i]) : MO.getSubReg()) { UsedValues.insert(OrigVNI); DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI); return false; } } } // Before rematerializing into a register for a single instruction, try to // fold a load into the instruction. That avoids allocating a new register. if (RM.OrigMI->getDesc().canFoldAsLoad() && foldMemoryOperand(MI, Ops, RM.OrigMI)) { Edit->markRematerialized(RM.ParentVNI); return true; } // Alocate a new register for the remat. LiveInterval &NewLI = Edit->create(MRI, LIS, VRM); NewLI.markNotSpillable(); // Rematting for a copy: Set allocation hint to be the destination register. if (MI->isCopy()) MRI.setRegAllocationHint(NewLI.reg, 0, MI->getOperand(0).getReg()); // Finally we can rematerialize OrigMI before MI. SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM, LIS, TII, TRI); DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' << *LIS.getInstructionFromIndex(DefIdx)); // Replace operands for (unsigned i = 0, e = Ops.size(); i != e; ++i) { MachineOperand &MO = MI->getOperand(Ops[i]); if (MO.isReg() && MO.isUse() && MO.getReg() == Edit->getReg()) { MO.setReg(NewLI.reg); MO.setIsKill(); } } DEBUG(dbgs() << "\t " << UseIdx << '\t' << *MI); VNInfo *DefVNI = NewLI.getNextValue(DefIdx, 0, LIS.getVNInfoAllocator()); NewLI.addRange(LiveRange(DefIdx, UseIdx.getDefIndex(), DefVNI)); DEBUG(dbgs() << "\tinterval: " << NewLI << '\n'); return true; } /// reMaterializeAll - Try to rematerialize as many uses as possible, /// and trim the live ranges after. void InlineSpiller::reMaterializeAll() { // Do a quick scan of the interval values to find if any are remattable. if (!Edit->anyRematerializable(LIS, TII, AA)) return; UsedValues.clear(); // Try to remat before all uses of Edit->getReg(). bool anyRemat = false; for (MachineRegisterInfo::use_nodbg_iterator RI = MRI.use_nodbg_begin(Edit->getReg()); MachineInstr *MI = RI.skipInstruction();) anyRemat |= reMaterializeFor(MI); if (!anyRemat) return; // Remove any values that were completely rematted. bool anyRemoved = false; for (LiveInterval::vni_iterator I = Edit->getParent().vni_begin(), E = Edit->getParent().vni_end(); I != E; ++I) { VNInfo *VNI = *I; if (VNI->hasPHIKill() || !Edit->didRematerialize(VNI) || UsedValues.count(VNI)) continue; MachineInstr *DefMI = LIS.getInstructionFromIndex(VNI->def); DEBUG(dbgs() << "\tremoving dead def: " << VNI->def << '\t' << *DefMI); LIS.RemoveMachineInstrFromMaps(DefMI); VRM.RemoveMachineInstrFromMaps(DefMI); DefMI->eraseFromParent(); VNI->def = SlotIndex(); anyRemoved = true; } if (!anyRemoved) return; // Removing values may cause debug uses where parent is not live. for (MachineRegisterInfo::use_iterator RI = MRI.use_begin(Edit->getReg()); MachineInstr *MI = RI.skipInstruction();) { if (!MI->isDebugValue()) continue; // Try to preserve the debug value if parent is live immediately after it. MachineBasicBlock::iterator NextMI = MI; ++NextMI; if (NextMI != MI->getParent()->end() && !LIS.isNotInMIMap(NextMI)) { SlotIndex Idx = LIS.getInstructionIndex(NextMI); VNInfo *VNI = Edit->getParent().getVNInfoAt(Idx); if (VNI && (VNI->hasPHIKill() || UsedValues.count(VNI))) continue; } DEBUG(dbgs() << "Removing debug info due to remat:" << "\t" << *MI); MI->eraseFromParent(); } } /// If MI is a load or store of StackSlot, it can be removed. bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) { int FI = 0; unsigned InstrReg; if (!(InstrReg = TII.isLoadFromStackSlot(MI, FI)) && !