//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs various transformations related to eliminating memcpy // calls, or transforming sets of stores into memset's. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "memcpyopt" #include "llvm/Transforms/Scalar.h" #include "llvm/GlobalVariable.h" #include "llvm/IntrinsicInst.h" #include "llvm/Instructions.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/MemoryDependenceAnalysis.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetData.h" #include using namespace llvm; STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); STATISTIC(NumMemSetInfer, "Number of memsets inferred"); STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx, bool &VariableIdxFound, TargetData &TD) { // Skip over the first indices. gep_type_iterator GTI = gep_type_begin(GEP); for (unsigned i = 1; i != Idx; ++i, ++GTI) /*skip along*/; // Compute the offset implied by the rest of the indices. int64_t Offset = 0; for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { ConstantInt *OpC = dyn_cast(GEP->getOperand(i)); if (OpC == 0) return VariableIdxFound = true; if (OpC->isZero()) continue; // No offset. // Handle struct indices, which add their field offset to the pointer. if (const StructType *STy = dyn_cast(*GTI)) { Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); continue; } // Otherwise, we have a sequential type like an array or vector. Multiply // the index by the ElementSize. uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); Offset += Size*OpC->getSExtValue(); } return Offset; } /// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a /// constant offset, and return that constant offset. For example, Ptr1 might /// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8. static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset, TargetData &TD) { // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical // base. After that base, they may have some number of common (and // potentially variable) indices. After that they handle some constant // offset, which determines their offset from each other. At this point, we // handle no other case. GetElementPtrInst *GEP1 = dyn_cast(Ptr1); GetElementPtrInst *GEP2 = dyn_cast(Ptr2); if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) return false; // Skip any common indices and track the GEP types. unsigned Idx = 1; for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) break; bool VariableIdxFound = false; int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD); int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD); if (VariableIdxFound) return false; Offset = Offset2-Offset1; return true; } /// MemsetRange - Represents a range of memset'd bytes with the ByteVal value. /// This allows us to analyze stores like: /// store 0 -> P+1 /// store 0 -> P+0 /// store 0 -> P+3 /// store 0 -> P+2 /// which sometimes happens with stores to arrays of structs etc. When we see /// the first store, we make a range [1, 2). The second store extends the range /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the /// two ranges into [0, 3) which is memset'able. namespace { struct MemsetRange { // Start/End - A semi range that describes the span that this range covers. // The range is closed at the start and open at the end: [Start, End). int64_t Start, End; /// StartPtr - The getelementptr instruction that points to the start of the /// range. Value *StartPtr; /// Alignment - The known alignment of the first store. unsigned Alignment; /// TheStores - The actual stores that make up this range. SmallVector TheStores; bool isProfitableToUseMemset(const TargetData &TD) const; }; } // end anon namespace bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const { // If we found more than 8 stores to merge or 64 bytes, use memset. if (TheStores.size() >= 8 || End-Start >= 64) return true; // Assume that the code generator is capable of merging pairs of stores // together if it wants to. if (TheStores.size() <= 2) return false; // If we have fewer than 8 stores, it can still be worthwhile to do this. // For example, merging 4 i8 stores into an i32 store is useful almost always. // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the // memset will be split into 2 32-bit stores anyway) and doing so can // pessimize the llvm optimizer. // // Since we don't have perfect knowledge here, make some assumptions: assume // the maximum GPR width is the same size as the pointer size and assume that // this width can be stored. If so, check to see whether we will end up // actually reducing the number of stores used. unsigned Bytes = unsigned(End-Start); unsigned NumPointerStores = Bytes/TD.getPointerSize(); // Assume the remaining bytes if any are done a byte at a time. unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize(); // If