//===-- ReaderInternals.h - Definitions internal to the reader ---*- C++ -*--=// // // This header file defines various stuff that is used by the bytecode reader. // //===----------------------------------------------------------------------===// #ifndef READER_INTERNALS_H #define READER_INTERNALS_H #include "llvm/Bytecode/Primitives.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Constant.h" #include #include // Enable to trace to figure out what the heck is going on when parsing fails #define TRACE_LEVEL 0 #if TRACE_LEVEL // ByteCodeReading_TRACEer #define BCR_TRACE(n, X) \ if (n < TRACE_LEVEL) std::cerr << std::string(n*2, ' ') << X #else #define BCR_TRACE(n, X) #endif struct RawInst { // The raw fields out of the bytecode stream... unsigned NumOperands; unsigned Opcode; const Type *Ty; unsigned Arg1, Arg2; union { unsigned Arg3; std::vector *VarArgs; // Contains arg #3,4,5... if NumOperands > 3 }; }; class BytecodeParser : public AbstractTypeUser { std::string Error; // Error message string goes here... BytecodeParser(const BytecodeParser &); // DO NOT IMPLEMENT void operator=(const BytecodeParser &); // DO NOT IMPLEMENT public: BytecodeParser() { // Define this in case we don't see a ModuleGlobalInfo block. FirstDerivedTyID = Type::FirstDerivedTyID; } ~BytecodeParser() { freeState(); } void freeState() { freeTable(Values); freeTable(LateResolveValues); freeTable(ModuleValues); } Module *ParseBytecode(const unsigned char *Buf, const unsigned char *EndBuf, const std::string &ModuleID); std::string getError() const { return Error; } void dump() const { std::cerr << "BytecodeParser instance!\n"; } private: // All of this data is transient across calls to ParseBytecode struct ValueList : public User { ValueList() : User(Type::TypeTy, Value::TypeVal) { } ~ValueList() {} // vector compatibility methods unsigned size() const { return getNumOperands(); } void push_back(Value *V) { Operands.push_back(Use(V, this)); } Value *back() const { return Operands.back(); } void pop_back() { Operands.pop_back(); } bool empty() const { return Operands.empty(); } virtual void print(std::ostream& OS) const { OS << "Bytecode Reader UseHandle!"; } }; Module *TheModule; // Current Module being read into... // Information about the module, extracted from the bytecode revision number. unsigned char RevisionNum; // The rev # itself unsigned char FirstDerivedTyID; // First variable index to use for type bool HasImplicitZeroInitializer; // Is entry 0 of every slot implicity zeros? bool isBigEndian, hasLongPointers;// Information about the target compiled for bool hasInternalMarkerOnly; // Only types of linkage are intern/external typedef std::vector ValueTable; ValueTable Values, LateResolveValues; ValueTable ModuleValues; // GlobalRefs - This maintains a mapping between 's and forward // references to global values or constants. Such values may be referenced // before they are defined, and if so, the temporary object that they // represent is held here. // typedef std::map, Value*> GlobalRefsType; GlobalRefsType GlobalRefs; // TypesLoaded - This vector mirrors the Values[TypeTyID] plane. It is used // to deal with forward references to types. // typedef std::vector TypeValuesListTy; TypeValuesListTy ModuleTypeValues; TypeValuesListTy FunctionTypeValues; // When the ModuleGlobalInfo section is read, we create a function object for // each function in the module. When the function is loaded, this function is // filled in. // std::vector > FunctionSignatureList; // Constant values are read in after global variables. Because of this, we // must defer setting the initializers on global variables until after module // level constants have been read. In the mean time, this