//===----- JITDwarfEmitter.cpp - Write dwarf tables into memory -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a JITDwarfEmitter object that is used by the JIT to // write dwarf tables to memory. // //===----------------------------------------------------------------------===// #include "JIT.h" #include "JITDwarfEmitter.h" #include "llvm/Function.h" #include "llvm/ADT/DenseMap.h" #include "llvm/CodeGen/JITCodeEmitter.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineLocation.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/ExecutionEngine/JITMemoryManager.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; JITDwarfEmitter::JITDwarfEmitter(JIT& theJit) : Jit(theJit) {} unsigned char* JITDwarfEmitter::EmitDwarfTable(MachineFunction& F, JITCodeEmitter& jce, unsigned char* StartFunction, unsigned char* EndFunction) { const TargetMachine& TM = F.getTarget(); TD = TM.getTargetData(); stackGrowthDirection = TM.getFrameInfo()->getStackGrowthDirection(); RI = TM.getRegisterInfo(); JCE = &jce; unsigned char* ExceptionTable = EmitExceptionTable(&F, StartFunction, EndFunction); unsigned char* Result = 0; unsigned char* EHFramePtr = 0; const std::vector Personalities = MMI->getPersonalities(); EHFramePtr = EmitCommonEHFrame(Personalities[MMI->getPersonalityIndex()]); Result = EmitEHFrame(Personalities[MMI->getPersonalityIndex()], EHFramePtr, StartFunction, EndFunction, ExceptionTable); return Result; } void JITDwarfEmitter::EmitFrameMoves(intptr_t BaseLabelPtr, const std::vector &Moves) const { unsigned PointerSize = TD->getPointerSize(); int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ? PointerSize : -PointerSize; bool IsLocal = false; unsigned BaseLabelID = 0; for (unsigned i = 0, N = Moves.size(); i < N; ++i) { const MachineMove &Move = Moves[i]; unsigned LabelID = Move.getLabelID(); if (LabelID) { LabelID = MMI->MappedLabel(LabelID); // Throw out move if the label is invalid. if (!LabelID) continue; } intptr_t LabelPtr = 0; if (LabelID) LabelPtr = JCE->getLabelAddress(LabelID); const MachineLocation &Dst = Move.getDestination(); const MachineLocation &Src = Move.getSource(); // Advance row if new location. if (BaseLabelPtr && LabelID && (BaseLabelID != LabelID || !IsLocal)) { JCE->emitByte(dwarf::DW_CFA_advance_loc4); JCE->emitInt32(LabelPtr - BaseLabelPtr); BaseLabelID = LabelID; BaseLabelPtr = LabelPtr; IsLocal = true; } // If advancing cfa. if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) { if (!Src.isReg()) { if (Src.getReg() == MachineLocation::VirtualFP) { JCE->emitByte(dwarf::DW_CFA_def_cfa_offset); } else { JCE->emitByte(dwarf::DW_CFA_def_cfa); JCE->emitULEB128Bytes(RI->getDwarfRegNum(Src.getReg(), true)); } JCE->emitULEB128Bytes(-Src.getOffset()); } else { llvm_unreachable("Machine move not supported yet."); } } else if (Src.isReg() && Src.getReg() == MachineLocation::VirtualFP) { if (Dst.isReg()) { JCE->emitByte(dwarf::DW_CFA_def_cfa_register); JCE->emitULEB128Bytes(RI->getDwarfRegNum(Dst.getReg(), true)); } else { llvm_unreachable("Machine move not supported yet."); } } else { unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true); int Offset = Dst.getOffset() / stackGrowth; if (Offset < 0) { JCE->emitByte(dwarf::DW_CFA_offset_extended_sf); JCE->emitULEB128Bytes(Reg); JCE->emitSLEB128Bytes(Offset); } else if (Reg < 64) { JCE->emitByte(dwarf::DW_CFA_offset + Reg); JCE->emitULEB128Bytes(Offset); } else { JCE->emitByte(dwarf::DW_CFA_offset_extended); JCE->emitULEB128Bytes(Reg); JCE->emitULEB128Bytes(Offset); } } } } /// SharedTypeIds - How many leading type ids two landing pads have in common. static unsigned SharedTypeIds(const LandingPadInfo *L, const LandingPadInfo *R) { const std::vector &LIds = L->TypeIds, &RIds = R->TypeIds; unsigned LSize = LIds.size(), RSize = RIds.size(); unsigned MinSize = LSize < RSize ? LSize : RSize; unsigned Count = 0; for (; Count != MinSize; ++Count) if (LIds[Count] != RIds[Count]) return Count; return Count; } /// PadLT - Order landing pads lexicographically by type id. static bool PadLT(const LandingPadInfo *L, const LandingPadInfo *R) { const std::vector &LIds = L->TypeIds, &RIds = R->TypeIds; unsigned LSize = LIds.size(), RSize = RIds.size(); unsigned MinSize = LSize < RSize ? LSize : RSize; for (unsigned i = 0; i != MinSize; ++i) if (LIds[i] != RIds[i]) return LIds[i] < RIds[i]; return LSize < RSize; } namespace { struct KeyInfo { static inline unsigned getEmptyKey() { return -1U; } static inline unsigned getTombstoneKey() { return -2U; } static unsigned getHashValue(const unsigned &Key) { return Key; } static bool isEqual(unsigned LHS, unsigned RHS) { return LHS == RHS; } static bool isPod() { return true; } }; /// ActionEntry - Structure describing an entry in the actions table. struct ActionEntry { int ValueForTypeID; // The value to write - may not be equal to the type id. int NextAction; struct ActionEntry *Previous; }; /// PadRange - Structure holding a try-range and the associated landing pad. struct PadRange { // The index of the landing pad. unsigned PadIndex; // The index of the begin and end labels in the landing pad's label lists. unsigned RangeIndex; }; typedef DenseMap RangeMapType; /// CallSiteEntry - Structure describing an entry in the call-site table. struct CallSiteEntry { unsigned BeginLabel; // zero indicates the start of the function. unsigned EndLabel; // zero indicates the end of the function. unsigned PadLabel; // zero indicates that there is no landing pad. unsigned Action; }; } unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF, unsigned char* StartFunction, unsigned char* EndFunction) const { // Map all labels and get rid of any dead landing pads. MMI->TidyLandingPads(); const std::vector &TypeInfos = MMI->getTypeInfos(); const std::vector &FilterIds = MMI->getFilterIds(); const std::vector &PadInfos = MMI->getLandingPads(); if (PadInfos.empty()) return 0; // Sort the landing pads in order of their type ids. This is used to fold // duplicate actions. SmallVector LandingPads; LandingPads.reserve(PadInfos.size()); for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) LandingPads.push_back(&PadInfos[i]); std::sort(LandingPads.begin(), LandingPads.end(), PadLT); // Negative type ids index into FilterIds, positive type ids index into // TypeInfos. The value written for a positive type id is just the type // id itself. For a negative type id, however, the value written is the // (negative) byte offset of the corresponding FilterIds entry. The byte // offset is usually equal to the type id, because the FilterIds entries // are written using a variable width encoding which outputs one byte per // entry as long as the value written is not too large, but can differ. // This kind of complication does not occur for positive type ids because // type infos are output using a fixed width encoding. // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i]. SmallVector FilterOffsets; FilterOffsets.reserve(FilterIds.size()); int Offset = -1; for(std::vector::const_iterator I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) { FilterOffsets.push_back(Offset); Offset -= MCAsmInfo::getULEB128Size(*I); } // Compute the actions table and gather the first action index for each // landing pad site. SmallVector Actions; SmallVector FirstActions; FirstActions.reserve(LandingPads.size()); int FirstAction = 0; unsigned SizeActions = 0; for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { const LandingPadInfo *LP = LandingPads[i]; const std::vector &TypeIds = LP->TypeIds; const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0; unsigned SizeSiteActions = 0; if (NumShared < TypeIds.size()) { unsigned SizeAction = 0; ActionEntry *PrevAction = 0; if (NumShared) { const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size(); assert(Actions.size()); PrevAction = &Actions.back(); SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) + MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); for (unsigned j = NumShared; j != SizePrevIds; ++j) { SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); SizeAction += -PrevAction->NextAction; PrevAction = PrevAction->Previous; } } // Compute the actions. for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) { int TypeID = TypeIds[I]; assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID; unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID); int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0; SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction); SizeSiteActions += SizeAction; ActionEntry Action = {ValueForTypeID, NextAction, PrevAction}; Actions.push_back(Action); PrevAction = &Actions.back(); } // Record the first action of the landing pad site. FirstAction = SizeActions + SizeSiteActions - SizeAction + 1; } // else identical - re-use previous FirstAction FirstActions.push_back(FirstAction); // Compute this sites contribution to size. SizeActions += SizeSiteActions; } // Compute the call-site table. Entries must be ordered by address. SmallVector CallSites; RangeMapType PadMap; for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { const LandingPadInfo *LandingPad = LandingPads[i]; for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) { unsigned BeginLabel = LandingPad->BeginLabels[j]; assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); PadRange P = { i, j }; PadMap[BeginLabel] = P; } } bool MayThrow = false; unsigned LastLabel = 0; for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E; ++I) { for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); MI != E; ++MI) { if (!MI->isLabel()) { MayThrow |= MI->getDesc().isCall(); continue; } unsigned BeginLabel = MI->getOperand(0).getImm(); assert(BeginLabel && "Invalid label!"); if (BeginLabel == LastLabel) MayThrow = false; RangeMapType::iterator L = PadMap.find(BeginLabel); if (L == PadMap.end()) continue; PadRange P = L->second; const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && "Inconsistent landing pad map!"); // If some instruction between the previous try-range and this one may // throw, create a call-site entry with no landing pad for the region // between the try-ranges. if (MayThrow) { CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0}; CallSites.push_back(Site); } LastLabel = LandingPad->EndLabels[P.RangeIndex]; CallSiteEntry Site = {BeginLabel, LastLabel, LandingPad->LandingPadLabel, FirstActions[P.PadIndex]}; assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel && "Invalid landing pad!"); // Try to merge with the previous call-site. if (CallSites.size()) { CallSiteEntry &Prev = CallSites.back(); if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { // Extend the range of the previous entry. Prev.EndLabel = Site.EndLabel; continue; } } // Otherwise, create a new call-site. CallSites.push_back(Site); } } // If some instruction between the previous try-range and the end of the // function may throw, create a call-site entry with no landing pad for the // region following the try-range. if (MayThrow) { CallSiteEntry Site = {LastLabel, 0, 0, 0}; CallSites.push_back(Site); } // Final tallies. unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start. sizeof(int32_t) + // Site length. sizeof(int32_t)); // Landing pad. for (unsigned i = 0, e = CallSites.size(); i < e; ++i) SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action); unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize(); unsigned TypeOffset = sizeof(int8_t) + // Call site format // Call-site table length MCAsmInfo::getULEB128Size(SizeSites) + SizeSites + SizeActions + SizeTypes; // Begin the exception table. JCE->emitAlignmentWithFill(4, 0); // Asm->EOL("Padding"); unsigned char* DwarfExceptionTable = (unsigned char*)JCE->getCurrentPCValue(); // Emit the header. JCE->emitByte(dwarf::DW_EH_PE_omit); // Asm->EOL("LPStart format (DW_EH_PE_omit)"); JCE->emitByte(dwarf::DW_EH_PE_absptr); // Asm->EOL("TType format (DW_EH_PE_absptr)"); JCE->emitULEB128Bytes(TypeOffset); // Asm->EOL("TType base offset"); JCE->emitByte(dwarf::DW_EH_PE_udata4); // Asm->EOL("Call site format (DW_EH_PE_udata4)"); JCE->emitULEB128Bytes(SizeSites); // Asm->EOL("Call-site table length"); // Emit the landing pad site information. for (unsigned i = 0; i < CallSites.size(); ++i) { CallSiteEntry &S = CallSites[i]; intptr_t BeginLabelPtr = 0; intptr_t EndLabelPtr = 0; if (!S.BeginLabel) { BeginLabelPtr = (intptr_t)StartFunction; JCE->emitInt32(0); } else { BeginLabelPtr = JCE->getLabelAddress(S.BeginLabel); JCE->emitInt32(BeginLabelPtr - (intptr_t)StartFunction); } // Asm->EOL("Region start"); if (!S.EndLabel) { EndLabelPtr = (intptr_t)EndFunction; JCE->emitInt32((intptr_t)EndFunction - BeginLabelPtr); } else { EndLabelPtr = JCE->getLabelAddress(S.EndLabel); JCE->emitInt32(EndLabelPtr - BeginLabelPtr); } //Asm->EOL("Region length"); if (!S.PadLabel) { JCE->emitInt32(0); } else { unsigned PadLabelPtr = JCE->getLabelAddress(S.PadLabel); JCE->emitInt32(PadLabelPtr - (intptr_t)StartFunction); } // Asm->EOL("Landing pad"); JCE->emitULEB128Bytes(S.Action); // Asm->EOL("Action"); } // Emit the actions. for (unsigned I = 0, N = Actions.size(); I != N; ++I) { ActionEntry &Action = Actions[I]; JCE->emitSLEB128Bytes(Action.ValueForTypeID); //Asm->EOL("TypeInfo index"); JCE->emitSLEB128Bytes(Action.NextAction); //Asm->EOL("Next action"); } // Emit the type ids. for (unsigned M = TypeInfos.size(); M; --M) { GlobalVariable *GV = TypeInfos[M - 1]; if (GV) { if (TD->getPointerSize() == sizeof(int32_t)) JCE->emitInt32((intptr_t)Jit.getOrEmitGlobalVariable(GV)); else JCE->emitInt64((intptr_t)Jit.getOrEmitGlobalVariable(GV)); } else { if (TD->getPointerSize() == sizeof(int32_t)) JCE->emitInt32(0); else JCE->emitInt64(0); } // Asm->EOL("TypeInfo"); } // Emit the filter typeids. for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) { unsigned TypeID = FilterIds[j]; JCE->emitULEB128Bytes(TypeID); //Asm->EOL("Filter TypeInfo index"); } JCE->emitAlignmentWithFill(4, 0); return DwarfExceptionTable; } unsigned char* JITDwarfEmitter::EmitCommonEHFrame(const Function* Personality) const { unsigned PointerSize = TD->getPointerSize(); int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ? PointerSize : -PointerSize; unsigned char* StartCommonPtr = (unsigned char*)JCE->getCurrentPCValue(); // EH Common Frame header JCE->allocateSpace(4, 0); unsigned char* FrameCommonBeginPtr = (unsigned char*)JCE->getCurrentPCValue(); JCE->emitInt32((int)0); JCE->emitByte(dwarf::DW_CIE_VERSION); JCE->emitString(Personality ? "zPLR" : "zR"); JCE->emitULEB128Bytes(1); JCE->emitSLEB128Bytes(stackGrowth); JCE->emitByte(RI->getDwarfRegNum(RI->getRARegister(), true)); if (Personality) { // Augmentation Size: 3 small ULEBs of one byte each, and the personality // function which size is PointerSize. JCE->emitULEB128Bytes(3 + PointerSize); // We set the encoding of the personality as direct encoding because we use // the function pointer. The encoding is not relative because the current // PC value may be bigger than the personality function pointer. if (PointerSize == 