we will reduce the # stores (according to this heuristic), do the // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 // etc. return TheStores.size() > NumPointerStores+NumByteStores; } namespace { class MemsetRanges { /// Ranges - A sorted list of the memset ranges. We use std::list here /// because each element is relatively large and expensive to copy. std::list Ranges; typedef std::list::iterator range_iterator; TargetData &TD; public: MemsetRanges(TargetData &td) : TD(td) {} typedef std::list::const_iterator const_iterator; const_iterator begin() const { return Ranges.begin(); } const_iterator end() const { return Ranges.end(); } bool empty() const { return Ranges.empty(); } void addStore(int64_t OffsetFromFirst, StoreInst *SI); }; } // end anon namespace /// addStore - Add a new store to the MemsetRanges data structure. This adds a /// new range for the specified store at the specified offset, merging into /// existing ranges as appropriate. void MemsetRanges::addStore(int64_t Start, StoreInst *SI) { int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType()); // Do a linear search of the ranges to see if this can be joined and/or to // find the insertion point in the list. We keep the ranges sorted for // simplicity here. This is a linear search of a linked list, which is ugly, // however the number of ranges is limited, so this won't get crazy slow. range_iterator I = Ranges.begin(), E = Ranges.end(); while (I != E && Start > I->End) ++I; // We now know that I == E, in which case we didn't find anything to merge // with, or that Start <= I->End. If End < I->Start or I == E, then we need // to insert a new range. Handle this now. if (I == E || End < I->Start) { MemsetRange &R = *Ranges.insert(I, MemsetRange()); R.Start = Start; R.End = End; R.StartPtr = SI->getPointerOperand(); R.Alignment = SI->getAlignment(); R.TheStores.push_back(SI); return; } // This store overlaps with I, add it. I->TheStores.push_back(SI); // At this point, we may have an interval that completely contains our store. // If so, just add it to the interval and return. if (I->Start <= Start && I->End >= End) return; // Now we know that Start <= I->End and End >= I->Start so the range overlaps // but is not entirely contained within the range. // See if the range extends the start of the range. In this case, it couldn't // possibly cause it to join the prior range, because otherwise we would have // stopped on *it*. if (Start < I->Start) { I->Start = Start; I->StartPtr = SI->getPointerOperand(); I->Alignment = SI->getAlignment(); } // Now we know that Start <= I->End and Start >= I->Start (so the startpoint // is in or right at the end of I), and that End >= I->Start. Extend I out to // End. if (End > I->End) { I->End = End; range_iterator NextI = I; while (++NextI != E && End >= NextI->Start) { // Merge the range in. I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); if (NextI->End > I->End) I->End = NextI->End; Ranges.erase(NextI); NextI = I; } } } //===----------------------------------------------------------------------===// // MemCpyOpt Pass //===----------------------------------------------------------------------===// namespace { class MemCpyOpt : public FunctionPass { MemoryDependenceAnalysis *MD; bool runOnFunction(Function &F); public: static char ID; // Pass identification, replacement for typeid MemCpyOpt() : FunctionPass(ID) { initializeMemCpyOptPass(*PassRegistry::getPassRegistry()); MD = 0; } private: // This transformation requires dominator postdominator info virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); } // Helper fuctions bool processStore(StoreInst *SI, BasicBlock::iterator &BBI); bool processMemCpy(MemCpyInst *M); bool processMemMove(MemMoveInst *M); bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc, uint64_t cpyLen, CallInst *C); bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep, uint64_t MSize); bool processByValArgument(CallSite CS, unsigned ArgNo); bool iterateOnFunction(Function &F); }; char MemCpyOpt::ID = 0; } // createMemCpyOptPass - The public interface to this file... FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); } INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTree) INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization", false, false) /// processStore - When GVN is scanning forward over instructions, we look for /// some other patterns to fold away. In particular, this looks for stores to /// neighboring locations of memory. If it sees enough consequtive ones /// (currently 4) it attempts to merge them together into a memcpy/memset. bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { if (SI->isVolatile()) return false; TargetData *TD = getAnalysisIfAvailable(); if (!TD) return false; // Detect