//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that ARM uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMAddressingModes.h" #include "ARMConstantPoolValue.h" #include "ARMISelLowering.h" #include "ARMMachineFunctionInfo.h" #include "ARMRegisterInfo.h" #include "ARMSubtarget.h" #include "ARMTargetMachine.h" #include "ARMTargetObjectFile.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/Instruction.h" #include "llvm/Intrinsics.h" #include "llvm/GlobalValue.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Target/TargetOptions.h" #include "llvm/ADT/VectorExtras.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" using namespace llvm; static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State); static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State); static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State); static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State); void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT, MVT PromotedBitwiseVT) { if (VT != PromotedLdStVT) { setOperationAction(ISD::LOAD, VT, Promote); AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT); setOperationAction(ISD::STORE, VT, Promote); AddPromotedToType (ISD::STORE, VT, PromotedLdStVT); } MVT ElemTy = VT.getVectorElementType(); if (ElemTy != MVT::i64 && ElemTy != MVT::f64) setOperationAction(ISD::VSETCC, VT, Custom); if (ElemTy == MVT::i8 || ElemTy == MVT::i16) setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); if (VT.isInteger()) { setOperationAction(ISD::SHL, VT, Custom); setOperationAction(ISD::SRA, VT, Custom); setOperationAction(ISD::SRL, VT, Custom); } // Promote all bit-wise operations. if (VT.isInteger() && VT != PromotedBitwiseVT) { setOperationAction(ISD::AND, VT, Promote); AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT); setOperationAction(ISD::OR, VT, Promote); AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT); setOperationAction(ISD::XOR, VT, Promote); AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT); } } void ARMTargetLowering::addDRTypeForNEON(MVT VT) { addRegisterClass(VT, ARM::DPRRegisterClass); addTypeForNEON(VT, MVT::f64, MVT::v2i32); } void ARMTargetLowering::addQRTypeForNEON(MVT VT) { addRegisterClass(VT, ARM::QPRRegisterClass); addTypeForNEON(VT, MVT::v2f64, MVT::v4i32); } static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) { if (TM.getSubtarget().isTargetDarwin()) return new TargetLoweringObjectFileMachO(); return new ARMElfTargetObjectFile(); } ARMTargetLowering::ARMTargetLowering(TargetMachine &TM) : TargetLowering(TM, createTLOF(TM)), ARMPCLabelIndex(0) { Subtarget = &TM.getSubtarget(); if (Subtarget->isTargetDarwin()) { // Uses VFP for Thumb libfuncs if available. if (Subtarget->isThumb() && Subtarget->hasVFP2()) { // Single-precision floating-point arithmetic. setLibcallName(RTLIB::ADD_F32, "__addsf3vfp"); setLibcallName(RTLIB::SUB_F32, "__subsf3vfp"); setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp"); setLibcallName(RTLIB::DIV_F32, "__divsf3vfp"); // Double-precision floating-point arithmetic. setLibcallName(RTLIB::ADD_F64, "__adddf3vfp"); setLibcallName(RTLIB::SUB_F64, "__subdf3vfp"); setLibcallName(RTLIB::MUL_F64, "__muldf3vfp"); setLibcallName(RTLIB::DIV_F64, "__divdf3vfp"); // Single-precision comparisons. setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp"); setLibcallName(RTLIB::UNE_F32, "__nesf2vfp"); setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp"); setLibcallName(RTLIB::OLE_F32, "__lesf2vfp"); setLibcallName(RTLIB::OGE_F32, "__gesf2vfp"); setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp"); setLibcallName(RTLIB::UO_F32, "__unordsf2vfp"); setLibcallName(RTLIB::O_F32, "__unordsf2vfp"); setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE); setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE); setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE); setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE); setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE); setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE); setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE); setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ); // Double-precision comparisons. setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp"); setLibcallName(RTLIB::UNE_F64, "__nedf2vfp"); setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp"); setLibcallName(RTLIB::OLE_F64, "__ledf2vfp"); setLibcallName(RTLIB::OGE_F64, "__gedf2vfp"); setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp"); setLibcallName(RTLIB::UO_F64, "__unorddf2vfp"); setLibcallName(RTLIB::O_F64, "__unorddf2vfp"); setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE); setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE); setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE); setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE); setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE); setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE); setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE); setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ); // Floating-point to integer conversions. // i64 conversions are done via library routines even when generating VFP // instructions, so use the same ones. setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp"); setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp"); setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp"); setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp"); // Conversions between floating types. setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp"); setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp"); // Integer to floating-point conversions. // i64 conversions are done via library routines even when generating VFP // instructions, so use the same ones. // FIXME: There appears to be some naming inconsistency in ARM libgcc: // e.g., __floatunsidf vs. __floatunssidfvfp. setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp"); setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp"); setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp"); setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp"); } } // These libcalls are not available in 32-bit. setLibcallName(RTLIB::SHL_I128, 0); setLibcallName(RTLIB::SRL_I128, 0); setLibcallName(RTLIB::SRA_I128, 0); if (Subtarget->isThumb1Only()) addRegisterClass(MVT::i32, ARM::tGPRRegisterClass); else addRegisterClass(MVT::i32, ARM::GPRRegisterClass); if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) { addRegisterClass(MVT::f32, ARM::SPRRegisterClass); addRegisterClass(MVT::f64, ARM::DPRRegisterClass); setTruncStoreAction(MVT::f64, MVT::f32, Expand); } if (Subtarget->hasNEON()) { addDRTypeForNEON(MVT::v2f32); addDRTypeForNEON(MVT::v8i8); addDRTypeForNEON(MVT::v4i16); addDRTypeForNEON(MVT::v2i32); addDRTypeForNEON(MVT::v1i64); addQRTypeForNEON(MVT::v4f32); addQRTypeForNEON(MVT::v2f64); addQRTypeForNEON(MVT::v16i8); addQRTypeForNEON(MVT::v8i16); addQRTypeForNEON(MVT::v4i32); addQRTypeForNEON(MVT::v2i64); setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); setTargetDAGCombine(ISD::SHL); setTargetDAGCombine(ISD::SRL); setTargetDAGCombine(ISD::SRA); setTargetDAGCombine(ISD::SIGN_EXTEND); setTargetDAGCombine(ISD::ZERO_EXTEND); setTargetDAGCombine(ISD::ANY_EXTEND); } computeRegisterProperties(); // ARM does not have f32 extending load. setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); // ARM does not have i1 sign extending load. setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); // ARM supports all 4 flavors of integer indexed load / store. if (!Subtarget->isThumb1Only()) { for (unsigned im = (unsigned)ISD::PRE_INC; im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { setIndexedLoadAction(im, MVT::i1, Legal); setIndexedLoadAction(im, MVT::i8, Legal); setIndexedLoadAction(im, MVT::i16, Legal); setIndexedLoadAction(im, MVT::i32, Legal); setIndexedStoreAction(im, MVT::i1, Legal); setIndexedStoreAction(im, MVT::i8, Legal); setIndexedStoreAction(im, MVT::i16, Legal); setIndexedStoreAction(im, MVT::i32, Legal); } } // i64 operation support. if (Subtarget->isThumb1Only()) { setOperationAction(ISD::MUL, MVT::i64, Expand); setOperationAction(ISD::MULHU, MVT::i32, Expand); setOperationAction(ISD::MULHS, MVT::i32, Expand); setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); } else { setOperationAction(ISD::MUL, MVT::i64, Expand); setOperationAction(ISD::MULHU, MVT::i32, Expand); if (!Subtarget->hasV6Ops()) setOperationAction(ISD::MULHS, MVT::i32, Expand); } setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRL, MVT::i64, Custom); setOperationAction(ISD::SRA, MVT::i64, Custom); // ARM does not have ROTL. setOperationAction(ISD::ROTL, MVT::i32, Expand); setOperationAction(ISD::CTTZ, MVT::i32, Expand); setOperationAction(ISD::CTPOP, MVT::i32, Expand); if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) setOperationAction(ISD::CTLZ, MVT::i32, Expand); // Only ARMv6 has BSWAP. if (!Subtarget->hasV6Ops()) setOperationAction(ISD::BSWAP, MVT::i32, Expand); // These are expanded into libcalls. setOperationAction(ISD::SDIV, MVT::i32, Expand); setOperationAction(ISD::UDIV, MVT::i32, Expand); setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::UREM, MVT::i32, Expand); setOperationAction(ISD::SDIVREM, MVT::i32, Expand); setOperationAction(ISD::UDIVREM, MVT::i32, Expand); // Support label based line numbers. setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand); setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::ConstantPool, MVT::i32, Custom); setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); // Use the default implementation. setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VAARG, MVT::Other, Expand); setOperationAction(ISD::VACOPY, MVT::Other, Expand); setOperationAction(ISD::VAEND, MVT::Other, Expand); setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand); if (!Subtarget->hasV6Ops() && !Subtarget->isThumb2()) { setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); } setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) // Turn f64->i64 into FMRRD, i64 -> f64 to FMDRR iff target supports vfp2. setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom); // We want to custom lower some of our intrinsics. setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); setOperationAction(ISD::SETCC, MVT::i32, Expand); setOperationAction(ISD::SETCC, MVT::f32, Expand); setOperationAction(ISD::SETCC, MVT::f64, Expand); setOperationAction(ISD::SELECT, MVT::i32, Expand); setOperationAction(ISD::SELECT, MVT::f32, Expand); setOperationAction(ISD::SELECT, MVT::f64, Expand); setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); setOperationAction(ISD::BRCOND, MVT::Other, Expand); setOperationAction(ISD::BR_CC, MVT::i32, Custom); setOperationAction(ISD::BR_CC, MVT::f32, Custom); setOperationAction(ISD::BR_CC, MVT::f64, Custom); setOperationAction(ISD::BR_JT, MVT::Other, Custom); // We don't support sin/cos/fmod/copysign/pow setOperationAction(ISD::FSIN, MVT::f64, Expand); setOperationAction(ISD::FSIN, MVT::f32, Expand); setOperationAction(ISD::FCOS, MVT::f32, Expand); setOperationAction(ISD::FCOS, MVT::f64, Expand); setOperationAction(ISD::FREM, MVT::f64, Expand); setOperationAction(ISD::FREM, MVT::f32, Expand); if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) { setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); } setOperationAction(ISD::FPOW, MVT::f64, Expand); setOperationAction(ISD::FPOW, MVT::f32, Expand); // int <-> fp are custom expanded into bit_convert + ARMISD ops. if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) { setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); } // We have target-specific dag combine patterns for the following nodes: // ARMISD::FMRRD - No need to call setTargetDAGCombine setTargetDAGCombine(ISD::ADD); setTargetDAGCombine(ISD::SUB); setStackPointerRegisterToSaveRestore(ARM::SP); setSchedulingPreference(SchedulingForRegPressure); setIfCvtBlockSizeLimit(Subtarget->isThumb() ? 0 : 10); setIfCvtDupBlockSizeLimit(Subtarget->isThumb() ? 