//===-- IPConstantPropagation.cpp - Propagate constants through calls -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass implements an _extremely_ simple interprocedural constant // propagation pass. It could certainly be improved in many different ways, // like using a worklist. This pass makes arguments dead, but does not remove // them. The existing dead argument elimination pass should be run after this // to clean up the mess. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "ipconstprop" #include "llvm/Transforms/IPO.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/SmallVector.h" using namespace llvm; STATISTIC(NumArgumentsProped, "Number of args turned into constants"); STATISTIC(NumReturnValProped, "Number of return values turned into constants"); namespace { /// IPCP - The interprocedural constant propagation pass /// struct VISIBILITY_HIDDEN IPCP : public ModulePass { static char ID; // Pass identification, replacement for typeid IPCP() : ModulePass((intptr_t)&ID) {} bool runOnModule(Module &M); private: bool PropagateConstantsIntoArguments(Function &F); bool PropagateConstantReturn(Function &F); }; } char IPCP::ID = 0; static RegisterPass X("ipconstprop", "Interprocedural constant propagation"); ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); } bool IPCP::runOnModule(Module &M) { bool Changed = false; bool LocalChange = true; // FIXME: instead of using smart algorithms, we just iterate until we stop // making changes. while (LocalChange) { LocalChange = false; for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isDeclaration()) { // Delete any klingons. I->removeDeadConstantUsers(); if (I->hasInternalLinkage()) LocalChange |= PropagateConstantsIntoArguments(*I); Changed |= PropagateConstantReturn(*I); } Changed |= LocalChange; } return Changed; } /// PropagateConstantsIntoArguments - Look at all uses of the specified /// function. If all uses are direct call sites, and all pass a particular /// constant in for an argument, propagate that constant in as the argument. /// bool IPCP::PropagateConstantsIntoArguments(Function &F) { if (F.arg_empty() || F.use_empty()) return false; // No arguments? Early exit. // For each argument, keep track of its constant value and whether it is a // constant or not. The bool is driven to true when found to be non-constant. SmallVector, 16> ArgumentConstants; ArgumentConstants.resize(F.arg_size()); unsigned NumNonconstant = 0; for (Value::use_iterator UI = F.use_begin(), E = F.use_end(); UI != E; ++UI) { // Used by a non-instruction, or not the callee of a function, do not // transform. if (UI.getOperandNo() != 0 || (!isa(*UI) && !isa(*UI))) return false; CallSite CS = CallSite::get(cast(*UI)); // Check out all of the potentially constant arguments. Note that we don't // inspect varargs here. CallSite::arg_iterator AI = CS.arg_begin(); Function::arg_iterator Arg = F.arg_begin(); for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI, ++Arg) { // If this argument is known non-constant, ignore it. if (ArgumentConstants[i].second) continue; Constant *C = dyn_cast(*AI); if (C && ArgumentConstants[i].first == 0) { ArgumentConstants[i].first = C; // First constant seen. } else if (C && ArgumentConstants[i].first == C) { // Still the constant value we think it is. } else if (*AI == &*Arg) { // Ignore recursive calls passing argument down. } else { // Argument became non-constant. If all arguments are non-constant now, // give up on this function. if (++NumNonconstant == ArgumentConstants.size()) return false; ArgumentConstants[i].second = true; } } } // If we got to this point, there is a constant argument! assert(NumNonconstant != ArgumentConstants.size()); bool MadeChange = false; Function::arg_iterator AI = F.arg_begin(); for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) { // Do we have a constant argument? if (ArgumentConstants[i].second || AI->use_empty()) continue; Value *V = ArgumentConstants[i].first; if (V == 0) V = UndefValue::get(AI->getType()); AI->replaceAllUsesWith(V); ++NumArgumentsProped; MadeChange = true; } return MadeChange; } // Check to see if this function returns a constant. If so, replace all callers // that user the return value with the returned valued. If we can replace ALL // callers, bool IPCP::PropagateConstantReturn(Function &F) { if (F.getReturnType() == Type::VoidTy) return false; // No return value. // If this function could be overridden later in the link stage, we can't // propagate information about its results into callers. if (F.hasLinkOnceLinkage() || F.hasWeakLinkage()) return false; // Check to see if this function returns a constant. SmallVector RetVals; const StructType *STy = dyn_cast(F.getReturnType()); if (STy) RetVals.assign(STy->getNumElements(), 0); else RetVals.push_back(0); for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) if (ReturnInst *RI = dyn_cast(BB->getTerminator())) { assert(RetVals.size() == RI->getNumOperands() && "Invalid ReturnInst operands!"); for (unsigned i = 0, e = RetVals.size(); i != e; ++i) { if (isa(RI->getOperand(i))) continue; // Ignore Constant *C = dyn_cast(RI->getOperand(i)); if (C == 0) return false; // Does not return a constant. Value *RV = RetVals[i]; if (RV == 0) RetVals[i] = C; else if (RV != C) return false; // Does not return the same constant. } } if (STy) { for (unsigned i = 0, e = RetVals.size(); i < e; ++i) if (RetVals[i] == 0) RetVals[i] = UndefValue::get(STy->getElementType(i)); } else { assert(RetVals.size() == 1); if (RetVals[0] == 0) RetVals[0] = UndefValue::get(F.getReturnType()); } // If we got here, the function returns a constant value. Loop over all // users, replacing any uses of the return value with the returned constant. bool ReplacedAllUsers = true; bool MadeChange = false; for (Value::use_iterator UI = F.use_begin(), E = F.use_end(); UI != E; ++UI) { // Make sure this is an invoke or call and that the use is for the callee. if (!(isa(*UI) || isa(*UI)) || UI.getOperandNo() != 0) { ReplacedAllUsers = false; continue; } Instruction *Call = cast(*UI); if (Call->use_empty()) continue; MadeChange = true; if (STy == 0) { Call->replaceAllUsesWith(RetVals[0]); continue; } while (!Call->use_empty()) { GetResultInst *GR = cast(Call->use_back()); GR->replaceAllUsesWith(RetVals[GR->getIndex()]); GR->eraseFromParent(); } } // If we replace all users with the returned constant, and there can be no // other callers of the function, replace the constant being returned in the // function with an undef value. if (ReplacedAllUsers && F.hasInternalLinkage()) { for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { if (ReturnInst *RI = dyn_cast(BB->getTerminator())) { for (unsigned i = 0, e = RetVals.size(); i < e; ++i) { Value *RetVal = RetVals[i]; if (isa(RetVal)) continue; Value *RV = UndefValue::get(RetVal->getType()); if (RI->getOperand(i) != RV) { RI->setOperand(i, RV); MadeChange = true; } } } } } if (MadeChange) ++NumReturnValProped; return MadeChange; }