(InstrReg = TII.isStoreToStackSlot(MI, FI))) return false; // We have a stack access. Is it the right register and slot? if (InstrReg != Reg || FI != StackSlot) return false; DEBUG(dbgs() << "Coalescing stack access: " << *MI); LIS.RemoveMachineInstrFromMaps(MI); MI->eraseFromParent(); return true; } /// foldMemoryOperand - Try folding stack slot references in Ops into MI. /// @param MI Instruction using or defining the current register. /// @param Ops Operand indices from readsWritesVirtualRegister(). /// @param LoadMI Load instruction to use instead of stack slot when non-null. /// @return True on success, and MI will be erased. bool InlineSpiller::foldMemoryOperand(MachineBasicBlock::iterator MI, const SmallVectorImpl &Ops, MachineInstr *LoadMI) { // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied // operands. SmallVector FoldOps; for (unsigned i = 0, e = Ops.size(); i != e; ++i) { unsigned Idx = Ops[i]; MachineOperand &MO = MI->getOperand(Idx); if (MO.isImplicit()) continue; // FIXME: Teach targets to deal with subregs. if (MO.getSubReg()) return false; // We cannot fold a load instruction into a def. if (LoadMI && MO.isDef()) return false; // Tied use operands should not be passed to foldMemoryOperand. if (!MI->isRegTiedToDefOperand(Idx)) FoldOps.push_back(Idx); } MachineInstr *FoldMI = LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI) : TII.foldMemoryOperand(MI, FoldOps, StackSlot); if (!FoldMI) return false; LIS.ReplaceMachineInstrInMaps(MI, FoldMI); if (!LoadMI) VRM.addSpillSlotUse(StackSlot, FoldMI); MI->eraseFromParent(); DEBUG(dbgs() << "\tfolded: " << *FoldMI); return true; } /// insertReload - Insert a reload of NewLI.reg before MI. void InlineSpiller::insertReload(LiveInterval &NewLI, MachineBasicBlock::iterator MI) { MachineBasicBlock &MBB = *MI->getParent(); SlotIndex Idx = LIS.getInstructionIndex(MI).getDefIndex(); TII.loadRegFromStackSlot(MBB, MI, NewLI.reg, StackSlot, RC, &TRI); --MI; // Point to load instruction. SlotIndex LoadIdx = LIS.InsertMachineInstrInMaps(MI).getDefIndex(); VRM.addSpillSlotUse(StackSlot, MI); DEBUG(dbgs() << "\treload: " << LoadIdx << '\t' << *MI); VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, 0, LIS.getVNInfoAllocator()); NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI)); } /// insertSpill - Insert a spill of NewLI.reg after MI. void InlineSpiller::insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI, MachineBasicBlock::iterator MI) { MachineBasicBlock &MBB = *MI->getParent(); // Get the defined value. It could be an early clobber so keep the def index. SlotIndex Idx = LIS.getInstructionIndex(MI).getDefIndex(); VNInfo *VNI = OldLI.getVNInfoAt(Idx); assert(VNI && VNI->def.getDefIndex() == Idx && "Inconsistent VNInfo"); Idx = VNI->def; TII.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, StackSlot, RC, &TRI); --MI; // Point to store instruction. SlotIndex StoreIdx = LIS.InsertMachineInstrInMaps(MI).getDefIndex(); VRM.addSpillSlotUse(StackSlot, MI); DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI); VNInfo *StoreVNI = NewLI.getNextValue(Idx, 0, LIS.getVNInfoAllocator()); NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI)); } /// spillAroundUses - insert spill code around each use of Reg. void InlineSpiller::spillAroundUses(unsigned Reg) { LiveInterval &OldLI = LIS.getInterval(Reg); // Iterate over instructions using Reg. for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg); MachineInstr *MI = RI.skipInstruction();) { // Debug values are not allowed to