//===- CrashDebugger.cpp - Debug compilation crashes ----------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the bugpoint internals that narrow down compilation crashes // //===----------------------------------------------------------------------===// #include "BugDriver.h" #include "ListReducer.h" #include "llvm/Constant.h" #include "llvm/iTerminators.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/PassManager.h" #include "llvm/SymbolTable.h" #include "llvm/Type.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Bytecode/Writer.h" #include "llvm/Support/CFG.h" #include "llvm/Support/ToolRunner.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Cloning.h" #include "Support/FileUtilities.h" #include #include using namespace llvm; namespace llvm { class ReducePassList : public ListReducer { BugDriver &BD; public: ReducePassList(BugDriver &bd) : BD(bd) {} // doTest - Return true iff running the "removed" passes succeeds, and // running the "Kept" passes fail when run on the output of the "removed" // passes. If we return true, we update the current module of bugpoint. // virtual TestResult doTest(std::vector &Removed, std::vector &Kept); }; } ReducePassList::TestResult ReducePassList::doTest(std::vector &Prefix, std::vector &Suffix) { std::string PrefixOutput; Module *OrigProgram = 0; if (!Prefix.empty()) { std::cout << "Checking to see if these passes crash: " << getPassesString(Prefix) << ": "; if (BD.runPasses(Prefix, PrefixOutput)) return KeepPrefix; OrigProgram = BD.Program; BD.Program = BD.ParseInputFile(PrefixOutput); if (BD.Program == 0) { std::cerr << BD.getToolName() << ": Error reading bytecode file '" << PrefixOutput << "'!\n"; exit(1); } removeFile(PrefixOutput); } std::cout << "Checking to see if these passes crash: " << getPassesString(Suffix) << ": "; if (BD.runPasses(Suffix)) { delete OrigProgram; // The suffix crashes alone... return KeepSuffix; } // Nothing failed, restore state... if (OrigProgram) { delete BD.Program; BD.Program = OrigProgram; } return NoFailure; } namespace llvm { class ReduceCrashingFunctions : public ListReducer { BugDriver &BD; bool (*TestFn)(BugDriver &, Module *); public: ReduceCrashingFunctions(BugDriver &bd, bool (*testFn)(BugDriver &, Module *)) : BD(bd), TestFn(testFn) {} virtual TestResult doTest(std::vector &Prefix, std::vector &Kept) { if (!Kept.empty() && TestFuncs(Kept)) return KeepSuffix; if (!Prefix.empty() && TestFuncs(Prefix)) return KeepPrefix; return NoFailure; } bool TestFuncs(std::vector &Prefix); }; } bool ReduceCrashingFunctions::TestFuncs(std::vector &Funcs) { // Clone the program to try hacking it apart... Module *M = CloneModule(BD.getProgram()); // Convert list to set for fast lookup... std::set Functions; for (unsigned i = 0, e = Funcs.size(); i != e; ++i) { Function *CMF = M->getFunction(Funcs[i]->getName(), Funcs[i]->getFunctionType()); assert(CMF && "Function not in module?!"); Functions.insert(CMF); } std::cout << "Checking for crash with only these functions:"; unsigned NumPrint = Funcs.size(); if (NumPrint > 10) NumPrint = 10; for (unsigned i = 0; i != NumPrint; ++i) std::cout << " " << Funcs[i]->getName(); if (NumPrint < Funcs.size()) std::cout << "... <" << Funcs.size() << " total>"; std::cout << ": "; // Loop over and delete any functions which we aren't supposed to be playing // with... for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) if (!I->isExternal() && !Functions.count(I)) DeleteFunctionBody(I); // Try running the hacked up program... if (TestFn(BD, M)) { BD.setNewProgram(M); // It crashed, keep the trimmed version... // Make sure to use function pointers that point into the now-current // module. Funcs.assign(Functions.begin(), Functions.end()); return true; } delete M; return false; } namespace { /// ReduceCrashingBlocks reducer - This works by setting the terminators of /// all terminators except the specified basic blocks to a 'ret' instruction, /// then running the simplify-cfg pass. This has the effect of chopping up /// the CFG really fast which can reduce large functions quickly. /// class ReduceCrashingBlocks : public ListReducer { BugDriver &BD; bool (*TestFn)(BugDriver &, Module *); public: ReduceCrashingBlocks(BugDriver &bd, bool (*testFn)(BugDriver &, Module *)) : BD(bd), TestFn(testFn) {} virtual TestResult doTest(std::vector &Prefix, std::vector &Kept) { if (!Kept.empty() && TestBlocks(Kept)) return KeepSuffix; if (!Prefix.empty() && TestBlocks(Prefix)) return KeepPrefix; return NoFailure; } bool TestBlocks(std::vector &Prefix); }; } bool ReduceCrashingBlocks::TestBlocks(std::vector &BBs) { // Clone the program to try hacking it apart... Module *M = CloneModule(BD.getProgram()); // Convert list to set for fast lookup... std::set Blocks; for (unsigned i = 0, e = BBs.size(); i != e; ++i) { // Convert the basic block from the original module to the new module... const Function *F = BBs[i]->getParent(); Function *CMF = M->getFunction(F->getName(), F->getFunctionType()); assert(CMF && "Function not in module?!"); // Get the mapped basic block... Function::iterator CBI = CMF->begin(); std::advance(CBI, std::distance(F->begin(), Function::const_iterator(BBs[i]))); Blocks.insert(CBI); } std::cout << "Checking for crash with only these blocks:"; unsigned NumPrint = Blocks.size(); if (NumPrint > 10) NumPrint = 10; for (unsigned i = 0, e = NumPrint; i != e; ++i) std::cout << " " << BBs[i]->getName(); if (NumPrint < Blocks.size()) std::cout << "... <" << Blocks.size() << " total>"; std::cout << ": "; // Loop over and delete any hack up any blocks that are not listed... for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) for (Function::iterator BB = I->begin(), E = I->end(); BB != E; ++BB) if (!Blocks.count(BB) && BB->getTerminator()->getNumSuccessors()) { // Loop over all of the successors of this block, deleting any PHI nodes // that might include it. for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) (*SI)->removePredecessor(BB); if (BB->getTerminator()->getType() != Type::VoidTy) BB->getTerminator()->replaceAllUsesWith( Constant::getNullValue(BB->getTerminator()->getType())); // Delete the old terminator instruction... BB->getInstList().pop_back(); // Add a new return instruction of the appropriate type... const Type *RetTy = BB->getParent()->getReturnType(); new ReturnInst(RetTy == Type::VoidTy ? 0 : Constant::getNullValue(RetTy), BB); } // The CFG Simplifier pass may delete one of the basic blocks we are // interested in. If it does we need to take the block out of the list. Make // a "persistent mapping" by turning basic blocks into pairs. // This won't work well if blocks are unnamed, but that is just the risk we // have to take. std::vector > BlockInfo; for (std::set::iterator I = Blocks.begin(), E = Blocks.end(); I != E; ++I) BlockInfo.push_back(std::make_pair((*I)->getParent(), (*I)->getName())); // Now run the CFG simplify pass on the function... PassManager Passes; Passes.add(createCFGSimplificationPass()); Passes.add(createVerifierPass()); Passes.run(*M); // Try running on the hacked up program... if (TestFn(BD, M)) { BD.setNewProgram(M); // It crashed, keep the trimmed version... // Make sure to use basic block pointers that point into the now-current // module, and that they don't include any deleted blocks. BBs.clear(); for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { SymbolTable &ST = BlockInfo[i].first->getSymbolTable(); SymbolTable::iterator I = ST.find(Type::LabelTy); if (I != ST.end() && I->second.count(BlockInfo[i].second)) BBs.push_back(cast(I->second[BlockInfo[i].second])); } return true; } delete M; // It didn't crash, try something else. return false; } /// DebugACrash - Given a predicate that determines whether a component crashes /// on a program, try to destructively reduce the program while still keeping /// the predicate true. static bool DebugACrash(BugDriver &BD, bool (*TestFn)(BugDriver &, Module *)) { bool AnyReduction = false; // See if we can get away with nuking all of the global variable initializers // in the program... if (BD.getProgram()->gbegin() != BD.getProgram()->gend()) { Module *M = CloneModule(BD.getProgram()); bool DeletedInit = false; for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I) if (I->hasInitializer()) { I->setInitializer(0); I->setLinkage(GlobalValue::ExternalLinkage); DeletedInit = true; } if (!DeletedInit) { delete M; // No change made... } else { // See if the program still causes a crash... std::cout << "\nChecking to see if we can delete global inits: "; if (TestFn(BD, M)) { // Still crashes? BD.setNewProgram(M); AnyReduction = true; std::cout << "\n*** Able to remove all global initializers!\n"; } else { // No longer crashes? std::cout << " - Removing all global inits hides problem!