0 : 2); if (!Subtarget->isThumb()) { // Use branch latency information to determine if-conversion limits. // FIXME: If-converter should use instruction latency of the branch being // eliminated to compute the threshold. For ARMv6, the branch "latency" // varies depending on whether it's dynamically or statically predicted // and on whether the destination is in the prefetch buffer. const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); const InstrItineraryData &InstrItins = Subtarget->getInstrItineraryData(); unsigned Latency= InstrItins.getLatency(TII->get(ARM::Bcc).getSchedClass()); if (Latency > 1) { setIfCvtBlockSizeLimit(Latency-1); if (Latency > 2) setIfCvtDupBlockSizeLimit(Latency-2); } else { setIfCvtBlockSizeLimit(10); setIfCvtDupBlockSizeLimit(2); } } maxStoresPerMemcpy = 1; //// temporary - rewrite interface to use type // Do not enable CodePlacementOpt for now: it currently runs after the // ARMConstantIslandPass and messes up branch relaxation and placement // of constant islands. // benefitFromCodePlacementOpt = true; } const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return 0; case ARMISD::Wrapper: return "ARMISD::Wrapper"; case ARMISD::WrapperJT: return "ARMISD::WrapperJT"; case ARMISD::CALL: return "ARMISD::CALL"; case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED"; case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK"; case ARMISD::tCALL: return "ARMISD::tCALL"; case ARMISD::BRCOND: return "ARMISD::BRCOND"; case ARMISD::BR_JT: return "ARMISD::BR_JT"; case ARMISD::BR2_JT: return "ARMISD::BR2_JT"; case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG"; case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD"; case ARMISD::CMP: return "ARMISD::CMP"; case ARMISD::CMPZ: return "ARMISD::CMPZ"; case ARMISD::CMPFP: return "ARMISD::CMPFP"; case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0"; case ARMISD::FMSTAT: return "ARMISD::FMSTAT"; case ARMISD::CMOV: return "ARMISD::CMOV"; case ARMISD::CNEG: return "ARMISD::CNEG"; case ARMISD::FTOSI: return "ARMISD::FTOSI"; case ARMISD::FTOUI: return "ARMISD::FTOUI"; case ARMISD::SITOF: return "ARMISD::SITOF"; case ARMISD::UITOF: return "ARMISD::UITOF"; case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG"; case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG"; case ARMISD::RRX: return "ARMISD::RRX"; case ARMISD::FMRRD: return "ARMISD::FMRRD"; case ARMISD::FMDRR: return "ARMISD::FMDRR"; case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER"; case ARMISD::VCEQ: return "ARMISD::VCEQ"; case ARMISD::VCGE: return "ARMISD::VCGE"; case ARMISD::VCGEU: return "ARMISD::VCGEU"; case ARMISD::VCGT: return "ARMISD::VCGT"; case ARMISD::VCGTU: return "ARMISD::VCGTU"; case ARMISD::VTST: return "ARMISD::VTST"; case ARMISD::VSHL: return "ARMISD::VSHL"; case ARMISD::VSHRs: return "ARMISD::VSHRs"; case ARMISD::VSHRu: return "ARMISD::VSHRu"; case ARMISD::VSHLLs: return "ARMISD::VSHLLs"; case ARMISD::VSHLLu: return "ARMISD::VSHLLu"; case ARMISD::VSHLLi: return "ARMISD::VSHLLi"; case ARMISD::VSHRN: return "ARMISD::VSHRN"; case ARMISD::VRSHRs: return "ARMISD::VRSHRs"; case ARMISD::VRSHRu: return "ARMISD::VRSHRu"; case ARMISD::VRSHRN: return "ARMISD::VRSHRN"; case ARMISD::VQSHLs: return "ARMISD::VQSHLs"; case ARMISD::VQSHLu: return "ARMISD::VQSHLu"; case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu"; case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs"; case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu"; case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu"; case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs"; case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu"; case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu"; case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu"; case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs"; case ARMISD::VDUPLANEQ: return "ARMISD::VDUPLANEQ"; case ARMISD::VLD2D: return "ARMISD::VLD2D"; case ARMISD::VLD3D: return "ARMISD::VLD3D"; case ARMISD::VLD4D: return "ARMISD::VLD4D"; } } /// getFunctionAlignment - Return the Log2 alignment of this function. unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const { return getTargetMachine().getSubtarget().isThumb() ? 1 : 2; } //===----------------------------------------------------------------------===// // Lowering Code //===----------------------------------------------------------------------===// /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) { switch (CC) { default: llvm_unreachable("Unknown condition code!"); case ISD::SETNE: return ARMCC::NE; case ISD::SETEQ: return ARMCC::EQ; case ISD::SETGT: return ARMCC::GT; case ISD::SETGE: return ARMCC::GE; case ISD::SETLT: return ARMCC::LT; case ISD::SETLE: return ARMCC::LE; case ISD::SETUGT: return ARMCC::HI; case ISD::SETUGE: return ARMCC::HS; case ISD::SETULT: return ARMCC::LO; case ISD::SETULE: return ARMCC::LS; } } /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. It /// returns true if the operands should be inverted to form the proper /// comparison. static bool FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode, ARMCC::CondCodes &CondCode2) { bool Invert = false; CondCode2 = ARMCC::AL; switch (CC) { default: llvm_unreachable("Unknown FP condition!"); case ISD::SETEQ: case ISD::SETOEQ: CondCode = ARMCC::EQ; break; case ISD::SETGT: case ISD::SETOGT: CondCode = ARMCC::GT; break; case ISD::SETGE: case ISD::SETOGE: CondCode = ARMCC::GE; break; case ISD::SETOLT: CondCode = ARMCC::MI; break; case ISD::SETOLE: CondCode = ARMCC::GT; Invert = true; break; case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break; case ISD::SETO: CondCode = ARMCC::VC; break; case ISD::SETUO: CondCode = ARMCC::VS; break; case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break; case ISD::SETUGT: CondCode = ARMCC::HI; break; case ISD::SETUGE: CondCode = ARMCC::PL; break; case ISD::SETLT: case ISD::SETULT: CondCode = ARMCC::LT; break; case ISD::SETLE: case ISD::SETULE: CondCode = ARMCC::LE; break; case ISD::SETNE: case ISD::SETUNE: CondCode = ARMCC::NE; break; } return Invert; } //===----------------------------------------------------------------------===// // Calling Convention Implementation //===----------------------------------------------------------------------===// #include "ARMGenCallingConv.inc" // APCS f64 is in register pairs, possibly split to stack static bool f64AssignAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, CCState &State, bool CanFail) { static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; // Try to get the first register. if (unsigned Reg = State.AllocateReg(RegList, 4)) State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); else { // For the 2nd half of a v2f64, do not fail. if (CanFail) return false; // Put the whole thing on the stack. State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, State.AllocateStack(8, 4), LocVT, LocInfo)); return true; } // Try to get the second register. if (unsigned Reg = State.AllocateReg(RegList, 4)) State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); else State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, State.AllocateStack(4, 4), LocVT, LocInfo)); return true; } static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true)) return false; if (LocVT == MVT::v2f64 && !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false)) return false; return true; // we handled it } // AAPCS f64 is in aligned register pairs static bool f64AssignAAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, CCState &State, bool CanFail) { static const unsigned HiRegList[] = { ARM::R0, ARM::R2 }; static const unsigned LoRegList[] = { ARM::R1, ARM::R3 }; unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2); if (Reg == 0) { // For the 2nd half of a v2f64, do not just fail. if (CanFail) return false; // Put the whole thing on the stack. State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, State.AllocateStack(8, 8), LocVT, LocInfo)); return true; } unsigned i; for (i = 0; i < 2; ++i) if (HiRegList[i] == Reg) break; State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i], LocVT, LocInfo)); return true; } static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true)) return false; if (LocVT == MVT::v2f64 && !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false)) return false; return true; // we handled it } static bool f64RetAssign(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, CCState &State) { static const unsigned HiRegList[] = { ARM::R0, ARM::R2 }; static const unsigned LoRegList[] = { ARM::R1, ARM::R3 }; unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2); if (Reg == 0) return false; // we didn't handle it unsigned i; for (i = 0; i < 2; ++i) if (HiRegList[i] == Reg) break; State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i], LocVT, LocInfo)); return true; } static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State)) return false; if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State)) return false; return true; // we handled it } static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, CCValAssign::LocInfo &LocInfo, ISD::ArgFlagsTy &ArgFlags, CCState &State) { return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State); } /// CCAssignFnForNode - Selects the correct CCAssignFn for a the /// given CallingConvention value. CCAssignFn *ARMTargetLowering::CCAssignFnForNode(unsigned CC, bool Return, bool isVarArg) const { switch (CC) { default: llvm_unreachable("Unsupported calling convention"); case CallingConv::C: case CallingConv::Fast: // Use target triple & subtarget features to do actual dispatch. if (Subtarget->isAAPCS_ABI()) { if (Subtarget->hasVFP2() && FloatABIType == FloatABI::Hard && !isVarArg) return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); else return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); } else return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); case CallingConv::ARM_AAPCS_VFP: return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); case CallingConv::ARM_AAPCS: return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); case CallingConv::ARM_APCS: return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); } } /// LowerCallResult - Lower the result values of a call into the /// appropriate copies out of appropriate physical registers. SDValue ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, unsigned CallConv, bool isVarArg, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) { // Assign locations to each value returned by this call. SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv, /* Return*/ true, isVarArg)); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign VA = RVLocs[i]; SDValue Val; if (VA.needsCustom()) { // Handle f64 or half of a v2f64. SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); Chain = Lo.getValue(1); InFlag = Lo.getValue(2); VA = RVLocs[++i]; // skip ahead to next loc SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); Chain = Hi.getValue(1); InFlag = Hi.getValue(2); Val = DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi); if (VA.getLocVT() == MVT::v2f64) { SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, DAG.getConstant(0, MVT::i32)); VA = RVLocs[++i]; // skip ahead to next loc Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); Chain = Lo.getValue(1); InFlag = Lo.getValue(2); VA = RVLocs[++i]; // skip ahead to next loc Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); Chain = Hi.getValue(1); InFlag = Hi.getValue(2); Val = DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi); Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, DAG.getConstant(1, MVT::i32)); } } else { Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(), InFlag); Chain = Val.getValue(1); InFlag = Val.getValue(2); } switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val); break; } InVals.push_back(Val); } return Chain; } /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified /// by "Src" to address "Dst" of size "Size". Alignment information is /// specified by the specific parameter attribute. The copy will be passed as /// a byval function parameter. /// Sometimes what we are copying is the end of a larger object, the part that /// does not fit in registers. static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, DebugLoc dl) { SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), /*AlwaysInline=*/false, NULL, 0, NULL, 0); } /// LowerMemOpCallTo - Store the argument to the stack. SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg, DebugLoc dl, SelectionDAG &DAG, const CCValAssign &VA, ISD::ArgFlagsTy Flags) { unsigned LocMemOffset = VA.getLocMemOffset(); SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); if (Flags.isByVal()) { return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl); } return DAG.getStore(Chain, dl, Arg, PtrOff, PseudoSourceValue::getStack(), LocMemOffset); } void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG, SDValue Chain, SDValue &Arg, RegsToPassVector &RegsToPass, CCValAssign &VA, CCValAssign &NextVA, SDValue &StackPtr, SmallVector &MemOpChains, ISD::ArgFlagsTy Flags) { SDValue fmrrd = DAG.getNode(ARMISD::FMRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), Arg); RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd)); if (NextVA.isRegLoc()) RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1))); else { assert(NextVA.isMemLoc()); if (StackPtr.getNode() == 0) StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy()); MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1), dl, DAG, NextVA, Flags)); } } /// LowerCall - Lowering a call into a callseq_start <- /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter /// nodes. SDValue ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee, unsigned CallConv, bool isVarArg, bool isTailCall, const SmallVectorImpl &Outs, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) { // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv, /* Return*/ false, isVarArg)); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getNextStackOffset(); // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); SDValue StackPtr = DAG.getRegister(ARM::SP, MVT::i32); RegsToPassVector RegsToPass; SmallVector MemOpChains; // Walk the register/memloc assignments, inserting copies/loads. In the case // of tail call optimization, arguments are handled later. for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e; ++i, ++realArgIdx) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = Outs[realArgIdx].Val; ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg); break; } // f64 and v2f64 might be passed in i32 pairs and must be split into pieces if (VA.needsCustom()) { if (VA.getLocVT() == MVT::v2f64) { SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, DAG.getConstant(0, MVT::i32)); SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, DAG.getConstant(1, MVT::i32)); PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); VA = ArgLocs[++i]; // skip ahead to next loc if (VA.isRegLoc()) { PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); } else { assert(VA.isMemLoc()); if (StackPtr.getNode() == 0) StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy()); MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1, dl, DAG, VA, Flags)); } } else { PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); } } else if (VA.isRegLoc()) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); } else { assert(VA.isMemLoc()); if (StackPtr.getNode() == 0) StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy()); MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, dl, DAG, VA, Flags)); } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains[0], MemOpChains.size()); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. SDValue InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol // node so that legalize doesn't hack it. bool isDirect = false; bool isARMFunc = false; bool isLocalARMFunc = false; if (GlobalAddressSDNode *G = dyn_cast(Callee)) { GlobalValue *GV = G->getGlobal(); isDirect = true; bool isExt = GV->isDeclaration() || GV->isWeakForLinker(); bool isStub = (isExt && Subtarget->isTargetDarwin()) && getTargetMachine().getRelocationModel() != Reloc::Static; isARMFunc = !Subtarget->isThumb() || isStub; // ARM call to a local ARM function is predicable. isLocalARMFunc = !Subtarget->isThumb() && !isExt; // tBX takes a register source operand. if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPStub, 4); SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), CPAddr, NULL, 0); SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32); Callee = DAG.getNode(ARMISD::PIC_ADD, dl, getPointerTy(), Callee, PICLabel); } else Callee = DAG.getTargetGlobalAddress(GV, getPointerTy()); } else if (ExternalSymbolSDNode *S = dyn_cast(Callee)) { isDirect = true; bool isStub = Subtarget->isTargetDarwin() && getTargetMachine().getRelocationModel() != Reloc::Static; isARMFunc = !Subtarget->isThumb() || isStub; // tBX takes a register source operand. const char *Sym = S->getSymbol(); if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { ARMConstantPoolValue *CPV = new ARMConstantPoolValue(Sym, ARMPCLabelIndex, ARMCP::CPStub, 4); SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), CPAddr, NULL, 0); SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32); Callee = DAG.getNode(ARMISD::PIC_ADD, dl, getPointerTy(), Callee, PICLabel); } else Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy()); } // FIXME: handle tail calls differently. unsigned CallOpc; if (Subtarget->isThumb()) { if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps()) CallOpc = ARMISD::CALL_NOLINK; else CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL; } else { CallOpc = (isDirect || Subtarget->hasV5TOps()) ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL) : ARMISD::CALL_NOLINK; } if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb1Only()) { // implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK Chain = DAG.getCopyToReg(Chain, dl, ARM::LR, DAG.getUNDEF(MVT::i32),InFlag); InFlag = Chain.getValue(1); } std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are known live // into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); if (InFlag.getNode()) Ops.push_back(InFlag); // Returns a chain and a flag for retval copy to use. Chain = DAG.getNode(CallOpc, dl, DAG.getVTList(MVT::Other, MVT::Flag), &Ops[0], Ops.size()); InFlag = Chain.getValue(1); Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), DAG.getIntPtrConstant(0, true), InFlag); if (!Ins.empty()) InFlag = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, InVals); } SDValue ARMTargetLowering::LowerReturn(SDValue Chain, unsigned CallConv, bool isVarArg, const SmallVectorImpl &Outs, DebugLoc dl, SelectionDAG &DAG) { // CCValAssign - represent the assignment of the return value to a location. SmallVector RVLocs; // CCState - Info about the registers and stack slots. CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs, *DAG.getContext()); // Analyze outgoing return values. CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true, isVarArg)); // If this is the first return lowered for this function, add // the regs to the liveout set for the function. if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { for (unsigned i = 0; i != RVLocs.size(); ++i) if (RVLocs[i].isRegLoc()) DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); } SDValue Flag; // Copy the result values into the output registers. for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size(); ++i, ++realRVLocIdx) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); SDValue Arg = Outs[realRVLocIdx].Val; switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg); break; } if (VA.needsCustom()) { if (VA.getLocVT() == MVT::v2f64) { // Extract the first half and return it in two registers. SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, DAG.getConstant(0, MVT::i32)); SDValue HalfGPRs = DAG.getNode(ARMISD::FMRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), Half); Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag); Flag = Chain.getValue(1); VA = RVLocs[++i]; // skip ahead to next loc Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs.getValue(1), Flag); Flag = Chain.getValue(1); VA = RVLocs[++i]; // skip ahead to next loc // Extract the 2nd half and fall through to handle it as an f64 value. Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, DAG.getConstant(1, MVT::i32)); } // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is // available. SDValue fmrrd = DAG.getNode(ARMISD::FMRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1); Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag); Flag = Chain.getValue(1); VA = RVLocs[++i]; // skip ahead to next loc Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1), Flag); } else Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); // Guarantee that all emitted copies are // stuck together, avoiding something bad. Flag = Chain.getValue(1); } SDValue result; if (Flag.getNode()) result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag); else // Return Void result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain); return result; } // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is // one of the above mentioned nodes. It has to be wrapped because otherwise // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only // be used to form addressing mode. These wrapped nodes will be selected // into MOVi. static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) { MVT PtrVT = Op.getValueType(); // FIXME there is no actual debug info here DebugLoc dl = Op.getDebugLoc(); ConstantPoolSDNode *CP = cast(Op); SDValue Res; if (CP->isMachineConstantPoolEntry()) Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlignment()); else Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment()); return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res); } // Lower ISD::GlobalTLSAddress using the "general dynamic" model SDValue ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG) { DebugLoc dl = GA->getDebugLoc(); MVT PtrVT = getPointerTy(); unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue, PCAdj, "tlsgd", true); SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4); Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument); Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument, NULL, 0); SDValue Chain = Argument.getValue(1); SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32); Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel); // call __tls_get_addr. ArgListTy Args; ArgListEntry Entry; Entry.Node = Argument; Entry.Ty = (const Type *) Type::Int32Ty; Args.push_back(Entry); // FIXME: is there useful debug info available here? std::pair CallResult = LowerCallTo(Chain, (const Type *) Type::Int32Ty, false, false, false, false, 0, CallingConv::C, false, /*isReturnValueUsed=*/true, DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl); return CallResult.first; } // Lower ISD::GlobalTLSAddress using the "initial exec" or // "local exec" model. SDValue ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA, SelectionDAG &DAG) { GlobalValue *GV = GA->getGlobal(); DebugLoc dl = GA->getDebugLoc(); SDValue Offset; SDValue Chain = DAG.getEntryNode(); MVT PtrVT = getPointerTy(); // Get the Thread Pointer SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); if (GV->isDeclaration()) { // initial exec model unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue, PCAdj, "gottpoff", true); Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0); Chain = Offset.getValue(1); SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32); Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel); Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0); } else { // local exec model ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMCP::CPValue, "tpoff"); Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0); } // The address of the thread local variable is the add of the thread // pointer with the offset of the variable. return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); } SDValue ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) { // TODO: implement the "local dynamic" model assert(Subtarget->isTargetELF() && "TLS not implemented for non-ELF targets"); GlobalAddressSDNode *GA = cast(Op); // If the relocation model is PIC, use the "General Dynamic" TLS Model, // otherwise use the "Local Exec" TLS Model if (getTargetMachine().getRelocationModel() == Reloc::PIC_) return LowerToTLSGeneralDynamicModel(GA, DAG); else return LowerToTLSExecModels(GA, DAG); } SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op, SelectionDAG &DAG) { MVT PtrVT = getPointerTy(); DebugLoc dl = Op.getDebugLoc(); GlobalValue *GV = cast(Op)->getGlobal(); Reloc::Model RelocM = getTargetMachine().getRelocationModel(); if (RelocM == Reloc::PIC_) { bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility(); ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMCP::CPValue, UseGOTOFF ? "GOTOFF":"GOT"); SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0); SDValue Chain = Result.getValue(1); SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT); if (!UseGOTOFF) Result = DAG.getLoad(PtrVT, dl, Chain, Result, NULL, 0); return Result; } else { SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0); } } /// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol /// even in non-static mode. static bool GVIsIndirectSymbol(GlobalValue *GV, Reloc::Model RelocM) { // If symbol