//===-- llvm/CodeGen/VirtRegMap.h - Virtual Register Map -*- C++ -*--------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a virtual register map. This maps virtual registers to // physical registers and virtual registers to stack slots. It is created and // updated by a register allocator and then used by a machine code rewriter that // adds spill code and rewrites virtual into physical register references. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_VIRTREGMAP_H #define LLVM_CODEGEN_VIRTREGMAP_H #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/IndexedMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include namespace llvm { class LiveIntervals; class MachineInstr; class MachineFunction; class MachineRegisterInfo; class TargetInstrInfo; class TargetRegisterInfo; class raw_ostream; class VirtRegMap : public MachineFunctionPass { public: enum { NO_PHYS_REG = 0, NO_STACK_SLOT = (1L << 30)-1, MAX_STACK_SLOT = (1L << 18)-1 }; enum ModRef { isRef = 1, isMod = 2, isModRef = 3 }; typedef std::multimap > MI2VirtMapTy; private: MachineRegisterInfo *MRI; const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; MachineFunction *MF; DenseMap allocatableRCRegs; /// Virt2PhysMap - This is a virtual to physical register /// mapping. Each virtual register is required to have an entry in /// it; even spilled virtual registers (the register mapped to a /// spilled register is the temporary used to load it from the /// stack). IndexedMap Virt2PhysMap; /// Virt2StackSlotMap - This is virtual register to stack slot /// mapping. Each spilled virtual register has an entry in it /// which corresponds to the stack slot this register is spilled /// at. IndexedMap Virt2StackSlotMap; /// Virt2ReMatIdMap - This is virtual register to rematerialization id /// mapping. Each spilled virtual register that should be remat'd has an /// entry in it which corresponds to the remat id. IndexedMap Virt2ReMatIdMap; /// Virt2SplitMap - This is virtual register to splitted virtual register /// mapping. IndexedMap Virt2SplitMap; /// Virt2SplitKillMap - This is splitted virtual register to its last use /// (kill) index mapping. IndexedMap Virt2SplitKillMap; /// ReMatMap - This is virtual register to re-materialized instruction /// mapping. Each virtual register whose definition is going to be /// re-materialized has an entry in it. IndexedMap ReMatMap; /// MI2VirtMap - This is MachineInstr to virtual register /// mapping. In the case of memory spill code being folded into /// instructions, we need to know which virtual register was /// read/written by this instruction. MI2VirtMapTy MI2VirtMap; /// SpillPt2VirtMap - This records the virtual registers which should /// be spilled right after the MachineInstr due to live interval /// splitting. std::map > > SpillPt2VirtMap; /// RestorePt2VirtMap - This records the virtual registers which should /// be restored right before the MachineInstr due to live interval /// splitting. std::map > RestorePt2VirtMap; /// EmergencySpillMap - This records the physical registers that should /// be spilled / restored around the MachineInstr since the register /// allocator has run out of registers. std::map > EmergencySpillMap; /// EmergencySpillSlots - This records emergency spill slots used to /// spill physical registers when the register allocator runs out of /// registers. Ideally only one stack slot is used per function per /// register class. std::map EmergencySpillSlots; /// ReMatId - Instead of assigning a stack slot to a to be rematerialized /// virtual register, an unique id is being assigned. This keeps track of /// the highest id used so far. Note, this starts at (1<<18) to avoid /// conflicts with stack slot numbers. int ReMatId; /// LowSpillSlot, HighSpillSlot - Lowest and highest spill slot indexes. int LowSpillSlot, HighSpillSlot; /// SpillSlotToUsesMap - Records