4) { JCE->emitByte(dwarf::DW_EH_PE_sdata4); JCE->emitInt32(((intptr_t)Jit.getPointerToGlobal(Personality))); } else { JCE->emitByte(dwarf::DW_EH_PE_sdata8); JCE->emitInt64(((intptr_t)Jit.getPointerToGlobal(Personality))); } JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4); JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4); } else { JCE->emitULEB128Bytes(1); JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4); } std::vector Moves; RI->getInitialFrameState(Moves); EmitFrameMoves(0, Moves); JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop); JCE->emitInt32At((uintptr_t*)StartCommonPtr, (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() - FrameCommonBeginPtr)); return StartCommonPtr; } unsigned char* JITDwarfEmitter::EmitEHFrame(const Function* Personality, unsigned char* StartCommonPtr, unsigned char* StartFunction, unsigned char* EndFunction, unsigned char* ExceptionTable) const { unsigned PointerSize = TD->getPointerSize(); // EH frame header. unsigned char* StartEHPtr = (unsigned char*)JCE->getCurrentPCValue(); JCE->allocateSpace(4, 0); unsigned char* FrameBeginPtr = (unsigned char*)JCE->getCurrentPCValue(); // FDE CIE Offset JCE->emitInt32(FrameBeginPtr - StartCommonPtr); JCE->emitInt32(StartFunction - (unsigned char*)JCE->getCurrentPCValue()); JCE->emitInt32(EndFunction - StartFunction); // If there is a personality and landing pads then point to the language // specific data area in the exception table. if (Personality) { JCE->emitULEB128Bytes(PointerSize == 4 ? 4 : 8); if (PointerSize == 4) { if (!MMI->getLandingPads().empty()) JCE->emitInt32(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue()); else JCE->emitInt32((int)0); } else { if (!MMI->getLandingPads().empty()) JCE->emitInt64(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue()); else JCE->emitInt64((int)0); } } else { JCE->emitULEB128Bytes(0); } // Indicate locations of function specific callee saved registers in // frame. EmitFrameMoves((intptr_t)StartFunction, MMI->getFrameMoves()); JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop); // Indicate the size of the table JCE->emitInt32At((uintptr_t*)StartEHPtr, (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() - StartEHPtr)); // Double zeroes for the unwind runtime if (PointerSize == 8) { JCE->emitInt64(0); JCE->emitInt64(0); } else { JCE->emitInt32(0); JCE->emitInt32(0); } return StartEHPtr; } unsigned JITDwarfEmitter::GetDwarfTableSizeInBytes(MachineFunction& F, JITCodeEmitter& jce, unsigned char* StartFunction, unsigned char* EndFunction) { const TargetMachine& TM = F.getTarget(); TD = TM.getTargetData(); stackGrowthDirection = TM.getFrameInfo()->getStackGrowthDirection(); RI = TM.getRegisterInfo(); JCE = &jce; unsigned FinalSize = 0; FinalSize += GetExceptionTableSizeInBytes(&F); const std::vector Personalities = MMI->getPersonalities(); FinalSize += GetCommonEHFrameSizeInBytes(Personalities[MMI->getPersonalityIndex()]); FinalSize += GetEHFrameSizeInBytes(Personalities[MMI->getPersonalityIndex()], StartFunction); return FinalSize; } /// RoundUpToAlign - Add the specified alignment to FinalSize and returns /// the new value. static unsigned RoundUpToAlign(unsigned FinalSize, unsigned Alignment) { if (Alignment == 0) Alignment = 1; // Since we do not know where the buffer will be allocated, be pessimistic. return FinalSize + Alignment; } unsigned JITDwarfEmitter::GetEHFrameSizeInBytes(const Function* Personality, unsigned char* StartFunction) const { unsigned PointerSize = TD->getPointerSize(); unsigned FinalSize = 0; // EH frame header. FinalSize += PointerSize; // FDE CIE Offset FinalSize += 3 * PointerSize; // If there is a personality and landing pads then point to the language // specific data area in the exception table. if (Personality) { FinalSize += MCAsmInfo::getULEB128Size(4); FinalSize += PointerSize; } else { FinalSize += MCAsmInfo::getULEB128Size(0); } // Indicate locations of function specific callee saved registers in // frame. FinalSize += GetFrameMovesSizeInBytes((intptr_t)StartFunction, MMI->getFrameMoves()); FinalSize = RoundUpToAlign(FinalSize, 4); // Double zeroes for the unwind runtime FinalSize += 2 * PointerSize; return FinalSize; } unsigned JITDwarfEmitter::GetCommonEHFrameSizeInBytes(const Function* Personality) const { unsigned PointerSize = TD->getPointerSize(); int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ? PointerSize : -PointerSize; unsigned FinalSize = 0; // EH Common Frame header FinalSize += PointerSize; FinalSize += 4; FinalSize += 1; FinalSize += Personality ? 5 : 3; // "zPLR" or "zR" FinalSize += MCAsmInfo::getULEB128Size(1); FinalSize += MCAsmInfo::getSLEB128Size(stackGrowth); FinalSize += 1; if (Personality) { FinalSize += MCAsmInfo::getULEB128Size(7); // Encoding FinalSize+= 1; //Personality FinalSize += PointerSize; FinalSize += MCAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel); FinalSize += MCAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel); } else { FinalSize += MCAsmInfo::getULEB128Size(1); FinalSize += MCAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel); } std::vector Moves; RI->getInitialFrameState(Moves); FinalSize += GetFrameMovesSizeInBytes(0, Moves); FinalSize = RoundUpToAlign(FinalSize, 4); return FinalSize; } unsigned JITDwarfEmitter::GetFrameMovesSizeInBytes(intptr_t BaseLabelPtr, const std::vector &Moves) const { unsigned PointerSize = TD->getPointerSize(); int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ? PointerSize : -PointerSize; bool IsLocal = BaseLabelPtr; unsigned FinalSize = 0; for (unsigned i = 0, N = Moves.size(); i < N; ++i) { const MachineMove &Move = Moves[i]; unsigned LabelID = Move.getLabelID(); if (LabelID) { LabelID = MMI->MappedLabel(LabelID); // Throw out move if the label is invalid. if (!LabelID) continue; } intptr_t LabelPtr = 0; if (LabelID) LabelPtr = JCE->getLabelAddress(LabelID); const MachineLocation &Dst = Move.getDestination(); const MachineLocation &Src = Move.getSource(); // Advance row if new location. if (BaseLabelPtr && LabelID && (BaseLabelPtr != LabelPtr || !IsLocal)) { FinalSize++; FinalSize += PointerSize; BaseLabelPtr = LabelPtr; IsLocal = true; } // If advancing cfa. if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) { if (!Src.isReg()) { if (Src.getReg() == MachineLocation::VirtualFP) { ++FinalSize; } else { ++FinalSize; unsigned RegNum = RI->getDwarfRegNum(Src.getReg(), true); FinalSize += MCAsmInfo::getULEB128Size(RegNum); } int Offset = -Src.getOffset(); FinalSize += MCAsmInfo::getULEB128Size(Offset); } else { llvm_unreachable("Machine move no supported yet."); } } else if (Src.isReg() && Src.getReg() == MachineLocation::VirtualFP) { if (Dst.isReg()) { ++FinalSize; unsigned RegNum = RI->getDwarfRegNum(Dst.getReg(), true); FinalSize += MCAsmInfo::getULEB128Size(RegNum); } else { llvm_unreachable("Machine move no supported yet."); } } else { unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true); int Offset = Dst.getOffset() / stackGrowth; if (Offset < 0) { ++FinalSize; FinalSize += MCAsmInfo::getULEB128Size(Reg); FinalSize += MCAsmInfo::getSLEB128Size(Offset); } else if (Reg < 64) { ++FinalSize; FinalSize += MCAsmInfo::getULEB128Size(Offset); } else { ++FinalSize; FinalSize += MCAsmInfo::getULEB128Size(Reg); FinalSize += MCAsmInfo::getULEB128Size(Offset); } } } return FinalSize; } unsigned JITDwarfEmitter::GetExceptionTableSizeInBytes(MachineFunction* MF) const { unsigned FinalSize = 0; // Map all labels and get rid of any dead landing pads. MMI->TidyLandingPads(); const std::vector &TypeInfos = MMI->getTypeInfos(); const