\n"; delete M; } } } // Now try to reduce the number of functions in the module to something small. std::vector Functions; for (Module::const_iterator I = BD.getProgram()->begin(), E = BD.getProgram()->end(); I != E; ++I) if (!I->isExternal()) Functions.push_back(I); if (Functions.size() > 1) { std::cout << "\n*** Attempting to reduce the number of functions " "in the testcase\n"; unsigned OldSize = Functions.size(); ReduceCrashingFunctions(BD, TestFn).reduceList(Functions); if (Functions.size() < OldSize) { BD.EmitProgressBytecode("reduced-function"); AnyReduction = true; } } // Attempt to delete entire basic blocks at a time to speed up // convergence... this actually works by setting the terminator of the blocks // to a return instruction then running simplifycfg, which can potentially // shrinks the code dramatically quickly // if (!DisableSimplifyCFG) { std::vector Blocks; for (Module::const_iterator I = BD.getProgram()->begin(), E = BD.getProgram()->end(); I != E; ++I) for (Function::const_iterator FI = I->begin(), E = I->end(); FI !=E; ++FI) Blocks.push_back(FI); ReduceCrashingBlocks(BD, TestFn).reduceList(Blocks); } // FIXME: This should use the list reducer to converge faster by deleting // larger chunks of instructions at a time! unsigned Simplification = 2; do { --Simplification; std::cout << "\n*** Attempting to reduce testcase by deleting instruc" << "tions: Simplification Level #" << Simplification << "\n"; // Now that we have deleted the functions that are unnecessary for the // program, try to remove instructions that are not necessary to cause the // crash. To do this, we loop through all of the instructions in the // remaining functions, deleting them (replacing any values produced with // nulls), and then running ADCE and SimplifyCFG. If the transformed input // still triggers failure, keep deleting until we cannot trigger failure // anymore. // unsigned InstructionsToSkipBeforeDeleting = 0; TryAgain: // Loop over all of the (non-terminator) instructions remaining in the // function, attempting to delete them. unsigned CurInstructionNum = 0; for (Module::const_iterator FI = BD.getProgram()->begin(), E = BD.getProgram()->end(); FI != E; ++FI) if (!FI->isExternal()) for (Function::const_iterator BI = FI->begin(), E = FI->end(); BI != E; ++BI) for (BasicBlock::const_iterator I = BI->begin(), E = --BI->end(); I != E; ++I, ++CurInstructionNum) if (InstructionsToSkipBeforeDeleting) { --InstructionsToSkipBeforeDeleting; } else { std::cout << "Checking instruction '" << I->getName() << "': "; Module *M = BD.deleteInstructionFromProgram(I, Simplification); // Find out if the pass still crashes on this pass... if (TestFn(BD, M)) { // Yup, it does, we delete the old module, and continue trying // to reduce the testcase... BD.setNewProgram(M); AnyReduction = true; InstructionsToSkipBeforeDeleting = CurInstructionNum; goto TryAgain; // I wish I had a multi-level break here! } // This pass didn't crash without this instruction, try the next // one. delete M; } if (InstructionsToSkipBeforeDeleting) { InstructionsToSkipBeforeDeleting = 0; goto TryAgain; } } while (Simplification); // Try to clean up the testcase by running funcresolve and globaldce... std::cout << "\n*** Attempting to perform final cleanups: "; Module *M = CloneModule(BD.getProgram()); M = BD.performFinalCleanups(M, true); // Find out if the pass still crashes on the cleaned up program... if (TestFn(BD, M)) { BD.setNewProgram(M); // Yup, it does, keep the reduced version... AnyReduction = true; } else { delete M; } if (AnyReduction) BD.EmitProgressBytecode("reduced-simplified"); return false; } static bool TestForOptimizerCrash(BugDriver &BD, Module *M) { return BD.runPasses(M); } /// debugOptimizerCrash - This method is called when some pass crashes on input. /// It attempts to prune down the testcase to something reasonable, and figure /// out exactly which pass is crashing. /// bool BugDriver::debugOptimizerCrash() { std::cout << "\n*** Debugging optimizer crash!\n"; // Reduce the list of passes which causes the optimizer to crash... unsigned OldSize = PassesToRun.size(); ReducePassList(*this).reduceList(PassesToRun); std::cout << "\n*** Found crashing pass" << (PassesToRun.size() == 1 ? ": " : "es: ") << getPassesString(PassesToRun) << "\n"; EmitProgressBytecode("passinput"); return DebugACrash(*this, TestForOptimizerCrash); } static bool TestForCodeGenCrash(BugDriver &BD, Module *M) { try { std::cerr << "\n"; BD.compileProgram(M); return false; } catch (ToolExecutionError &TEE) { std::cerr << "\n"; return true; // Tool is still crashing. } } /// debugCodeGeneratorCrash - This method is called when the code generator /// crashes on an input. It attempts to reduce the input as much as possible /// while still causing the code generator to crash. bool BugDriver::debugCodeGeneratorCrash() { std::cerr << "*** Debugging code generator crash!\n"; return DebugACrash(*this, TestForCodeGenCrash); }