visibility is hidden, the extra load is not needed if // the symbol is definitely defined in the current translation unit. bool isDecl = GV->isDeclaration() || GV->hasAvailableExternallyLinkage(); if (GV->hasHiddenVisibility() && (!isDecl && !GV->hasCommonLinkage())) return false; return RelocM != Reloc::Static && (isDecl || GV->isWeakForLinker()); } SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op, SelectionDAG &DAG) { MVT PtrVT = getPointerTy(); DebugLoc dl = Op.getDebugLoc(); GlobalValue *GV = cast(Op)->getGlobal(); Reloc::Model RelocM = getTargetMachine().getRelocationModel(); bool IsIndirect = GVIsIndirectSymbol(GV, RelocM); SDValue CPAddr; if (RelocM == Reloc::Static) CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4); else { unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8); ARMCP::ARMCPKind Kind = IsIndirect ? ARMCP::CPNonLazyPtr : ARMCP::CPValue; ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex, Kind, PCAdj); CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); } CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0); SDValue Chain = Result.getValue(1); if (RelocM == Reloc::PIC_) { SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32); Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); } if (IsIndirect) Result = DAG.getLoad(PtrVT, dl, Chain, Result, NULL, 0); return Result; } SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG){ assert(Subtarget->isTargetELF() && "GLOBAL OFFSET TABLE not implemented for non-ELF targets"); MVT PtrVT = getPointerTy(); DebugLoc dl = Op.getDebugLoc(); unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; ARMConstantPoolValue *CPV = new ARMConstantPoolValue("_GLOBAL_OFFSET_TABLE_", ARMPCLabelIndex, ARMCP::CPValue, PCAdj); SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0); SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32); return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); } static SDValue LowerNeonVLDIntrinsic(SDValue Op, SelectionDAG &DAG, unsigned Opcode) { SDNode *Node = Op.getNode(); MVT VT = Node->getValueType(0); DebugLoc dl = Op.getDebugLoc(); if (!VT.is64BitVector()) return SDValue(); // unimplemented SDValue Ops[] = { Node->getOperand(0), Node->getOperand(2) }; return DAG.getNode(Opcode, dl, Node->getVTList(), Ops, 2); } SDValue ARMTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) { unsigned IntNo = cast(Op.getOperand(1))->getZExtValue(); switch (IntNo) { case Intrinsic::arm_neon_vld2i: case Intrinsic::arm_neon_vld2f: return LowerNeonVLDIntrinsic(Op, DAG, ARMISD::VLD2D); case Intrinsic::arm_neon_vld3i: case Intrinsic::arm_neon_vld3f: return LowerNeonVLDIntrinsic(Op, DAG, ARMISD::VLD3D); case Intrinsic::arm_neon_vld4i: case Intrinsic::arm_neon_vld4f: return LowerNeonVLDIntrinsic(Op, DAG, ARMISD::VLD4D); case Intrinsic::arm_neon_vst2i: case Intrinsic::arm_neon_vst2f: case Intrinsic::arm_neon_vst3i: case Intrinsic::arm_neon_vst3f: case Intrinsic::arm_neon_vst4i: case Intrinsic::arm_neon_vst4f: default: return SDValue(); // Don't custom lower most intrinsics. } } SDValue ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) { unsigned IntNo = cast(Op.getOperand(0))->getZExtValue(); DebugLoc dl = Op.getDebugLoc(); switch (IntNo) { default: return SDValue(); // Don't custom lower most intrinsics. case Intrinsic::arm_thread_pointer: { MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); } case Intrinsic::eh_sjlj_setjmp: return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(1)); } } static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG, unsigned VarArgsFrameIndex) { // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. DebugLoc dl = Op.getDebugLoc(); MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); const Value *SV = cast(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0); } SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA, SDValue &Root, SelectionDAG &DAG, DebugLoc dl) { MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo(); TargetRegisterClass *RC; if (AFI->isThumb1OnlyFunction()) RC = ARM::tGPRRegisterClass; else RC = ARM::GPRRegisterClass; // Transform the arguments stored in physical registers into virtual ones. unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); SDValue ArgValue2; if (NextVA.isMemLoc()) { unsigned ArgSize = NextVA.getLocVT().getSizeInBits()/8; MachineFrameInfo *MFI = MF.getFrameInfo(); int FI = MFI->CreateFixedObject(ArgSize, NextVA.getLocMemOffset()); // Create load node to retrieve arguments from the stack. SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN, NULL, 0); } else { Reg = MF.addLiveIn(NextVA.getLocReg(), RC); ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); } return DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, ArgValue, ArgValue2); } SDValue ARMTargetLowering::LowerFormalArguments(SDValue Chain, unsigned CallConv, bool isVarArg, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); ARMFunctionInfo *AFI = MF.getInfo(); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv, /* Return*/ false, isVarArg)); SmallVector ArgValues; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; // Arguments stored in registers. if (VA.isRegLoc()) { MVT RegVT = VA.getLocVT(); SDValue ArgValue; if (VA.needsCustom()) { // f64 and vector types are split up into multiple registers or // combinations of registers and stack slots. RegVT = MVT::i32; if (VA.getLocVT() == MVT::v2f64) { SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); VA = ArgLocs[++i]; // skip ahead to next loc SDValue ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue, ArgValue1, DAG.getIntPtrConstant(0)); ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue, ArgValue2, DAG.getIntPtrConstant(1)); } else ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); } else { TargetRegisterClass *RC; if (FloatABIType == FloatABI::Hard && RegVT == MVT::f32) RC = ARM::SPRRegisterClass; else if (FloatABIType == FloatABI::Hard && RegVT == MVT::f64) RC = ARM::DPRRegisterClass; else if (FloatABIType == FloatABI::Hard && RegVT == MVT::v2f64) RC = ARM::QPRRegisterClass; else if (AFI->isThumb1OnlyFunction()) RC = ARM::tGPRRegisterClass; else RC = ARM::GPRRegisterClass; assert((RegVT == MVT::i32 || RegVT == MVT::f32 || (FloatABIType == FloatABI::Hard && ((RegVT == MVT::f64) || (RegVT == MVT::v2f64)))) && "RegVT not supported by FORMAL_ARGUMENTS Lowering"); // Transform the arguments in physical registers into virtual ones. unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); } // If this is an 8 or 16-bit value, it is really passed promoted // to 32 bits. Insert an assert[sz]ext to capture this, then // truncate to the right size. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue); break; case CCValAssign::SExt: ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); break; case CCValAssign::ZExt: ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); break; } InVals.push_back(ArgValue); } else { // VA.isRegLoc() // sanity check assert(VA.isMemLoc()); assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered"); unsigned ArgSize = VA.getLocVT().getSizeInBits()/8; int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset()); // Create load nodes to retrieve arguments from the stack. SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0)); } } // varargs if (isVarArg) { static const unsigned GPRArgRegs[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; unsigned NumGPRs = CCInfo.getFirstUnallocated (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0])); unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); unsigned VARegSize = (4 - NumGPRs) * 4; unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1); unsigned ArgOffset = 0; if (VARegSaveSize) { // If this function is vararg, store any remaining integer argument regs // to their spots on the stack so that they may be loaded by deferencing // the result of va_next. AFI->setVarArgsRegSaveSize(VARegSaveSize); ArgOffset = CCInfo.getNextStackOffset(); VarArgsFrameIndex = MFI->CreateFixedObject(VARegSaveSize, ArgOffset + VARegSaveSize - VARegSize); SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); SmallVector MemOps; for (; NumGPRs < 4; ++NumGPRs) { TargetRegisterClass *RC; if (AFI->isThumb1OnlyFunction()) RC = ARM::tGPRRegisterClass; else RC = ARM::GPRRegisterClass; unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0); MemOps.push_back(Store); FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN, DAG.getConstant(4, getPointerTy())); } if (!MemOps.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOps[0], MemOps.size()); } else // This will point to the next argument passed via stack. VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset); } return Chain; } /// isFloatingPointZero - Return true if this is +0.0. static bool isFloatingPointZero(SDValue Op) { if (ConstantFPSDNode *CFP = dyn_cast(Op)) return CFP->getValueAPF().isPosZero(); else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { // Maybe this has already been legalized into the constant pool? if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) { SDValue WrapperOp = Op.getOperand(1).getOperand(0); if (ConstantPoolSDNode *CP = dyn_cast(WrapperOp)) if (ConstantFP *CFP = dyn_cast(CP->getConstVal())) return CFP->getValueAPF().isPosZero(); } } return false; } static bool isLegalCmpImmediate(unsigned C, bool isThumb1Only) { return ( isThumb1Only && (C & ~255U) == 0) || (!isThumb1Only && ARM_AM::getSOImmVal(C) != -1); } /// Returns appropriate ARM CMP (cmp) and corresponding condition code for /// the given operands. static SDValue getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDValue &ARMCC, SelectionDAG &DAG, bool isThumb1Only, DebugLoc dl) { if (ConstantSDNode *RHSC = dyn_cast(RHS.getNode())) { unsigned C = RHSC->getZExtValue(); if (!isLegalCmpImmediate(C, isThumb1Only)) { // Constant does not fit, try adjusting it by one? switch (CC) { default: break; case ISD::SETLT: case ISD::SETGE: if (isLegalCmpImmediate(C-1, isThumb1Only)) { CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; RHS = DAG.getConstant(C-1, MVT::i32); } break; case ISD::SETULT: case ISD::SETUGE: if (C > 0 && isLegalCmpImmediate(C-1, isThumb1Only)) { CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; RHS = DAG.getConstant(C-1, MVT::i32); } break; case ISD::SETLE: case ISD::SETGT: if (isLegalCmpImmediate(C+1, isThumb1Only)) { CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; RHS = DAG.getConstant(C+1, MVT::i32); } break; case ISD::SETULE: case ISD::SETUGT: if (C < 0xffffffff && isLegalCmpImmediate(C+1, isThumb1Only)) { CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; RHS = DAG.getConstant(C+1, MVT::i32); } break; } } } ARMCC::CondCodes CondCode = IntCCToARMCC(CC); ARMISD::NodeType CompareType; switch (CondCode) { default: CompareType = ARMISD::CMP; break; case ARMCC::EQ: case ARMCC::NE: // Uses only Z Flag CompareType = ARMISD::CMPZ; break; } ARMCC = DAG.getConstant(CondCode, MVT::i32); return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS); } /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands. static SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG, DebugLoc dl) { SDValue Cmp; if (!isFloatingPointZero(RHS)) Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS); else Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS); return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp); } static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) { MVT VT = Op.getValueType(); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); ISD::CondCode CC = cast(Op.getOperand(4))->get(); SDValue TrueVal = Op.getOperand(2); SDValue FalseVal = Op.getOperand(3); DebugLoc dl = Op.getDebugLoc(); if (LHS.getValueType() == MVT::i32) { SDValue ARMCC; SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb1Only(), dl); return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, CCR,Cmp); } ARMCC::CondCodes CondCode, CondCode2; if (FPCCToARMCC(CC, CondCode, CondCode2)) std::swap(TrueVal, FalseVal); SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, CCR, Cmp); if (CondCode2 != ARMCC::AL) { SDValue ARMCC2 = DAG.getConstant(CondCode2, MVT::i32); // FIXME: Needs another CMP because flag can have but one use. SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl); Result = DAG.getNode(ARMISD::CMOV, dl, VT, Result, TrueVal, ARMCC2, CCR, Cmp2); } return Result; } static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) { SDValue Chain = Op.getOperand(0); ISD::CondCode CC = cast(Op.getOperand(1))->get(); SDValue LHS = Op.getOperand(2); SDValue RHS = Op.getOperand(3); SDValue