cases where we're performing call slot forwarding, but // happen to be using a load-store pair to implement it, rather than // a memcpy. if (LoadInst *LI = dyn_cast(SI->getOperand(0))) { if (!LI->isVolatile() && LI->hasOneUse()) { MemDepResult dep = MD->getDependency(LI); CallInst *C = 0; if (dep.isClobber() && !isa(dep.getInst())) C = dyn_cast(dep.getInst()); if (C) { bool changed = performCallSlotOptzn(LI, SI->getPointerOperand()->stripPointerCasts(), LI->getPointerOperand()->stripPointerCasts(), TD->getTypeStoreSize(SI->getOperand(0)->getType()), C); if (changed) { MD->removeInstruction(SI); SI->eraseFromParent(); LI->eraseFromParent(); ++NumMemCpyInstr; return true; } } } } LLVMContext &Context = SI->getContext(); // There are two cases that are interesting for this code to handle: memcpy // and memset. Right now we only handle memset. // Ensure that the value being stored is something that can be memset'able a // byte at a time like "0" or "-1" or any width, as well as things like // 0xA0A0A0A0 and 0.0. Value *ByteVal = isBytewiseValue(SI->getOperand(0)); if (!ByteVal) return false; AliasAnalysis &AA = getAnalysis(); Module *M = SI->getParent()->getParent()->getParent(); // Okay, so we now have a single store that can be splatable. Scan to find // all subsequent stores of the same value to offset from the same pointer. // Join these together into ranges, so we can decide whether contiguous blocks // are stored. MemsetRanges Ranges(*TD); Value *StartPtr = SI->getPointerOperand(); BasicBlock::iterator BI = SI; for (++BI; !isa(BI); ++BI) { if (isa(BI) || isa(BI)) { // If the call is readnone, ignore it, otherwise bail out. We don't even // allow readonly here because we don't want something like: // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). if (AA.getModRefBehavior(CallSite(BI)) == AliasAnalysis::DoesNotAccessMemory) continue; // TODO: If this is a memset, try to join it in. break; } else if (isa(BI) || isa(BI)) break; // If this is a non-store instruction it is fine, ignore it. StoreInst *NextStore = dyn_cast(BI); if (NextStore == 0) continue; // If this is a store, see if we can merge it in. if (NextStore->isVolatile()) break; // Check to see if this stored value is of the same byte-splattable value. if (ByteVal != isBytewiseValue(NextStore->getOperand(0))) break; // Check to see if this store is to a constant offset from the start ptr. int64_t Offset; if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, *TD)) break; Ranges.addStore(Offset, NextStore); } // If we have no ranges, then we just had a single store with nothing that // could be merged in. This is a very common case of course. if (Ranges.empty()) return false; // If we had at least one store that could be merged in, add the starting // store as well. We try to avoid this unless there is at least something // interesting as a small compile-time optimization. Ranges.addStore(0, SI); // Now that we have full information about ranges, loop over the ranges and // emit memset's for anything big enough to be worthwhile. bool MadeChange = false; for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { const MemsetRange &Range = *I; if (Range.TheStores.size() == 1) continue; // If it is profitable to lower this range to memset, do so now. if (!Range.isProfitableToUseMemset(*TD)) continue; // Otherwise, we do want to transform this! Create a new memset. We put // the memset right before the first instruction that isn't part of this // memset block. This ensure that the memset is dominated by any addressing // instruction needed by the start of the block. BasicBlock::iterator InsertPt = BI; // Get the starting pointer of the block. StartPtr = Range.StartPtr; // Determine alignment unsigned Alignment = Range.Alignment; if (Alignment == 0) { const Type *EltType = cast(StartPtr->getType())->getElementType(); Alignment = TD->getABITypeAlignment(EltType); } // Cast the start ptr to be i8* as memset requires. const PointerType* StartPTy = cast(StartPtr->getType()); const PointerType *i8Ptr = Type::getInt8PtrTy(Context, StartPTy->getAddressSpace()); if (StartPTy!