affect codegen. if (MI->isDebugValue()) { // Modify DBG_VALUE now that the value is in a spill slot. uint64_t Offset = MI->getOperand(1).getImm(); const MDNode *MDPtr = MI->getOperand(2).getMetadata(); DebugLoc DL = MI->getDebugLoc(); if (MachineInstr *NewDV = TII.emitFrameIndexDebugValue(MF, StackSlot, Offset, MDPtr, DL)) { DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI); MachineBasicBlock *MBB = MI->getParent(); MBB->insert(MBB->erase(MI), NewDV); } else { DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI); MI->eraseFromParent(); } continue; } // Ignore copies to/from snippets. We'll delete them. if (SnippetCopies.count(MI)) continue; // Stack slot accesses may coalesce away. if (coalesceStackAccess(MI, Reg)) continue; // Analyze instruction. bool Reads, Writes; SmallVector Ops; tie(Reads, Writes) = MI->readsWritesVirtualRegister(Reg, &Ops); // Attempt to fold memory ops. if (foldMemoryOperand(MI, Ops)) continue; // Allocate interval around instruction. // FIXME: Infer regclass from instruction alone. LiveInterval &NewLI = Edit->create(MRI, LIS, VRM); NewLI.markNotSpillable(); if (Reads) insertReload(NewLI, MI); // Rewrite instruction operands. bool hasLiveDef = false; for (unsigned i = 0, e = Ops.size(); i != e; ++i) { MachineOperand &MO = MI->getOperand(Ops[i]); MO.setReg(NewLI.reg); if (MO.isUse()) { if (!MI->isRegTiedToDefOperand(Ops[i])) MO.setIsKill(); } else { if (!MO.isDead()) hasLiveDef = true; } } // FIXME: Use a second vreg if instruction has no tied ops. if (Writes && hasLiveDef) insertSpill(NewLI, OldLI, MI); DEBUG(dbgs() << "\tinterval: " << NewLI << '\n'); } } void InlineSpiller::spill(LiveRangeEdit &edit) { Edit = &edit; assert(!TargetRegisterInfo::isStackSlot(edit.getReg()) && "Trying to spill a stack slot."); // Share a stack slot among all descendants of Original. Original = VRM.getOriginal(edit.getReg()); StackSlot = VRM.getStackSlot(Original); DEBUG(dbgs() << "Inline spilling " << MRI.getRegClass(edit.getReg())->getName() << ':' << edit.getParent() << "\nFrom original " << LIS.getInterval(Original) << '\n'); assert(edit.getParent().isSpillable() && "Attempting to spill already spilled value."); collectRegsToSpill(); analyzeSiblingValues(); reMaterializeAll(); // Remat may handle everything. if (Edit->getParent().empty()) return; RC = MRI.getRegClass(edit.getReg()); if (StackSlot == VirtRegMap::NO_STACK_SLOT) StackSlot = VRM.assignVirt2StackSlot(Original); if (Original != edit.getReg()) VRM.assignVirt2StackSlot(edit.getReg(), StackSlot); // Update LiveStacks now that we are committed to spilling. LiveInterval &stacklvr = LSS.getOrCreateInterval(StackSlot, RC); if (!stacklvr.hasAtLeastOneValue()) stacklvr.getNextValue(SlotIndex(), 0, LSS.getVNInfoAllocator()); for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) stacklvr.MergeRangesInAsValue(LIS.getInterval(RegsToSpill[i]), stacklvr.getValNumInfo(0)); // Spill around uses of all RegsToSpill. for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) spillAroundUses(RegsToSpill[i]); // Finally delete the SnippetCopies. for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(edit.getReg()); MachineInstr *MI = RI.skipInstruction();) { assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy"); // FIXME: Do this with a LiveRangeEdit callback. VRM.RemoveMachineInstrFromMaps(MI); LIS.RemoveMachineInstrFromMaps(MI); MI->eraseFromParent(); } for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) edit.eraseVirtReg(RegsToSpill[i], LIS); }