Dest = Op.getOperand(4); DebugLoc dl = Op.getDebugLoc(); if (LHS.getValueType() == MVT::i32) { SDValue ARMCC; SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb1Only(), dl); return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMCC, CCR,Cmp); } assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); ARMCC::CondCodes CondCode, CondCode2; if (FPCCToARMCC(CC, CondCode, CondCode2)) // Swap the LHS/RHS of the comparison if needed. std::swap(LHS, RHS); SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag); SDValue Ops[] = { Chain, Dest, ARMCC, CCR, Cmp }; SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5); if (CondCode2 != ARMCC::AL) { ARMCC = DAG.getConstant(CondCode2, MVT::i32); SDValue Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) }; Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5); } return Res; } SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) { SDValue Chain = Op.getOperand(0); SDValue Table = Op.getOperand(1); SDValue Index = Op.getOperand(2); DebugLoc dl = Op.getDebugLoc(); MVT PTy = getPointerTy(); JumpTableSDNode *JT = cast(Table); ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo(); SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy); SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy); Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId); Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy)); SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); if (Subtarget->isThumb2()) { // Thumb2 uses a two-level jump. That is, it jumps into the jump table // which does another jump to the destination. This also makes it easier // to translate it to TBB / TBH later. // FIXME: This might not work if the function is extremely large. return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain, Addr, Op.getOperand(2), JTI, UId); } if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { Addr = DAG.getLoad((MVT)MVT::i32, dl, Chain, Addr, NULL, 0); Chain = Addr.getValue(1); Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table); return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId); } else { Addr = DAG.getLoad(PTy, dl, Chain, Addr, NULL, 0); Chain = Addr.getValue(1); return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId); } } static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) { DebugLoc dl = Op.getDebugLoc(); unsigned Opc = Op.getOpcode() == ISD::FP_TO_SINT ? ARMISD::FTOSI : ARMISD::FTOUI; Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0)); return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); } static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) { MVT VT = Op.getValueType(); DebugLoc dl = Op.getDebugLoc(); unsigned Opc = Op.getOpcode() == ISD::SINT_TO_FP ? ARMISD::SITOF : ARMISD::UITOF; Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0)); return DAG.getNode(Opc, dl, VT, Op); } static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) { // Implement fcopysign with a fabs and a conditional fneg. SDValue Tmp0 = Op.getOperand(0); SDValue Tmp1 = Op.getOperand(1); DebugLoc dl = Op.getDebugLoc(); MVT VT = Op.getValueType(); MVT SrcVT = Tmp1.getValueType(); SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0); SDValue Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG, dl); SDValue ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp); } SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) { MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); MFI->setFrameAddressIsTaken(true); MVT VT = Op.getValueType(); DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin()) ? ARM::R7 : ARM::R11; SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); while (Depth--) FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0); return FrameAddr; } SDValue ARMTargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl, SDValue Chain, SDValue Dst, SDValue Src, SDValue Size, unsigned Align, bool AlwaysInline, const Value *DstSV, uint64_t DstSVOff, const Value *SrcSV, uint64_t SrcSVOff){ // Do repeated 4-byte loads and stores. To be improved. // This requires 4-byte alignment. if ((Align & 3) != 0) return SDValue(); // This requires the copy size to be a constant, preferrably // within a subtarget-specific limit. ConstantSDNode *ConstantSize = dyn_cast(Size); if (!ConstantSize) return SDValue(); uint64_t SizeVal = ConstantSize->getZExtValue(); if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold()) return SDValue(); unsigned BytesLeft = SizeVal & 3; unsigned NumMemOps = SizeVal >> 2; unsigned EmittedNumMemOps = 0; MVT VT = MVT::i32; unsigned VTSize = 4; unsigned i = 0; const unsigned MAX_LOADS_IN_LDM = 6; SDValue TFOps[MAX_LOADS_IN_LDM]; SDValue Loads[MAX_LOADS_IN_LDM]; uint64_t SrcOff = 0, DstOff = 0; // Emit up to MAX_LOADS_IN_LDM loads, then a TokenFactor barrier, then the // same number of stores. The loads and stores will get combined into // ldm/stm later on. while (EmittedNumMemOps < NumMemOps) { for (i = 0; i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) { Loads[i] = DAG.getLoad(VT, dl, Chain, DAG.getNode(ISD::ADD, dl, MVT::i32, Src, DAG.getConstant(SrcOff, MVT::i32)), SrcSV, SrcSVOff + SrcOff); TFOps[i] = Loads[i].getValue(1); SrcOff += VTSize; } Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i); for (i = 0; i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) { TFOps[i] = DAG.getStore(Chain, dl, Loads[i], DAG.getNode(ISD::ADD, dl, MVT::i32, Dst, DAG.getConstant(DstOff, MVT::i32)), DstSV, DstSVOff + DstOff); DstOff += VTSize; } Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i); EmittedNumMemOps += i; } if (BytesLeft == 0) return Chain; // Issue loads / stores for the trailing (1 - 3) bytes. unsigned BytesLeftSave = BytesLeft; i = 0; while (BytesLeft) { if (BytesLeft >= 2) { VT = MVT::i16; VTSize = 2; } else { VT = MVT::i8; VTSize = 1; } Loads[i] = DAG.getLoad(VT, dl, Chain, DAG.getNode(ISD::ADD, dl, MVT::i32, Src, DAG.getConstant(SrcOff, MVT::i32)), SrcSV, SrcSVOff + SrcOff); TFOps[i] = Loads[i].getValue(1); ++i; SrcOff += VTSize; BytesLeft -= VTSize; } Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i); i = 0; BytesLeft = BytesLeftSave; while (BytesLeft) { if (BytesLeft >= 2) { VT = MVT::i16; VTSize = 2; } else { VT = MVT::i8; VTSize = 1; } TFOps[i] = DAG.getStore(Chain, dl, Loads[i], DAG.getNode(ISD::ADD, dl, MVT::i32, Dst, DAG.getConstant(DstOff, MVT::i32)), DstSV, DstSVOff + DstOff); ++i; DstOff += VTSize; BytesLeft -= VTSize; } return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i); } static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) { SDValue Op = N->getOperand(0); DebugLoc dl = N->getDebugLoc(); if (N->getValueType(0) == MVT::f64) { // Turn i64->f64 into FMDRR. SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, DAG.getConstant(0, MVT::i32)); SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, DAG.getConstant(1, MVT::i32)); return DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi); } // Turn f64->i64 into FMRRD. SDValue Cvt = DAG.getNode(ARMISD::FMRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), &Op, 1); // Merge the pieces into a single i64 value. return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1)); } /// getZeroVector - Returns a vector of specified type with all zero elements. /// static SDValue getZeroVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) { assert(VT.isVector() && "Expected a vector type"); // Zero vectors are used to represent vector negation and in those cases // will be implemented with the NEON VNEG instruction. However, VNEG does // not support i64 elements, so sometimes the zero vectors will need to be // explicitly constructed. For those cases, and potentially other uses in // the future, always build zero vectors as <4 x i32> or <2 x i32> bitcasted // to their dest type. This ensures they get CSE'd. SDValue Vec; SDValue Cst = DAG.getTargetConstant(0, MVT::i32); if (VT.getSizeInBits() == 64) Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst); else Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec); } /// getOnesVector - Returns a vector of specified type with all bits set. /// static SDValue getOnesVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) { assert(VT.isVector() && "Expected a vector type"); // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest // type. This ensures they get CSE'd. SDValue Vec; SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32); if (VT.getSizeInBits() == 64) Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst); else Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec); } static SDValue LowerShift(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { MVT VT = N->getValueType(0); DebugLoc dl = N->getDebugLoc(); // Lower vector shifts on NEON to use VSHL. if (VT.isVector()) { assert(ST->hasNEON() && "unexpected vector shift"); // Left shifts translate directly to the vshiftu intrinsic. if (N->getOpcode() == ISD::SHL) return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32), N->getOperand(0), N->getOperand(1)); assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode"); // NEON uses the same intrinsics for both left and right shifts. For // right shifts, the shift amounts are negative, so negate the vector of // shift amounts. MVT ShiftVT = N->getOperand(1).getValueType(); SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT, getZeroVector(ShiftVT, DAG, dl), N->getOperand(1)); Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ? Intrinsic::arm_neon_vshifts : Intrinsic::arm_neon_vshiftu); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, DAG.getConstant(vshiftInt, MVT::i32), N->getOperand(0), NegatedCount); } assert(VT == MVT::i64 && (N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && "Unknown shift to lower!"); // We only lower SRA, SRL of 1 here, all others use generic lowering. if (!isa(N->getOperand(1)) || cast(N->getOperand(1))->getZExtValue() != 1) return SDValue(); // If we are in thumb mode, we don't have RRX. if (ST->isThumb1Only()) return SDValue(); // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr. SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), DAG.getConstant(0, MVT::i32)); SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), DAG.getConstant(1, MVT::i32)); // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and // captures the result into a carry flag. unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG; Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1); // The low part is an ARMISD::RRX operand, which shifts the carry in. Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1)); // Merge the pieces into a single i64 value. return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); } static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) { SDValue TmpOp0, TmpOp1; bool Invert = false; bool Swap = false; unsigned Opc = 0; SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue CC = Op.getOperand(2); MVT VT = Op.getValueType(); ISD::CondCode SetCCOpcode = cast(CC)->get(); DebugLoc dl = Op.getDebugLoc(); if (Op.getOperand(1).getValueType().isFloatingPoint()) { switch (SetCCOpcode) { default: llvm_unreachable("Illegal FP comparison"); break; case ISD::SETUNE: case ISD::SETNE: Invert = true; // Fallthrough case ISD::SETOEQ: case ISD::SETEQ: Opc = ARMISD::VCEQ; break; case ISD::SETOLT: case ISD::SETLT: Swap = true; // Fallthrough case ISD::SETOGT: case ISD::SETGT: Opc = ARMISD::VCGT; break; case ISD::SETOLE: case ISD::SETLE: Swap = true; // Fallthrough case ISD::SETOGE: case ISD::SETGE: Opc = ARMISD::VCGE; break; case ISD::SETUGE: Swap = true; // Fallthrough case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break; case ISD::SETUGT: Swap = true; // Fallthrough case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break; case ISD::SETUEQ: Invert = true; // Fallthrough case ISD::SETONE: // Expand this to (OLT | OGT). TmpOp0 = Op0; TmpOp1 = Op1; Opc = ISD::OR; Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0); Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1); break; case ISD::SETUO: Invert = true; // Fallthrough case ISD::SETO: // Expand this to (OLT | OGE). TmpOp0 = Op0; TmpOp1 = Op1; Opc = ISD::OR; Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0); Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1); break; } } else { // Integer comparisons. switch (SetCCOpcode) { default: llvm_unreachable("Illegal integer comparison"); break; case ISD::SETNE: Invert = true; case ISD::SETEQ: Opc = ARMISD::VCEQ; break; case ISD::SETLT: Swap = true; case ISD::SETGT: Opc = ARMISD::VCGT; break; case ISD::SETLE: Swap = true; case ISD::SETGE: Opc = ARMISD::VCGE; break; case ISD::SETULT: Swap = true; case ISD::SETUGT: Opc = ARMISD::VCGTU; break; case ISD::SETULE: Swap = true; case ISD::SETUGE: Opc = ARMISD::VCGEU; break; } // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero). if (Opc == ARMISD::VCEQ) { SDValue AndOp; if (ISD::isBuildVectorAllZeros(Op1.getNode())) AndOp = Op0; else if (ISD::isBuildVectorAllZeros(Op0.getNode())) AndOp = Op1; // Ignore bitconvert. if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT) AndOp = AndOp.getOperand(0); if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) { Opc = ARMISD::VTST; Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0)); Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1)); Invert = !Invert; } } } if (Swap) std::swap(Op0, Op1); SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1); if (Invert) Result = DAG.getNOT(dl, Result, VT); return Result; } /// isVMOVSplat - Check if the specified splat value corresponds to an immediate /// VMOV instruction, and if so, return the constant being splatted. static SDValue isVMOVSplat(uint64_t SplatBits, uint64_t SplatUndef, unsigned SplatBitSize, SelectionDAG &DAG) { switch (SplatBitSize) { case 8: // Any 1-byte value is OK. assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big"); return DAG.getTargetConstant(SplatBits, MVT::i8); case 16: // NEON's 16-bit VMOV supports splat values where only one byte is nonzero. if ((SplatBits & ~0xff) == 0 || (SplatBits & ~0xff00) == 0) return DAG.getTargetConstant(SplatBits, MVT::i16); break; case 32: // NEON's 32-bit VMOV supports splat values where: // * only one byte is nonzero, or // * the least significant byte is 0xff and the second byte is nonzero, or // * the least significant 2 bytes are 0xff and the third is nonzero. if ((SplatBits & ~0xff) == 0 || (SplatBits & ~0xff00) == 0 || (SplatBits & ~0xff0000) == 0 || (SplatBits & ~0xff000000) == 0) return DAG.getTargetConstant(SplatBits, MVT::i32); if ((SplatBits & ~0xffff) == 0 && ((SplatBits | SplatUndef) & 0xff) == 0xff) return DAG.getTargetConstant(SplatBits | 0xff, MVT::i32); if ((SplatBits & ~0xffffff) == 0 && ((SplatBits | SplatUndef) & 0xffff) == 0xffff) return DAG.getTargetConstant(SplatBits | 0xffff, MVT::i32); // Note: there are a few 32-bit splat values (specifically: 00ffff00, // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not // VMOV.I32. A (very) minor optimization would be to replicate the value // and fall through here to test for a valid 64-bit splat. But, then the // caller would also need to check and handle the change in size. break; case 64: { // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff. uint64_t BitMask = 0xff; uint64_t Val = 0; for (int ByteNum = 0; ByteNum < 8; ++ByteNum) { if (((SplatBits | SplatUndef) & BitMask) == BitMask) Val |= BitMask; else if ((SplatBits & BitMask) != 0) return SDValue(); BitMask <<= 8; } return DAG.getTargetConstant(Val, MVT::i64); } default: llvm_unreachable("unexpected size for isVMOVSplat"); break; } return SDValue(); } /// getVMOVImm - If this is a build_vector of constants which can be /// formed by using a VMOV instruction of the specified element size, /// return the constant being splatted. The ByteSize field indicates the /// number of bytes of each element [1248]. SDValue ARM::getVMOVImm(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { BuildVectorSDNode *BVN = dyn_cast(N); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, ByteSize * 8)) return SDValue(); if (SplatBitSize > ByteSize * 8) return SDValue(); return isVMOVSplat(SplatBits.getZExtValue(), SplatUndef.getZExtValue(), SplatBitSize, DAG); } /// isVREVMask - Check if a vector shuffle corresponds to a VREV /// instruction with the specified blocksize. (The order of the elements /// within each block of the vector is reversed.) bool ARM::isVREVMask(ShuffleVectorSDNode *N, unsigned BlockSize) { assert((BlockSize==16 || BlockSize==32 || BlockSize==64) && "Only possible block sizes for VREV are: 16, 32, 64"); MVT VT = N->getValueType(0); unsigned NumElts = VT.getVectorNumElements(); unsigned EltSz = VT.getVectorElementType().getSizeInBits(); unsigned BlockElts = N->getMaskElt(0) + 1; if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) return false; for (unsigned i = 0; i < NumElts; ++i) { if ((unsigned) N->getMaskElt(i) != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts)) return false; } return true; } static SDValue BuildSplat(SDValue Val, MVT VT, SelectionDAG &DAG, DebugLoc dl) { // Canonicalize all-zeros and all-ones vectors. ConstantSDNode *ConstVal = dyn_cast(Val.getNode()); if (ConstVal->isNullValue()) return getZeroVector(VT, DAG, dl); if (ConstVal->isAllOnesValue()) return getOnesVector(VT, DAG, dl); MVT CanonicalVT; if (VT.is64BitVector()) { switch (Val.getValueType().getSizeInBits()) { case 8: CanonicalVT = MVT::v8i8; break; case 16: CanonicalVT = MVT::v4i16; break; case 32: CanonicalVT = MVT::v2i32; break; case 64: CanonicalVT = MVT::v1i64; break; default: llvm_unreachable("unexpected splat element type"); break; } } else { assert(VT.is128BitVector() && "unknown splat vector size"); switch (Val.getValueType().getSizeInBits()) { case 8: CanonicalVT = MVT::v16i8; break; case 16: CanonicalVT = MVT::v8i16; break; case 32: CanonicalVT = MVT::v4i32; break; case 64: CanonicalVT = MVT::v2i64; break; default: llvm_unreachable("unexpected splat element type"); break; } } // Build a canonical splat for this value. SmallVector Ops; Ops.assign(CanonicalVT.getVectorNumElements(), Val); SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, &Ops[0], Ops.size()); return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Res); } // If this is a case we can't handle, return null and let the default // expansion code take care of it. static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) { BuildVectorSDNode *BVN = dyn_cast(Op.getNode()); assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); DebugLoc dl = Op.getDebugLoc(); MVT VT = Op.getValueType(); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { SDValue Val = isVMOVSplat(SplatBits.getZExtValue(), SplatUndef.getZExtValue(), SplatBitSize, DAG); if (Val.getNode()) return BuildSplat(Val, VT, DAG, dl); } // If there are only 2 elements in a 128-bit vector, insert them into an // undef vector. This handles the common case for 128-bit vector argument // passing, where the insertions should be translated to subreg accesses // with no real instructions. if (VT.is128BitVector() && Op.getNumOperands() == 2) { SDValue Val = DAG.getUNDEF(VT); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); if (Op0.getOpcode() != ISD::UNDEF) Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op0, DAG.getIntPtrConstant(0)); if (Op1.getOpcode() != ISD::UNDEF) Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op1, DAG.getIntPtrConstant(1)); return Val; } return SDValue(); } static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) { return Op; } static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) { return Op; } static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { MVT VT = Op.getValueType(); DebugLoc dl = Op.getDebugLoc(); assert((VT == MVT::i8 || VT == MVT::i16) && "unexpected type for custom-lowering vector extract"); SDValue Vec = Op.getOperand(0); SDValue Lane = Op.getOperand(1); Op = DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane); Op = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Op, DAG.getValueType(VT)); return DAG.getNode(ISD::TRUNCATE, dl, VT, Op); } static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { // The only time a CONCAT_VECTORS operation can have legal types is when // two 64-bit vectors are concatenated to a 128-bit vector. assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 && "unexpected CONCAT_VECTORS"); DebugLoc dl = Op.getDebugLoc(); SDValue Val = DAG.getUNDEF(MVT::v2f64); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); if (Op0.getOpcode() != ISD::UNDEF) Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0), DAG.getIntPtrConstant(0)); if (Op1.getOpcode() != ISD::UNDEF) Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1), DAG.getIntPtrConstant(1)); return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val); } SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { switch (Op.getOpcode()) { default: llvm_unreachable("Don't know how to custom lower this!"); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::GlobalAddress: return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) : LowerGlobalAddressELF(Op, DAG); case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, Subtarget); case ISD::BR_CC: return LowerBR_CC(Op, DAG, Subtarget); case ISD::BR_JT: return LowerBR_JT(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex); case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG); case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); case ISD::RETURNADDR: break; case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG); case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::BIT_CONVERT: return ExpandBIT_CONVERT(Op.getNode(), DAG); case ISD::SHL: case ISD::SRL: case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget); case ISD::VSETCC: return LowerVSETCC(Op, DAG); case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); } return SDValue(); } /// ReplaceNodeResults - Replace the results of node with an illegal result /// type with new values built out of custom code. void ARMTargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl&Results, SelectionDAG &DAG) { switch (N->getOpcode()) { default: llvm_unreachable("Don't know how to custom expand this!"); return; case ISD::BIT_CONVERT: Results.push_back(ExpandBIT_CONVERT(N, DAG)); return; case ISD::SRL: case ISD::SRA: { SDValue Res = LowerShift(N, DAG, Subtarget); if (Res.getNode()) Results.push_back(Res); return; } } } //===----------------------------------------------------------------------===// // ARM Scheduler Hooks //===----------------------------------------------------------------------===// MachineBasicBlock * ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc dl = MI->getDebugLoc(); switch (MI->getOpcode()) { default: assert(false && "Unexpected instr type to insert"); case ARM::tMOVCCr: { // To "insert" a SELECT_CC instruction, we actually have to insert the // diamond control-flow pattern. The incoming instruction knows the // destination vreg to set, the condition code register to branch on, the // true/false values to select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineFunction *F = BB->getParent(); MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB) .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg()); F->insert(It, copy0MBB); F->insert(It, sinkMBB); // Update machine-CFG edges by first adding all successors of the current // block to the new block which will contain the Phi node for the select. for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), e = BB->succ_end(); i != e; ++i) sinkMBB->addSuccessor(*i); // Next, remove all successors of the current block, and add the true // and fallthrough blocks as its successors. while(!BB->succ_empty()) BB->removeSuccessor(BB->succ_begin()); BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(BB, dl, TII->get(ARM::PHI), MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. return BB; } } } //===----------------------------------------------------------------------===// // ARM Optimization Hooks //===----------------------------------------------------------------------===// static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); MVT VT = N->getValueType(0); unsigned Opc = N->getOpcode(); bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC; SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1); SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2); ISD::CondCode CC = ISD::SETCC_INVALID; if (isSlctCC) { CC = cast(Slct.getOperand(4))->get(); } else { SDValue CCOp = Slct.getOperand(0); if (CCOp.getOpcode() == ISD::SETCC) CC = cast(CCOp.getOperand(2))->get(); } bool DoXform = false; bool InvCC = false; assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) && "Bad input!"); if (LHS.getOpcode() == ISD::Constant && cast(LHS)->isNullValue()) { DoXform = true; } else if (CC != ISD::SETCC_INVALID && RHS.getOpcode() == ISD::Constant && cast(RHS)->isNullValue()) { std::swap(LHS, RHS); SDValue Op0 = Slct.getOperand(0); MVT OpVT = isSlctCC ? Op0.getValueType() : Op0.getOperand(0).getValueType(); bool isInt = OpVT.isInteger(); CC = ISD::getSetCCInverse(CC, isInt); if (!TLI.isCondCodeLegal(CC, OpVT)) return