= i8Ptr) StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getName(), InsertPt); Value *Ops[] = { StartPtr, ByteVal, // Start, value // size ConstantInt::get(Type::getInt64Ty(Context), Range.End-Range.Start), // align ConstantInt::get(Type::getInt32Ty(Context), Alignment), // volatile ConstantInt::getFalse(Context), }; const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() }; Function *MemSetF = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 2); Value *C = CallInst::Create(MemSetF, Ops, Ops+5, "", InsertPt); DEBUG(dbgs() << "Replace stores:\n"; for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i) dbgs() << *Range.TheStores[i] << '\n'; dbgs() << "With: " << *C << '\n'); (void)C; // Don't invalidate the iterator BBI = BI; // Zap all the stores. for (SmallVector::const_iterator SI = Range.TheStores.begin(), SE = Range.TheStores.end(); SI != SE; ++SI) (*SI)->eraseFromParent(); ++NumMemSetInfer; MadeChange = true; } return MadeChange; } /// performCallSlotOptzn - takes a memcpy and a call that it depends on, /// and checks for the possibility of a call slot optimization by having /// the call write its result directly into the destination of the memcpy. bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy, Value *cpyDest, Value *cpySrc, uint64_t cpyLen, CallInst *C) { // The general transformation to keep in mind is // // call @func(..., src, ...) // memcpy(dest, src, ...) // // -> // // memcpy(dest, src, ...) // call @func(..., dest, ...) // // Since moving the memcpy is technically awkward, we additionally check that // src only holds uninitialized values at the moment of the call, meaning that // the memcpy can be discarded rather than moved. // Deliberately get the source and destination with bitcasts stripped away, // because we'll need to do type comparisons based on the underlying type. CallSite CS(C); // Require that src be an alloca. This simplifies the reasoning considerably. AllocaInst *srcAlloca = dyn_cast(cpySrc); if (!srcAlloca) return false; // Check that all of src is copied to dest. TargetData *TD = getAnalysisIfAvailable(); if (!TD) return false; ConstantInt *srcArraySize = dyn_cast(srcAlloca->getArraySize()); if (!srcArraySize) return false; uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) * srcArraySize->getZExtValue(); if (cpyLen < srcSize) return false; // Check that accessing the first srcSize bytes of dest will not cause a // trap. Otherwise the transform is invalid since it might cause a trap // to occur earlier than it otherwise would. if (AllocaInst *A = dyn_cast(cpyDest)) { // The destination is an alloca. Check it is larger than srcSize. ConstantInt *destArraySize = dyn_cast(A->getArraySize()); if (!destArraySize) return false; uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) * destArraySize->getZExtValue(); if (destSize < srcSize) return false; } else if (Argument *A = dyn_cast(cpyDest)) { // If the destination is an sret parameter then only accesses that are // outside of the returned struct type can trap. if (!A->hasStructRetAttr()) return false; const Type *StructTy = cast(A->getType())->getElementType(); uint64_t destSize = TD->getTypeAllocSize(StructTy); if (destSize < srcSize) return false; } else { return false; } // Check that src is not accessed except via the call and the memcpy. This // guarantees that it holds only undefined values when passed in (so the final // memcpy can be dropped), that it is not read or written between the call and // the memcpy, and that writing beyond the end of it is undefined. SmallVector srcUseList(srcAlloca->use_begin(), srcAlloca->use_end()); while (!srcUseList.empty()) { User *UI = srcUseList.pop_back_val(); if (isa(UI)) { for (User::use_iterator I = UI->use_begin(), E = UI->use_end(); I != E; ++I) srcUseList.push_back(*I); } else if (GetElementPtrInst *G = dyn_cast(UI)) { if (G->hasAllZeroIndices()) for (User::use_iterator I = UI->use_begin(), E = UI->use_end(); I != E; ++I) srcUseList.push_back(*I); else return false; } else if (UI != C && UI != cpy) { return false; } } // Since we're changing the parameter to the callsite, we need to make sure // that what would be the new parameter dominates the callsite. DominatorTree &DT = getAnalysis(); if (Instruction *cpyDestInst = dyn_cast(cpyDest)) if (!DT.dominates(cpyDestInst, C)) return false; // In addition to knowing that the call does not access src in some // unexpected manner, for example via a global, which we deduce from // the use analysis, we also need to know that it does not sneakily // access dest. We rely on AA to figure this out for us. AliasAnalysis &AA = getAnalysis(); if (AA.getModRefInfo(C, cpyDest, srcSize) != AliasAnalysis::NoModRef) return false; // All the checks have passed, so do the transformation. bool changedArgument = false; for (unsigned i = 0; i < CS.arg_size(); ++i) if (CS.getArgument(i)->stripPointerCasts() == cpySrc) { if (cpySrc->getType() != cpyDest->getType()) cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), cpyDest->getName(), C); changedArgument = true; if (CS.getArgument(i)->getType() == cpyDest->getType()) CS.setArgument(i, cpyDest); else CS.setArgument(i, CastInst::CreatePointerCast(cpyDest, CS.getArgument(i)->getType(), cpyDest->getName(), C)); } if (!changedArgument) return false; // Drop any cached information about the call, because we may have changed // its dependence information by changing its parameter. MD->removeInstruction(C); // Remove the