uses for each register spill slot. SmallVector, 8> SpillSlotToUsesMap; /// ImplicitDefed - One bit for each virtual register. If set it indicates /// the register is implicitly defined. BitVector ImplicitDefed; /// UnusedRegs - A list of physical registers that have not been used. BitVector UnusedRegs; VirtRegMap(const VirtRegMap&); // DO NOT IMPLEMENT void operator=(const VirtRegMap&); // DO NOT IMPLEMENT public: static char ID; VirtRegMap() : MachineFunctionPass(&ID), Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT), Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0), Virt2SplitKillMap(0), ReMatMap(NULL), ReMatId(MAX_STACK_SLOT+1), LowSpillSlot(NO_STACK_SLOT), HighSpillSlot(NO_STACK_SLOT) { } virtual bool runOnMachineFunction(MachineFunction &MF); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } void grow(); /// @brief returns true if the specified virtual register is /// mapped to a physical register bool hasPhys(unsigned virtReg) const { return getPhys(virtReg) != NO_PHYS_REG; } /// @brief returns the physical register mapped to the specified /// virtual register unsigned getPhys(unsigned virtReg) const { assert(TargetRegisterInfo::isVirtualRegister(virtReg)); return Virt2PhysMap[virtReg]; } /// @brief creates a mapping for the specified virtual register to /// the specified physical register void assignVirt2Phys(unsigned virtReg, unsigned physReg) { assert(TargetRegisterInfo::isVirtualRegister(virtReg) && TargetRegisterInfo::isPhysicalRegister(physReg)); assert(Virt2PhysMap[virtReg] == NO_PHYS_REG && "attempt to assign physical register to already mapped " "virtual register"); Virt2PhysMap[virtReg] = physReg; } /// @brief clears the specified virtual register's, physical /// register mapping void clearVirt(unsigned virtReg) { assert(TargetRegisterInfo::isVirtualRegister(virtReg)); assert(Virt2PhysMap[virtReg] != NO_PHYS_REG && "attempt to clear a not assigned virtual register"); Virt2PhysMap[virtReg] = NO_PHYS_REG; } /// @brief clears all virtual to physical register mappings void clearAllVirt() { Virt2PhysMap.clear(); grow(); } /// @brief returns the register allocation preference. unsigned getRegAllocPref(unsigned virtReg); /// @brief records virtReg is a split live interval from SReg. void setIsSplitFromReg(unsigned virtReg, unsigned SReg) { Virt2SplitMap[virtReg] = SReg; } /// @brief returns the live interval virtReg is split from. unsigned getPreSplitReg(unsigned virtReg) { return Virt2SplitMap[virtReg]; } /// @brief returns true if the specified virtual register is not /// mapped to a stack slot or rematerialized. bool isAssignedReg(unsigned virtReg) const { if (getStackSlot(virtReg) == NO_STACK_SLOT && getReMatId(virtReg) == NO_STACK_SLOT) return true; // Split register can be assigned a physical register as well as a // stack slot or remat id. return (Virt2SplitMap[virtReg] && Virt2PhysMap[virtReg] != NO_PHYS_REG); } /// @brief returns the stack slot mapped to the specified virtual /// register int getStackSlot(unsigned virtReg) const { assert(TargetRegisterInfo::isVirtualRegister(virtReg)); return Virt2StackSlotMap[virtReg]; } /// @brief returns the rematerialization id mapped to the specified virtual /// register int getReMatId(unsigned virtReg) const { assert(TargetRegisterInfo::isVirtualRegister(virtReg)); return Virt2ReMatIdMap[virtReg]; } /// @brief create a mapping for the specifed virtual register to /// the next available stack slot int assignVirt2StackSlot(unsigned virtReg); /// @brief create a mapping for the specified virtual register to /// the specified stack slot void assignVirt2StackSlot(unsigned virtReg, int frameIndex); /// @brief assign an unique re-materialization id to the specified /// virtual register. int assignVirtReMatId(unsigned virtReg); /// @brief assign an unique re-materialization id to the specified /// virtual register. void