std::vector &FilterIds = MMI->getFilterIds(); const std::vector &PadInfos = MMI->getLandingPads(); if (PadInfos.empty()) return 0; // Sort the landing pads in order of their type ids. This is used to fold // duplicate actions. SmallVector LandingPads; LandingPads.reserve(PadInfos.size()); for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) LandingPads.push_back(&PadInfos[i]); std::sort(LandingPads.begin(), LandingPads.end(), PadLT); // Negative type ids index into FilterIds, positive type ids index into // TypeInfos. The value written for a positive type id is just the type // id itself. For a negative type id, however, the value written is the // (negative) byte offset of the corresponding FilterIds entry. The byte // offset is usually equal to the type id, because the FilterIds entries // are written using a variable width encoding which outputs one byte per // entry as long as the value written is not too large, but can differ. // This kind of complication does not occur for positive type ids because // type infos are output using a fixed width encoding. // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i]. SmallVector FilterOffsets; FilterOffsets.reserve(FilterIds.size()); int Offset = -1; for(std::vector::const_iterator I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) { FilterOffsets.push_back(Offset); Offset -= MCAsmInfo::getULEB128Size(*I); } // Compute the actions table and gather the first action index for each // landing pad site. SmallVector Actions; SmallVector FirstActions; FirstActions.reserve(LandingPads.size()); int FirstAction = 0; unsigned SizeActions = 0; for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { const LandingPadInfo *LP = LandingPads[i]; const std::vector &TypeIds = LP->TypeIds; const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0; unsigned SizeSiteActions = 0; if (NumShared < TypeIds.size()) { unsigned SizeAction = 0; ActionEntry *PrevAction = 0; if (NumShared) { const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size(); assert(Actions.size()); PrevAction = &Actions.back(); SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) + MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); for (unsigned j = NumShared; j != SizePrevIds; ++j) { SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); SizeAction += -PrevAction->NextAction; PrevAction = PrevAction->Previous; } } // Compute the actions. for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) { int TypeID = TypeIds[I]; assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID; unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID); int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0; SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction); SizeSiteActions += SizeAction; ActionEntry Action = {ValueForTypeID, NextAction, PrevAction}; Actions.push_back(Action); PrevAction = &Actions.back(); } // Record the first action of the landing pad site. FirstAction = SizeActions + SizeSiteActions - SizeAction + 1; } // else identical - re-use previous FirstAction FirstActions.push_back(FirstAction); // Compute this sites contribution to size. SizeActions += SizeSiteActions; } // Compute the call-site table. Entries must be ordered by address. SmallVector CallSites; RangeMapType PadMap; for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { const LandingPadInfo *LandingPad = LandingPads[i]; for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) { unsigned BeginLabel = LandingPad->BeginLabels[j]; assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); PadRange P = { i, j }; PadMap[BeginLabel] = P; } } bool MayThrow = false; unsigned LastLabel = 0; for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E; ++I) { for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); MI != E; ++MI) { if (!MI->isLabel()) { MayThrow |= MI->getDesc().isCall(); continue; } unsigned BeginLabel = MI->getOperand(0).getImm(); assert(BeginLabel && "Invalid label!"); if (BeginLabel == LastLabel) MayThrow = false; RangeMapType::iterator L = PadMap.find(BeginLabel); if (L == PadMap.end()) continue; PadRange P = L->second; const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && "Inconsistent landing pad map!"); // If some instruction between the previous try-range and this one may // throw, create a call-site entry with no landing pad for the region // between the try-ranges. if (MayThrow) { CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0}; CallSites.push_back(Site); } LastLabel = LandingPad->EndLabels[P.RangeIndex]; CallSiteEntry Site = {BeginLabel, LastLabel, LandingPad->LandingPadLabel, FirstActions[P.PadIndex]}; assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel && "Invalid landing pad!"); // Try to merge with the previous call-site. if (CallSites.size()) { CallSiteEntry &Prev = CallSites.back(); if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { // Extend the range of the previous entry. Prev.EndLabel = Site.EndLabel; continue; } } // Otherwise, create a new call-site. CallSites.push_back(Site); } } // If some instruction between the previous try-range and the end of the // function may throw, create a call-site entry with no landing pad for the // region following the try-range. if (MayThrow) { CallSiteEntry Site = {LastLabel, 0, 0, 0}; CallSites.push_back(Site); } // Final tallies. unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start. sizeof(int32_t) + // Site length. sizeof(int32_t)); // Landing pad. for (unsigned i = 0, e = CallSites.size(); i < e; ++i) SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action); unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize(); unsigned TypeOffset = sizeof(int8_t) + // Call site format // Call-site table length MCAsmInfo::getULEB128Size(SizeSites) + SizeSites + SizeActions + SizeTypes; unsigned TotalSize = sizeof(int8_t) + // LPStart format sizeof(int8_t) + // TType format MCAsmInfo::getULEB128Size(TypeOffset) + // TType base offset TypeOffset; unsigned SizeAlign = (4 - TotalSize) & 3; // Begin the exception table. FinalSize = RoundUpToAlign(FinalSize, 4); for (unsigned i = 0; i != SizeAlign; ++i) { ++FinalSize; } unsigned PointerSize = TD->getPointerSize(); // Emit the header. ++FinalSize; // Asm->EOL("LPStart format (DW_EH_PE_omit)"); ++FinalSize; // Asm->EOL("TType format (DW_EH_PE_absptr)"); ++FinalSize; // Asm->EOL("TType base offset"); ++FinalSize; // Asm->EOL("Call site format (DW_EH_PE_udata4)"); ++FinalSize; // Asm->EOL("Call-site table length"); // Emit the landing pad site information. for (unsigned i = 0; i < CallSites.size(); ++i) { CallSiteEntry &S = CallSites[i]; // Asm->EOL("Region start"); FinalSize += PointerSize; //Asm->EOL("Region length"); FinalSize += PointerSize; // Asm->EOL("Landing pad"); FinalSize += PointerSize; FinalSize += MCAsmInfo::getULEB128Size(S.Action); // Asm->EOL("Action"); } // Emit the actions. for (unsigned I = 0, N = Actions.size(); I != N; ++I) { ActionEntry &Action = Actions[I]; //Asm->EOL("TypeInfo index"); FinalSize += MCAsmInfo::getSLEB128Size(Action.ValueForTypeID); //Asm->EOL("Next action"); FinalSize += MCAsmInfo::getSLEB128Size(Action.NextAction); } // Emit the type ids. for (unsigned M = TypeInfos.size(); M; --M) { // Asm->EOL("TypeInfo"); FinalSize += PointerSize; } // Emit the filter typeids. for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) { unsigned TypeID = FilterIds[j]; FinalSize += MCAsmInfo::getULEB128Size(TypeID); //Asm->EOL("Filter TypeInfo index"); } FinalSize = RoundUpToAlign(FinalSize, 4); return FinalSize; }