memcpy. MD->removeInstruction(cpy); ++NumMemCpyInstr; return true; } /// processMemCpyMemCpyDependence - We've found that the (upward scanning) /// memory dependence of memcpy 'M' is the memcpy 'MDep'. Try to simplify M to /// copy from MDep's input if we can. MSize is the size of M's copy. /// bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep, uint64_t MSize) { // We can only transforms memcpy's where the dest of one is the source of the // other. if (M->getSource() != MDep->getDest() || MDep->isVolatile()) return false; // If dep instruction is reading from our current input, then it is a noop // transfer and substituting the input won't change this instruction. Just // ignore the input and let someone else zap MDep. This handles cases like: // memcpy(a <- a) // memcpy(b <- a) if (M->getSource() == MDep->getSource()) return false; // Second, the length of the memcpy's must be the same, or the preceeding one // must be larger than the following one. ConstantInt *C1 = dyn_cast(MDep->getLength()); if (!C1) return false; AliasAnalysis &AA = getAnalysis(); // Verify that the copied-from memory doesn't change in between the two // transfers. For example, in: // memcpy(a <- b) // *b = 42; // memcpy(c <- a) // It would be invalid to transform the second memcpy into memcpy(c <- b). // // TODO: If the code between M and MDep is transparent to the destination "c", // then we could still perform the xform by moving M up to the first memcpy. // // NOTE: This is conservative, it will stop on any read from the source loc, // not just the defining memcpy. MemDepResult SourceDep = MD->getPointerDependencyFrom(AA.getLocationForSource(MDep), false, M, M->getParent()); if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) return false; // If the dest of the second might alias the source of the first, then the // source and dest might overlap. We still want to eliminate the intermediate // value, but we have to generate a memmove instead of memcpy. Intrinsic::ID ResultFn = Intrinsic::memcpy; if (AA.alias(AA.getLocationForDest(M), AA.getLocationForSource(MDep)) != AliasAnalysis::NoAlias) ResultFn = Intrinsic::memmove; // If all checks passed, then we can transform M. const Type *ArgTys[3] = { M->getRawDest()->getType(), MDep->getRawSource()->getType(), M->getLength()->getType() }; Function *MemCpyFun = Intrinsic::getDeclaration(MDep->getParent()->getParent()->getParent(), ResultFn, ArgTys, 3); // Make sure to use the lesser of the alignment of the source and the dest // since we're changing where we're reading from, but don't want to increase // the alignment past what can be read from or written to. // TODO: Is this worth it if we're creating a less aligned memcpy? For // example we could be moving from movaps -> movq on x86. unsigned Align = std::min(MDep->getAlignment(), M->getAlignment()); Value *Args[5] = { M->getRawDest(), MDep->getRawSource(), M->getLength(), ConstantInt::get(Type::getInt32Ty(MemCpyFun->getContext()), Align), M->getVolatileCst() }; CallInst::Create(MemCpyFun, Args, Args+5, "", M); // Remove the instruction we're replacing. MD->removeInstruction(M); M->eraseFromParent(); ++NumMemCpyInstr; return true; } /// processMemCpy - perform simplification of memcpy's. If we have memcpy A /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite /// B to be a memcpy from X to Z (or potentially a memmove, depending on /// circumstances). This allows later passes to remove the first memcpy /// altogether. bool MemCpyOpt::processMemCpy(MemCpyInst *M) { // We can only optimize statically-sized memcpy's that are non-volatile. ConstantInt *CopySize = dyn_cast(M->getLength()); if (CopySize == 0 || M->isVolatile()) return false; // If the source and destination of the memcpy are the same, then zap it. if (M->getSource() == M->getDest()) { MD->removeInstruction(M); M->eraseFromParent(); return false; } // If copying from a constant, try to turn the memcpy into a memset. if (GlobalVariable *GV = dyn_cast(M->getSource())) if (GV->isConstant() && GV->hasDefinitiveInitializer()) if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) { Value *Ops[] = { M->getRawDest(), ByteVal, // Start, value CopySize, // Size M->getAlignmentCst(), // Alignment ConstantInt::getFalse(M->getContext()), // volatile }; const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() }; Module *Mod = M->getParent()->getParent()->getParent(); Function *MemSetF = Intrinsic::getDeclaration(Mod, Intrinsic::memset, Tys, 2); CallInst::Create(MemSetF, Ops, Ops+5, "", M); MD->removeInstruction(M); M->eraseFromParent(); ++NumCpyToSet; return true; } // The are two possible optimizations we can do for memcpy: // a) memcpy-memcpy xform which exposes redundance for DSE. // b) call-memcpy xform for return slot optimization. MemDepResult DepInfo = MD->getDependency(M); if (!DepInfo.isClobber()) return false; if (MemCpyInst *MDep = dyn_cast(DepInfo.getInst())) return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue()); if (CallInst *C = dyn_cast(DepInfo.getInst())) { if (performCallSlotOptzn(M, M->getDest(), M->getSource(), CopySize->getZExtValue(), C)) { M->eraseFromParent(); return true; } } return false; } /// processMemMove - Transforms memmove calls to memcpy calls when the src/dst /// are guaranteed not to alias. bool MemCpyOpt::processMemMove(MemMoveInst *M) { AliasAnalysis &AA = getAnalysis(); // See if the pointers alias. if (AA.alias(AA.getLocationForDest(M), AA.getLocationForSource(M)) != AliasAnalysis::NoAlias) return false; DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n"); // If not, then we know we can transform this. Module *Mod = M->getParent()->getParent()->getParent(); const Type *ArgTys[3] = { M->getRawDest()->getType(), M->getRawSource()->getType(), M->getLength()->getType() }; M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy, ArgTys, 3)); // MemDep may have over conservative information about this instruction, just // conservatively flush it from the cache. MD->removeInstruction(M); ++NumMoveToCpy; return true; } /// processByValArgument - This is called on every byval argument in call sites. bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) { TargetData *TD = getAnalysisIfAvailable(); if (!TD) return false; // Find out what feeds this byval argument. Value *ByValArg = CS.getArgument(ArgNo); const Type *ByValTy =cast(ByValArg->getType())->getElementType(); uint64_t ByValSize = TD->getTypeAllocSize(ByValTy); MemDepResult DepInfo = MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize), true, CS.getInstruction(), CS.getInstruction()->getParent()); if (!DepInfo.isClobber()) return false; // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by // a memcpy, see if we can byval from the source of the memcpy instead of the // result. MemCpyInst *MDep = dyn_cast(DepInfo.getInst()); if (MDep == 0 || MDep->isVolatile() || ByValArg->stripPointerCasts() != MDep->getDest()) return false; // The length of the memcpy must be larger or equal to the size of the byval. ConstantInt *C1 = dyn_cast(MDep->getLength()); if (C1 == 0 || C1->getValue().getZExtValue() < ByValSize) return false; // Get the alignment of the byval. If it is greater than the memcpy, then we // can't do the substitution. If the call doesn't specify the alignment, then // it is some target specific value that we can't know. unsigned ByValAlign = CS.getParamAlignment(ArgNo+1); if (ByValAlign == 0 || MDep->getAlignment() < ByValAlign) return false; // Verify that the copied-from memory doesn't change in between the memcpy and // the byval call. // memcpy(a <- b) // *b = 42; // foo(*a) // It would be invalid to transform the second memcpy into foo(*b). // // NOTE: This is conservative, it will stop on any read from the source loc, // not just the defining memcpy. MemDepResult SourceDep = MD->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep), false, CS.getInstruction(), MDep->getParent()); if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) return false; Value *TmpCast = MDep->getSource(); if (MDep->getSource()->getType() != ByValArg->getType()) TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), "tmpcast", CS.getInstruction()); DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n" << " " << *MDep << "\n" << " " << *CS.getInstruction() << "\n"); // Otherwise we're good! Update the byval argument. CS.setArgument(ArgNo, TmpCast); ++NumMemCpyInstr; return true; } /// iterateOnFunction - Executes one iteration of MemCpyOpt. bool MemCpyOpt::iterateOnFunction(Function &F) { bool MadeChange = false; // Walk all instruction in the function. for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) { for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { // Avoid invalidating the iterator. Instruction *I = BI++; bool RepeatInstruction = false; if (StoreInst *SI = dyn_cast(I)) MadeChange |= processStore(SI, BI); else if (MemCpyInst *M = dyn_cast(I)) { RepeatInstruction = processMemCpy(M); } else if (MemMoveInst *M = dyn_cast(I)) { RepeatInstruction = processMemMove(M); } else if (CallSite CS = (Value*)I) { for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) if (CS.paramHasAttr(i+1, Attribute::ByVal)) MadeChange |= processByValArgument(CS, i); } // Reprocess the instruction if desired. if (RepeatInstruction) { --BI; MadeChange = true; } } } return MadeChange; } // MemCpyOpt::runOnFunction - This is the main transformation entry point for a // function. // bool MemCpyOpt::runOnFunction(Function &F) { bool MadeChange = false; MD = &getAnalysis(); while (1) { if (!iterateOnFunction(F)) break; MadeChange = true; } MD = 0; return MadeChange; }