assignVirtReMatId(unsigned virtReg, int id); /// @brief returns true if the specified virtual register is being /// re-materialized. bool isReMaterialized(unsigned virtReg) const { return ReMatMap[virtReg] != NULL; } /// @brief returns the original machine instruction being re-issued /// to re-materialize the specified virtual register. MachineInstr *getReMaterializedMI(unsigned virtReg) const { return ReMatMap[virtReg]; } /// @brief records the specified virtual register will be /// re-materialized and the original instruction which will be re-issed /// for this purpose. If parameter all is true, then all uses of the /// registers are rematerialized and it's safe to delete the definition. void setVirtIsReMaterialized(unsigned virtReg, MachineInstr *def) { ReMatMap[virtReg] = def; } /// @brief record the last use (kill) of a split virtual register. void addKillPoint(unsigned virtReg, unsigned index) { Virt2SplitKillMap[virtReg] = index; } unsigned getKillPoint(unsigned virtReg) const { return Virt2SplitKillMap[virtReg]; } /// @brief remove the last use (kill) of a split virtual register. void removeKillPoint(unsigned virtReg) { Virt2SplitKillMap[virtReg] = 0; } /// @brief returns true if the specified MachineInstr is a spill point. bool isSpillPt(MachineInstr *Pt) const { return SpillPt2VirtMap.find(Pt) != SpillPt2VirtMap.end(); } /// @brief returns the virtual registers that should be spilled due to /// splitting right after the specified MachineInstr. std::vector > &getSpillPtSpills(MachineInstr *Pt) { return SpillPt2VirtMap[Pt]; } /// @brief records the specified MachineInstr as a spill point for virtReg. void addSpillPoint(unsigned virtReg, bool isKill, MachineInstr *Pt) { std::map > >::iterator I = SpillPt2VirtMap.find(Pt); if (I != SpillPt2VirtMap.end()) I->second.push_back(std::make_pair(virtReg, isKill)); else { std::vector > Virts; Virts.push_back(std::make_pair(virtReg, isKill)); SpillPt2VirtMap.insert(std::make_pair(Pt, Virts)); } } /// @brief - transfer spill point information from one instruction to /// another. void transferSpillPts(MachineInstr *Old, MachineInstr *New) { std::map > >::iterator I = SpillPt2VirtMap.find(Old); if (I == SpillPt2VirtMap.end()) return; while (!I->second.empty()) { unsigned virtReg = I->second.back().first; bool isKill = I->second.back().second; I->second.pop_back(); addSpillPoint(virtReg, isKill, New); } SpillPt2VirtMap.erase(I); } /// @brief returns true if the specified MachineInstr is a restore point. bool isRestorePt(MachineInstr *Pt) const { return RestorePt2VirtMap.find(Pt) != RestorePt2VirtMap.end(); } /// @brief returns the virtual registers that should be restoreed due to /// splitting right after the specified MachineInstr. std::vector &getRestorePtRestores(MachineInstr *Pt) { return RestorePt2VirtMap[Pt]; } /// @brief records the specified MachineInstr as a restore point for virtReg. void addRestorePoint(unsigned virtReg, MachineInstr *Pt) { std::map >::iterator I = RestorePt2VirtMap.find(Pt); if (I != RestorePt2VirtMap.end()) I->second.push_back(virtReg); else { std::vector Virts; Virts.push_back(virtReg); RestorePt2VirtMap.insert(std::make_pair(Pt, Virts)); } } /// @brief - transfer restore point information from one instruction to /// another. void transferRestorePts(MachineInstr *Old, MachineInstr *New) { std::map >::iterator I = RestorePt2VirtMap.find(Old); if (I == RestorePt2VirtMap.end()) return; while (!I->second.empty()) { unsigned virtReg = I->second.back(); I->second.pop_back(); addRestorePoint(virtReg, New); } RestorePt2VirtMap.erase(I); } /// @brief records that the specified physical register must be spilled /// around the specified machine instr. void addEmergencySpill(unsigned PhysReg, MachineInstr *MI) { if (EmergencySpillMap.find(MI) != EmergencySpillMap.end()) EmergencySpillMap[MI].push_back(PhysReg); else { std::vector