SDValue(); // Inverse operator isn't legal. DoXform = true; InvCC = true; } if (DoXform) { SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS); if (isSlctCC) return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result, Slct.getOperand(0), Slct.getOperand(1), CC); SDValue CCOp = Slct.getOperand(0); if (InvCC) CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(), CCOp.getOperand(0), CCOp.getOperand(1), CC); return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT, CCOp, OtherOp, Result); } return SDValue(); } /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD. static SDValue PerformADDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { // added by evan in r37685 with no testcase. SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) { SDValue Result = combineSelectAndUse(N, N0, N1, DCI); if (Result.getNode()) return Result; } if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) { SDValue Result = combineSelectAndUse(N, N1, N0, DCI); if (Result.getNode()) return Result; } return SDValue(); } /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. static SDValue PerformSUBCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { // added by evan in r37685 with no testcase. SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) { SDValue Result = combineSelectAndUse(N, N1, N0, DCI); if (Result.getNode()) return Result; } return SDValue(); } /// PerformFMRRDCombine - Target-specific dag combine xforms for ARMISD::FMRRD. static SDValue PerformFMRRDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { // fmrrd(fmdrr x, y) -> x,y SDValue InDouble = N->getOperand(0); if (InDouble.getOpcode() == ARMISD::FMDRR) return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1)); return SDValue(); } /// getVShiftImm - Check if this is a valid build_vector for the immediate /// operand of a vector shift operation, where all the elements of the /// build_vector must have the same constant integer value. static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { // Ignore bit_converts. while (Op.getOpcode() == ISD::BIT_CONVERT) Op = Op.getOperand(0); BuildVectorSDNode *BVN = dyn_cast(Op.getNode()); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, ElementBits) || SplatBitSize > ElementBits) return false; Cnt = SplatBits.getSExtValue(); return true; } /// isVShiftLImm - Check if this is a valid build_vector for the immediate /// operand of a vector shift left operation. That value must be in the range: /// 0 <= Value < ElementBits for a left shift; or /// 0 <= Value <= ElementBits for a long left shift. static bool isVShiftLImm(SDValue Op, MVT VT, bool isLong, int64_t &Cnt) { assert(VT.isVector() && "vector shift count is not a vector type"); unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); if (! getVShiftImm(Op, ElementBits, Cnt)) return false; return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits); } /// isVShiftRImm - Check if this is a valid build_vector for the immediate /// operand of a vector shift right operation. For a shift opcode, the value /// is positive, but for an intrinsic the value count must be negative. The /// absolute value must be in the range: /// 1 <= |Value| <= ElementBits for a right shift; or /// 1 <= |Value| <= ElementBits/2 for a narrow right shift. static bool isVShiftRImm(SDValue Op, MVT VT, bool isNarrow, bool isIntrinsic, int64_t &Cnt) { assert(VT.isVector() && "vector shift count is not a vector type"); unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); if (! getVShiftImm(Op, ElementBits, Cnt)) return false; if (isIntrinsic) Cnt = -Cnt; return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits)); } /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics. static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) { unsigned IntNo = cast(N->getOperand(0))->getZExtValue(); switch (IntNo) { default: // Don't do anything for most intrinsics. break; // Vector shifts: check for immediate versions and lower them. // Note: This is done during DAG combining instead of DAG legalizing because // the build_vectors for 64-bit vector element shift counts are generally // not legal, and it is hard to see their values after they get legalized to // loads from a constant pool. case Intrinsic::arm_neon_vshifts: case Intrinsic::arm_neon_vshiftu: case Intrinsic::arm_neon_vshiftls: case Intrinsic::arm_neon_vshiftlu: case Intrinsic::arm_neon_vshiftn: case Intrinsic::arm_neon_vrshifts: case Intrinsic::arm_neon_vrshiftu: case Intrinsic::arm_neon_vrshiftn: case Intrinsic::arm_neon_vqshifts: case Intrinsic::arm_neon_vqshiftu: case Intrinsic::arm_neon_vqshiftsu: case Intrinsic::arm_neon_vqshiftns: case Intrinsic::arm_neon_vqshiftnu: case Intrinsic::arm_neon_vqshiftnsu: case Intrinsic::arm_neon_vqrshiftns: case Intrinsic::arm_neon_vqrshiftnu: case Intrinsic::arm_neon_vqrshiftnsu: { MVT VT = N->getOperand(1).getValueType(); int64_t Cnt; unsigned VShiftOpc = 0; switch (IntNo) { case Intrinsic::arm_neon_vshifts: case Intrinsic::arm_neon_vshiftu: if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) { VShiftOpc = ARMISD::VSHL; break; } if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) { VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? ARMISD::VSHRs : ARMISD::VSHRu); break; } return SDValue(); case Intrinsic::arm_neon_vshiftls: case Intrinsic::arm_neon_vshiftlu: if (isVShiftLImm(N->getOperand(2), VT, true, Cnt)) break; llvm_unreachable("invalid shift count for vshll intrinsic"); case Intrinsic::arm_neon_vrshifts: case Intrinsic::arm_neon_vrshiftu: if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) break; return SDValue(); case Intrinsic::arm_neon_vqshifts: case Intrinsic::arm_neon_vqshiftu: if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) break; return SDValue(); case Intrinsic::arm_neon_vqshiftsu: if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) break; llvm_unreachable("invalid shift count for vqshlu intrinsic"); case Intrinsic::arm_neon_vshiftn: case Intrinsic::arm_neon_vrshiftn: case Intrinsic::arm_neon_vqshiftns: case Intrinsic::arm_neon_vqshiftnu: case Intrinsic::arm_neon_vqshiftnsu: case Intrinsic::arm_neon_vqrshiftns: case Intrinsic::arm_neon_vqrshiftnu: case Intrinsic::arm_neon_vqrshiftnsu: // Narrowing shifts require an immediate right shift. if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt)) break; llvm_unreachable("invalid shift count for narrowing vector shift intrinsic"); default: llvm_unreachable("unhandled vector shift"); } switch (IntNo) { case Intrinsic::arm_neon_vshifts: case Intrinsic::arm_neon_vshiftu: // Opcode already set above. break; case Intrinsic::arm_neon_vshiftls: case Intrinsic::arm_neon_vshiftlu: if (Cnt == VT.getVectorElementType().getSizeInBits()) VShiftOpc = ARMISD::VSHLLi; else VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ? ARMISD::VSHLLs : ARMISD::VSHLLu); break; case Intrinsic::arm_neon_vshiftn: VShiftOpc = ARMISD::VSHRN; break; case Intrinsic::arm_neon_vrshifts: VShiftOpc = ARMISD::VRSHRs; break; case Intrinsic::arm_neon_vrshiftu: VShiftOpc = ARMISD::VRSHRu; break; case Intrinsic::arm_neon_vrshiftn: VShiftOpc = ARMISD::VRSHRN; break; case Intrinsic::arm_neon_vqshifts: VShiftOpc = ARMISD::VQSHLs; break; case Intrinsic::arm_neon_vqshiftu: VShiftOpc = ARMISD::VQSHLu; break; case Intrinsic::arm_neon_vqshiftsu: VShiftOpc = ARMISD::VQSHLsu; break; case Intrinsic::arm_neon_vqshiftns: VShiftOpc = ARMISD::VQSHRNs; break; case Intrinsic::arm_neon_vqshiftnu: VShiftOpc = ARMISD::VQSHRNu; break; case Intrinsic::arm_neon_vqshiftnsu: VShiftOpc = ARMISD::VQSHRNsu; break; case Intrinsic::arm_neon_vqrshiftns: VShiftOpc = ARMISD::VQRSHRNs; break; case Intrinsic::arm_neon_vqrshiftnu: VShiftOpc = ARMISD::VQRSHRNu; break; case Intrinsic::arm_neon_vqrshiftnsu: VShiftOpc = ARMISD::VQRSHRNsu; break; } return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0), N->getOperand(1), DAG.getConstant(Cnt, MVT::i32)); } case Intrinsic::arm_neon_vshiftins: { MVT VT = N->getOperand(1).getValueType(); int64_t Cnt; unsigned VShiftOpc = 0; if (isVShiftLImm(N->getOperand(3), VT, false, Cnt)) VShiftOpc = ARMISD::VSLI; else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt)) VShiftOpc = ARMISD::VSRI; else { llvm_unreachable("invalid shift count for vsli/vsri intrinsic"); } return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0), N->getOperand(1), N->getOperand(2), DAG.getConstant(Cnt, MVT::i32)); } case Intrinsic::arm_neon_vqrshifts: case Intrinsic::arm_neon_vqrshiftu: // No immediate versions of these to check for. break; } return SDValue(); } /// PerformShiftCombine - Checks for immediate versions of vector shifts and /// lowers them. As with the vector shift intrinsics, this is done during DAG /// combining instead of DAG legalizing because the build_vectors for 64-bit /// vector element shift counts are generally not legal, and it is hard to see /// their values after they get legalized to loads from a constant pool. static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { MVT VT = N->getValueType(0); // Nothing to be done for scalar shifts. if (! VT.isVector()) return SDValue(); assert(ST->hasNEON() && "unexpected vector shift"); int64_t Cnt; switch (N->getOpcode()) { default: llvm_unreachable("unexpected shift opcode"); case ISD::SHL: if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0), DAG.getConstant(Cnt, MVT::i32)); break; case ISD::SRA: case ISD::SRL: if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) { unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ? ARMISD::VSHRs : ARMISD::VSHRu); return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0), DAG.getConstant(Cnt, MVT::i32)); } } return SDValue(); } /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND, /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND. static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { SDValue N0 = N->getOperand(0); // Check for sign- and zero-extensions of vector extract operations of 8- // and 16-bit vector elements. NEON supports these directly. They are // handled during DAG combining because type legalization will promote them // to 32-bit types and it is messy to recognize the operations after that. if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { SDValue Vec = N0.getOperand(0); SDValue Lane = N0.getOperand(1); MVT VT = N->getValueType(0); MVT EltVT = N0.getValueType(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (VT == MVT::i32 && (EltVT == MVT::i8 || EltVT == MVT::i16) && TLI.isTypeLegal(Vec.getValueType())) { unsigned Opc = 0; switch (N->getOpcode()) { default: llvm_unreachable("unexpected opcode"); case ISD::SIGN_EXTEND: Opc = ARMISD::VGETLANEs; break; case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: Opc = ARMISD::VGETLANEu; break; } return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane); } } return SDValue(); } SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { switch (N->getOpcode()) { default: break; case ISD::ADD: return PerformADDCombine(N, DCI); case ISD::SUB: return PerformSUBCombine(N, DCI); case ARMISD::FMRRD: return PerformFMRRDCombine(N, DCI); case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG); case ISD::SHL: case ISD::SRA: case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget); case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget); } return SDValue(); } /// isLegalAddressImmediate - Return true if the integer value can be used /// as the offset of the target addressing mode for load / store of the /// given type. static bool isLegalAddressImmediate(int64_t V, MVT VT, const ARMSubtarget *Subtarget) { if (V == 0) return true; if (!VT.isSimple()) return false; if (Subtarget->isThumb()) { // FIXME for thumb2 if (V < 0) return false; unsigned Scale = 1; switch (VT.getSimpleVT()) { default: return false; case MVT::i1: case MVT::i8: // Scale == 1; break; case MVT::i16: // Scale == 2; Scale = 2; break; case MVT::i32: // Scale == 4; Scale = 4; break; } if ((V & (Scale - 1)) != 0) return false; V /= Scale; return V == (V & ((1LL << 5) - 1)); } if (V < 0) V = - V; switch (VT.getSimpleVT()) { default: return false; case MVT::i1: case MVT::i8: case MVT::i32: // +- imm12 return V == (V & ((1LL << 12) - 1)); case MVT::i16: // +- imm8 return V == (V & ((1LL << 8) - 1)); case MVT::f32: case MVT::f64: if (!Subtarget->hasVFP2()) return false; if ((V & 3) != 0) return false; V >>= 2; return V == (V & ((1LL << 8) - 1)); } } /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const { MVT VT = getValueType(Ty, true); if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget)) return