//===-- llvm/Instruction.h - Instruction class definition --------*- C++ -*--=// // // This file contains the declaration of the Instruction class, which is the // base class for all of the VM instructions. // //===----------------------------------------------------------------------===// #ifndef LLVM_INSTRUCTION_H #define LLVM_INSTRUCTION_H #include "llvm/User.h" class Type; class BasicBlock; class Method; class Instruction : public User { BasicBlock *Parent; unsigned iType; // InstructionType friend class ValueHolder; inline void setParent(BasicBlock *P) { Parent = P; } public: Instruction(const Type *Ty, unsigned iType, const string &Name = ""); virtual ~Instruction(); // Virtual dtor == good. // Specialize setName to handle symbol table majik... virtual void setName(const string &name); // clone() - Create a copy of 'this' instruction that is identical in all ways // except the following: // * The instruction has no parent // * The instruction has no name // virtual Instruction *clone() const = 0; // Accessor methods... // inline const BasicBlock *getParent() const { return Parent; } inline BasicBlock *getParent() { return Parent; } bool hasSideEffects() const { return false; } // Memory & Call insts = true // --------------------------------------------------------------------------- // Implement the User interface // if i > the number of operands, then getOperand() returns 0, and setOperand // returns false. setOperand() may also return false if the operand is of // the wrong type. // inline Value *getOperand(unsigned i) { return (Value*)((const Instruction *)this)->getOperand(i); } virtual const Value *getOperand(unsigned i) const = 0; virtual bool setOperand(unsigned i, Value *Val) = 0; virtual unsigned getNumOperands() const = 0; // --------------------------------------------------------------------------- // Operand Iterator interface... // template class OperandIterator; typedef OperandIterator op_iterator; typedef OperandIterator op_const_iterator; inline op_iterator op_begin() ; inline op_const_iterator op_begin() const; inline op_iterator op_end() ; inline op_const_iterator op_end() const; // --------------------------------------------------------------------------- // Subclass classification... getInstType() returns a member of // one of the enums that is coming soon (down below)... // virtual string getOpcode() const = 0; unsigned getInstType() const { return iType; } inline bool isTerminator() const { // Instance of TerminatorInst? return iType >= FirstTermOp && iType < NumTermOps; } inline bool isDefinition() const { return !isTerminator(); } inline bool isUnaryOp() const { return iType >= FirstUnaryOp && iType < NumUnaryOps; } inline bool isBinaryOp() const { return iType >= FirstBinaryOp && iType < NumBinaryOps; } // isPHINode() - This is used frequently enough to allow it to exist inline bool isPHINode() const { return iType == PHINode; } //---------------------------------------------------------------------- // Exported enumerations... // enum TermOps { // These terminate basic blocks FirstTermOp = 1, Ret = 1, Br, Switch, NumTermOps // Must remain at end of enum }; enum UnaryOps { FirstUnaryOp = NumTermOps, Neg = NumTermOps, Not, // Type conversions... ToBoolTy , ToUByteTy , ToSByteTy, ToUShortTy, ToShortTy, ToUInt , ToInt, ToULongTy , ToLongTy, ToFloatTy , ToDoubleTy, ToArrayTy , ToPointerTy, NumUnaryOps // Must remain at end of enum }; enum BinaryOps { // Standard binary operators... FirstBinaryOp = NumUnaryOps, Add = NumUnaryOps, Sub, Mul, Div, Rem, // Logical operators... And, Or, Xor, // Binary comparison operators... SetEQ, SetNE, SetLE, SetGE, SetLT, SetGT, NumBinaryOps }; enum MemoryOps { FirstMemoryOp = NumBinaryOps, Malloc = NumBinaryOps, Free, // Heap management instructions Alloca, // Stack management instruction Load, Store, // Memory manipulation instructions. GetField, PutField, // Structure manipulation instructions NumMemoryOps }; enum OtherOps { FirstOtherOp = NumMemoryOps, PHINode = NumMemoryOps, // PHI node instruction Call, // Call a function Shl, Shr, // Shift operations... NumOps, // Must be the last 'op' defined. UserOp1, UserOp2 // May be used internally to a pass... }; public: template // Operand Iterator Implementation class OperandIterator { const _Inst Inst; unsigned idx; public: typedef OperandIterator<_Inst, _Val> _Self; typedef bidirectional_iterator_tag iterator_category; typedef _Val pointer; inline OperandIterator(_Inst T) : Inst(T), idx(0) {} // begin iterator inline OperandIterator(_Inst T, bool) : Inst(T), idx(Inst->getNumOperands()) {} // end iterator inline bool operator==(const _Self& x) const { return idx == x.idx; } inline bool operator!=(const _Self& x) const { return !operator==(x); } inline pointer operator*() const { return Inst->getOperand(idx); } inline pointer *operator->() const { return &(operator*()); } inline _Self& operator++() { ++idx; return *this; } // Preincrement inline _Self operator++(int) { // Postincrement _Self tmp = *this; ++*this; return tmp; } inline _Self& operator--() { --idx; return *this; } // Predecrement inline _Self operator--(int) { // Postdecrement _Self tmp = *this; --*this; return tmp; } }; }; inline Instruction::op_iterator Instruction::op_begin() { return op_iterator(this); } inline Instruction::op_const_iterator Instruction::op_begin() const { return op_const_iterator(this); } inline Instruction::op_iterator Instruction::op_end() { return op_iterator(this,true); } inline Instruction::op_const_iterator Instruction::op_end() const { return op_const_iterator(this,true); } #endif