list keeps track of // what we must do. // std::vector > GlobalInits; private: void freeTable(ValueTable &Tab) { while (!Tab.empty()) { delete Tab.back(); Tab.pop_back(); } } bool ParseModule (const unsigned char * Buf, const unsigned char *End); bool ParseVersionInfo (const unsigned char *&Buf, const unsigned char *End); bool ParseModuleGlobalInfo(const unsigned char *&Buf, const unsigned char *E); bool ParseSymbolTable (const unsigned char *&Buf, const unsigned char *End, SymbolTable *); bool ParseFunction (const unsigned char *&Buf, const unsigned char *End); bool ParseBasicBlock (const unsigned char *&Buf, const unsigned char *End, BasicBlock *&); bool ParseInstruction (const unsigned char *&Buf, const unsigned char *End, Instruction *&, BasicBlock *BB /*HACK*/); bool ParseRawInst (const unsigned char *&Buf, const unsigned char *End, RawInst &); bool ParseGlobalTypes(const unsigned char *&Buf, const unsigned char *EndBuf); bool ParseConstantPool(const unsigned char *&Buf, const unsigned char *EndBuf, ValueTable &Tab, TypeValuesListTy &TypeTab); bool parseConstantValue(const unsigned char *&Buf, const unsigned char *End, const Type *Ty, Constant *&V); bool parseTypeConstants(const unsigned char *&Buf, const unsigned char *EndBuf, TypeValuesListTy &Tab, unsigned NumEntries); const Type *parseTypeConstant(const unsigned char *&Buf, const unsigned char *EndBuf); Value *getValue(const Type *Ty, unsigned num, bool Create = true); const Type *getType(unsigned ID); Constant *getConstantValue(const Type *Ty, unsigned num); int insertValue(Value *V, ValueTable &Table); // -1 = Failure void setValueTo(ValueTable &D, unsigned Slot, Value *V); bool postResolveValues(ValueTable &ValTab); bool getTypeSlot(const Type *Ty, unsigned &Slot); // resolve all references to the placeholder (if any) for the given value void ResolveReferencesToValue(Value *Val, unsigned Slot); // refineAbstractType - The callback method is invoked when one of the // elements of TypeValues becomes more concrete... // virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); }; template class PlaceholderDef : public SuperType { unsigned ID; PlaceholderDef(); // DO NOT IMPLEMENT void operator=(const PlaceholderDef &); // DO NOT IMPLEMENT public: PlaceholderDef(const Type *Ty, unsigned id) : SuperType(Ty), ID(id) {} unsigned getID() { return ID; } }; struct InstPlaceHolderHelper : public Instruction { InstPlaceHolderHelper(const Type *Ty) : Instruction(Ty, UserOp1, "") {} virtual const char *getOpcodeName() const { return "placeholder"; } virtual Instruction *clone() const { abort(); return 0; } }; struct BBPlaceHolderHelper : public BasicBlock { BBPlaceHolderHelper(const Type *Ty) : BasicBlock() { assert(Ty == Type::LabelTy); } }; struct ConstantPlaceHolderHelper : public Constant { ConstantPlaceHolderHelper(const Type *Ty) : Constant(Ty) {} virtual bool isNullValue() const { return false; } }; typedef PlaceholderDef ValPHolder; typedef PlaceholderDef BBPHolder; typedef PlaceholderDef ConstPHolder; static inline unsigned getValueIDNumberFromPlaceHolder(Value *Val) { if (isa(Val)) return ((ConstPHolder*)Val)->getID(); // else discriminate by type switch (Val->getType()->getPrimitiveID()) { case Type::LabelTyID: return ((BBPHolder*)Val)->getID(); default: return ((ValPHolder*)Val)->getID(); } } static inline bool readBlock(const unsigned char *&Buf, const unsigned char *EndBuf, unsigned &Type, unsigned &Size) { #if DEBUG_OUTPUT bool Result = read(Buf, EndBuf, Type) || read(Buf, EndBuf, Size); std::cerr << "StartLoc = " << ((unsigned)Buf & 4095) << " Type = " << Type << " Size = " << Size << endl; return Result; #else return read(Buf, EndBuf, Type) || read(Buf, EndBuf, Size); #endif } #endif