false; // Can never fold addr of global into load/store. if (AM.BaseGV) return false; switch (AM.Scale) { case 0: // no scale reg, must be "r+i" or "r", or "i". break; case 1: if (Subtarget->isThumb()) // FIXME for thumb2 return false; // FALL THROUGH. default: // ARM doesn't support any R+R*scale+imm addr modes. if (AM.BaseOffs) return false; if (!VT.isSimple()) return false; int Scale = AM.Scale; switch (VT.getSimpleVT()) { default: return false; case MVT::i1: case MVT::i8: case MVT::i32: case MVT::i64: // This assumes i64 is legalized to a pair of i32. If not (i.e. // ldrd / strd are used, then its address mode is same as i16. // r + r if (Scale < 0) Scale = -Scale; if (Scale == 1) return true; // r + r << imm return isPowerOf2_32(Scale & ~1); case MVT::i16: // r + r if (((unsigned)AM.HasBaseReg + Scale) <= 2) return true; return false; case MVT::isVoid: // Note, we allow "void" uses (basically, uses that aren't loads or // stores), because arm allows folding a scale into many arithmetic // operations. This should be made more precise and revisited later. // Allow r << imm, but the imm has to be a multiple of two. if (AM.Scale & 1) return false; return isPowerOf2_32(AM.Scale); } break; } return true; } static bool getARMIndexedAddressParts(SDNode *Ptr, MVT VT, bool isSEXTLoad, SDValue &Base, SDValue &Offset, bool &isInc, SelectionDAG &DAG) { if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) return false; if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) { // AddressingMode 3 Base = Ptr->getOperand(0); if (ConstantSDNode *RHS = dyn_cast(Ptr->getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if (RHSC < 0 && RHSC > -256) { assert(Ptr->getOpcode() == ISD::ADD); isInc = false; Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); return true; } } isInc = (Ptr->getOpcode() == ISD::ADD); Offset = Ptr->getOperand(1); return true; } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) { // AddressingMode 2 if (ConstantSDNode *RHS = dyn_cast(Ptr->getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if (RHSC < 0 && RHSC > -0x1000) { assert(Ptr->getOpcode() == ISD::ADD); isInc = false; Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); Base = Ptr->getOperand(0); return true; } } if (Ptr->getOpcode() == ISD::ADD) { isInc = true; ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0)); if (ShOpcVal != ARM_AM::no_shift) { Base = Ptr->getOperand(1); Offset = Ptr->getOperand(0); } else { Base = Ptr->getOperand(0); Offset = Ptr->getOperand(1); } return true; } isInc = (Ptr->getOpcode() == ISD::ADD); Base = Ptr->getOperand(0); Offset = Ptr->getOperand(1); return true; } // FIXME: Use FLDM / FSTM to emulate indexed FP load / store. return false; } static bool getT2IndexedAddressParts(SDNode *Ptr, MVT VT, bool isSEXTLoad, SDValue &Base, SDValue &Offset, bool &isInc, SelectionDAG &DAG) { if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) return false; Base = Ptr->getOperand(0); if (ConstantSDNode *RHS = dyn_cast(Ptr->getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if (RHSC < 0 && RHSC > -0x100) { // 8 bits. assert(Ptr->getOpcode() == ISD::ADD); isInc = false; Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); return true; } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero. isInc = Ptr->getOpcode() == ISD::ADD; Offset = DAG.getConstant(RHSC, RHS->getValueType(0)); return true; } } return false; } /// getPreIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if the node's address /// can be legally represented as pre-indexed load / store address. bool ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { if (Subtarget->isThumb1Only()) return false; MVT VT; SDValue Ptr; bool isSEXTLoad = false; if (LoadSDNode *LD = dyn_cast(N)) { Ptr = LD->getBasePtr(); VT = LD->getMemoryVT(); isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; } else if (StoreSDNode *ST = dyn_cast(N)) { Ptr = ST->getBasePtr(); VT = ST->getMemoryVT(); } else return false; bool isInc; bool isLegal = false; if (Subtarget->isThumb() && Subtarget->hasThumb2()) isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, Offset, isInc, DAG); else isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, Offset, isInc, DAG); if (!isLegal) return false; AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC; return true; } /// getPostIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if this node can be /// combined with a load / store to form a post-indexed load / store. bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { if (Subtarget->isThumb1Only()) return false; MVT VT; SDValue Ptr; bool isSEXTLoad = false; if (LoadSDNode *LD = dyn_cast(N)) { VT = LD->getMemoryVT(); isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; } else if (StoreSDNode *ST = dyn_cast(N)) { VT = ST->getMemoryVT(); } else return false; bool isInc; bool isLegal = false; if (Subtarget->isThumb() && Subtarget->hasThumb2()) isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, isInc, DAG); else isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, isInc, DAG); if (!isLegal) return false; AM = isInc ? ISD::POST_INC : ISD::POST_DEC; return true; } void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, const APInt &Mask, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth) const { KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); switch (Op.getOpcode()) { default: break; case ARMISD::CMOV: { // Bits are known zero/one if known on the LHS and RHS. DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); if (KnownZero == 0 && KnownOne == 0) return; APInt KnownZeroRHS, KnownOneRHS; DAG.ComputeMaskedBits(Op.getOperand(1), Mask, KnownZeroRHS, KnownOneRHS, Depth+1); KnownZero &= KnownZeroRHS; KnownOne &= KnownOneRHS; return; } } } //===----------------------------------------------------------------------===// // ARM Inline Assembly Support //===----------------------------------------------------------------------===// /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. ARMTargetLowering::ConstraintType ARMTargetLowering::getConstraintType(const std::string &Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 'l': return C_RegisterClass; case 'w': return C_RegisterClass; } } return TargetLowering::getConstraintType(Constraint); } std::pair ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const { if (Constraint.size() == 1) { // GCC RS6000 Constraint Letters switch (Constraint[0]) { case 'l': if (Subtarget->isThumb1Only()) return std::make_pair(0U, ARM::tGPRRegisterClass); else return std::make_pair(0U, ARM::GPRRegisterClass); case 'r': return std::make_pair(0U, ARM::GPRRegisterClass); case 'w': if (VT == MVT::f32) return std::make_pair(0U, ARM::SPRRegisterClass); if (VT == MVT::f64) return std::make_pair(0U, ARM::DPRRegisterClass); break; } } return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); } std::vector ARMTargetLowering:: getRegClassForInlineAsmConstraint(const std::string &Constraint, MVT VT) const { if (Constraint.size() != 1) return std::vector(); switch (Constraint[0]) { // GCC ARM Constraint Letters default: break; case 'l': return make_vector(ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R4, ARM::R5, ARM::R6, ARM::R7, 0); case 'r': return make_vector(ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R4, ARM::R5, ARM::R6, ARM::R7, ARM::R8, ARM::R9, ARM::R10, ARM::R11, ARM::R12, ARM::LR, 0); case 'w': if (VT == MVT::f32) return make_vector(ARM::S0, ARM::S1, ARM::S2, ARM::S3, ARM::S4, ARM::S5, ARM::S6, ARM::S7, ARM::S8, ARM::S9, ARM::S10, ARM::S11, ARM::S12,ARM::S13,ARM::S14,ARM::S15, ARM::S16,ARM::S17,ARM::S18,ARM::S19, ARM::S20,ARM::S21,ARM::S22,ARM::S23, ARM::S24,ARM::S25,ARM::S26,ARM::S27, ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0); if (VT == MVT::f64) return make_vector(ARM::D0, ARM::D1, ARM::D2, ARM::D3, ARM::D4, ARM::D5, ARM::D6, ARM::D7, ARM::D8, ARM::D9, ARM::D10,ARM::D11, ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0); break; } return std::vector(); } /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Constraint, bool hasMemory, std::vector&Ops, SelectionDAG &DAG) const { SDValue Result(0, 0); switch (Constraint) { default: break; case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': ConstantSDNode *C = dyn_cast(Op); if (!C) return; int64_t CVal64 = C->getSExtValue(); int CVal = (int) CVal64; // None of these constraints allow values larger than 32 bits. Check // that the value fits in an int. if (CVal != CVal64) return; switch (Constraint) { case 'I': if (Subtarget->isThumb1Only()) { // This must be a constant between 0 and 255, for ADD // immediates. if (CVal >= 0 && CVal <= 255) break; } else if (Subtarget->isThumb2()) { // A constant that can be used as an immediate value in a // data-processing instruction. if (ARM_AM::getT2SOImmVal(CVal) != -1) break; } else { // A constant that can be used as an immediate value in a // data-processing instruction. if (ARM_AM::getSOImmVal(CVal) != -1) break; } return; case 'J': if (Subtarget->isThumb()) { // FIXME thumb2 // This must be a constant between -255 and -1, for negated ADD // immediates. This can be used in GCC with an "n" modifier that // prints the negated value, for use with SUB instructions. It is // not useful otherwise but is implemented for compatibility. if (CVal >= -255 && CVal <= -1) break; } else { // This must be a constant between -4095 and 4095. It is not clear // what this constraint is intended for. Implemented for // compatibility with GCC. if (CVal >= -4095 && CVal <= 4095) break; } return; case 'K': if (Subtarget->isThumb1Only()) { // A 32-bit value where only one byte has a nonzero value. Exclude // zero to match GCC. This constraint is used by GCC internally for // constants that can be loaded with a move/shift combination. // It is not useful otherwise but is implemented for compatibility. if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal)) break; } else if (Subtarget->isThumb2()) { // A constant whose bitwise inverse can be used as an immediate // value in a data-processing instruction. This can be used in GCC // with a "B" modifier that prints the inverted value, for use with // BIC and MVN instructions. It is not useful otherwise but is // implemented for compatibility. if (ARM_AM::getT2SOImmVal(~CVal) != -1) break; } else { // A constant whose bitwise inverse can be used as an immediate // value in a data-processing instruction. This can be used in GCC // with a "B" modifier that prints the inverted value, for use with // BIC and MVN instructions. It is not useful otherwise but is // implemented for compatibility. if (ARM_AM::getSOImmVal(~CVal) != -1) break; } return; case 'L': if (Subtarget->isThumb1Only()) { // This must be a constant between -7 and 7, // for 3-operand ADD/SUB immediate instructions. if (CVal >= -7 && CVal < 7) break; } else if (Subtarget->isThumb2()) { // A constant whose negation can be used as an immediate value in a // data-processing instruction. This can be used in GCC with an "n" // modifier that prints the negated value, for use with SUB // instructions. It is not useful otherwise but is implemented for // compatibility. if (ARM_AM::getT2SOImmVal(-CVal) != -1) break; } else { // A constant whose negation can be used as an immediate value in a // data-processing instruction. This can be used in GCC with an "n" // modifier that prints the negated value, for use with SUB // instructions. It is not useful otherwise but is implemented for // compatibility. if (ARM_AM::getSOImmVal(-CVal) != -1) break; } return; case 'M': if (Subtarget->isThumb()) { // FIXME thumb2 // This must be a multiple of 4 between 0 and 1020, for // ADD sp + immediate. if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0)) break; } else { // A power of two or a constant between 0 and 32. This is used in // GCC for the shift amount on shifted register operands, but it is // useful in general for any shift amounts. if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0)) break; } return; case 'N': if (Subtarget->isThumb()) { // FIXME thumb2 // This must be a constant between 0 and 31, for shift amounts. if (CVal >= 0 && CVal <= 31) break; } return; case 'O': if (Subtarget->isThumb()) { // FIXME thumb2 // This must be a multiple of 4 between -508 and 508, for // ADD/SUB sp = sp + immediate. if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0)) break; } return; } Result = DAG.getTargetConstant(CVal, Op.getValueType()); break; } if (Result.getNode()) { Ops.push_back(Result); return; } return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory, Ops, DAG); }