PhysRegs; PhysRegs.push_back(PhysReg); EmergencySpillMap.insert(std::make_pair(MI, PhysRegs)); } } /// @brief returns true if one or more physical registers must be spilled /// around the specified instruction. bool hasEmergencySpills(MachineInstr *MI) const { return EmergencySpillMap.find(MI) != EmergencySpillMap.end(); } /// @brief returns the physical registers to be spilled and restored around /// the instruction. std::vector &getEmergencySpills(MachineInstr *MI) { return EmergencySpillMap[MI]; } /// @brief - transfer emergency spill information from one instruction to /// another. void transferEmergencySpills(MachineInstr *Old, MachineInstr *New) { std::map >::iterator I = EmergencySpillMap.find(Old); if (I == EmergencySpillMap.end()) return; while (!I->second.empty()) { unsigned virtReg = I->second.back(); I->second.pop_back(); addEmergencySpill(virtReg, New); } EmergencySpillMap.erase(I); } /// @brief return or get a emergency spill slot for the register class. int getEmergencySpillSlot(const TargetRegisterClass *RC); /// @brief Return lowest spill slot index. int getLowSpillSlot() const { return LowSpillSlot; } /// @brief Return highest spill slot index. int getHighSpillSlot() const { return HighSpillSlot; } /// @brief Records a spill slot use. void addSpillSlotUse(int FrameIndex, MachineInstr *MI); /// @brief Returns true if spill slot has been used. bool isSpillSlotUsed(int FrameIndex) const { assert(FrameIndex >= 0 && "Spill slot index should not be negative!"); return !SpillSlotToUsesMap[FrameIndex-LowSpillSlot].empty(); } /// @brief Mark the specified register as being implicitly defined. void setIsImplicitlyDefined(unsigned VirtReg) { ImplicitDefed.set(VirtReg-TargetRegisterInfo::FirstVirtualRegister); } /// @brief Returns true if the virtual register is implicitly defined. bool isImplicitlyDefined(unsigned VirtReg) const { return ImplicitDefed[VirtReg-TargetRegisterInfo::FirstVirtualRegister]; } /// @brief Updates information about the specified virtual register's value /// folded into newMI machine instruction. void virtFolded(unsigned VirtReg, MachineInstr *OldMI, MachineInstr *NewMI, ModRef MRInfo); /// @brief Updates information about the specified virtual register's value /// folded into the specified machine instruction. void virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo); /// @brief returns the virtual registers' values folded in memory /// operands of this instruction std::pair getFoldedVirts(MachineInstr* MI) const { return MI2VirtMap.equal_range(MI); } /// RemoveMachineInstrFromMaps - MI is being erased, remove it from the /// the folded instruction map and spill point map. void RemoveMachineInstrFromMaps(MachineInstr *MI); /// FindUnusedRegisters - Gather a list of allocatable registers that /// have not been allocated to any virtual register. bool FindUnusedRegisters(LiveIntervals* LIs); /// HasUnusedRegisters - Return true if there are any allocatable registers /// that have not been allocated to any virtual register. bool HasUnusedRegisters() const { return !UnusedRegs.none(); } /// setRegisterUsed - Remember the physical register is now used. void setRegisterUsed(unsigned Reg) { UnusedRegs.reset(Reg); } /// isRegisterUnused - Return true if the physical register has not been /// used. bool isRegisterUnused(unsigned Reg) const { return UnusedRegs[Reg]; } /// getFirstUnusedRegister - Return the first physical register that has not /// been used. unsigned getFirstUnusedRegister(const TargetRegisterClass *RC) { int Reg = UnusedRegs.find_first(); while (Reg != -1) { if (allocatableRCRegs[RC][Reg]) return (unsigned)Reg; Reg = UnusedRegs.find_next(Reg); } return 0; } void print(raw_ostream &OS, const Module* M = 0) const; void dump() const; }; inline raw_ostream &operator<<(raw_ostream &OS, const VirtRegMap &VRM) { VRM.print(OS); return OS; } } // End llvm namespace #endif