//===- MergeFunctions.cpp - Merge identical functions ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass looks for equivalent functions that are mergable and folds them. // // A Function will not be analyzed if: // * it is overridable at runtime (except for weak linkage), or // * it is used by anything other than the callee parameter of a call/invoke // // A hash is computed from the function, based on its type and number of // basic blocks. // // Once all hashes are computed, we perform an expensive equality comparison // on each function pair. This takes n^2/2 comparisons per bucket, so it's // important that the hash function be high quality. The equality comparison // iterates through each instruction in each basic block. // // When a match is found, the functions are folded. We can only fold two // functions when we know that the definition of one of them is not // overridable. // * fold a function marked internal by replacing all of its users. // * fold extern or weak functions by replacing them with a global alias // //===----------------------------------------------------------------------===// // // Future work: // // * fold vector::push_back and vector::push_back. // // These two functions have different types, but in a way that doesn't matter // to us. As long as we never see an S or T itself, using S* and S** is the // same as using a T* and T**. // // * virtual functions. // // Many functions have their address taken by the virtual function table for // the object they belong to. However, as long as it's only used for a lookup // and call, this is irrelevant, and we'd like to fold such implementations. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "mergefunc" #include "llvm/Transforms/IPO.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Statistic.h" #include "llvm/Constants.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include #include using namespace llvm; STATISTIC(NumFunctionsMerged, "Number of functions merged"); STATISTIC(NumMergeFails, "Number of identical function pairings not merged"); namespace { struct VISIBILITY_HIDDEN MergeFunctions : public ModulePass { static char ID; // Pass identification, replacement for typeid MergeFunctions() : ModulePass((intptr_t)&ID) {} bool runOnModule(Module &M); }; } char MergeFunctions::ID = 0; static RegisterPass X("mergefunc", "Merge Functions"); ModulePass *llvm::createMergeFunctionsPass() { return new MergeFunctions(); } static unsigned long hash(const Function *F) { return F->size() ^ reinterpret_cast(F->getType()); //return F->size() ^ F->arg_size() ^ F->getReturnType(); } static bool compare(const Value *V, const Value *U) { assert(!isa(V) && !isa(U) && "Must not compare basic blocks."); assert(V->getType() == U->getType() && "Two of the same operation have operands of different type."); // TODO: If the constant is an expression of F, we should accept that it's // equal to the same expression in terms of G. if (isa(V)) return V == U; // The caller has ensured that ValueMap[V] != U. Since Arguments are // pre-loaded into the ValueMap, and Instructions are added as we go, we know // that this can only be a mis-match. if (isa(V) || isa(V)) return false; if (isa(V) && isa(U)) { const InlineAsm *IAF = cast(V); const InlineAsm *IAG = cast(U); return IAF->getAsmString() == IAG->getAsmString() && IAF->getConstraintString() == IAG->getConstraintString(); } return false; } static bool equals(const BasicBlock *BB1, const BasicBlock *BB2, DenseMap &ValueMap, DenseMap &SpeculationMap) { // Specutively add it anyways. If it's false, we'll notice a difference later, and // this won't matter. ValueMap[BB1] = BB2; BasicBlock::const_iterator FI = BB1->begin(), FE = BB1->end(); BasicBlock::const_iterator GI = BB2->begin(), GE = BB2->end(); do { if (!FI->isSameOperationAs(const_cast(&*GI))) return false; if (FI->getNumOperands() != GI->getNumOperands()) return false; if (ValueMap[FI] == GI) { ++FI, ++GI; continue; } if (ValueMap[FI] != NULL) return false; for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) { Value *OpF = FI->getOperand(i); Value *OpG = GI->getOperand(i); if (ValueMap[OpF] == OpG) continue; if (ValueMap[OpF] != NULL) return false; assert(OpF->getType() == OpG->getType() && "Two of the same operation has operands of different type."); if (OpF->getValueID() != OpG->getValueID()) return false; if (isa(FI)) { if (SpeculationMap[OpF] == NULL) SpeculationMap[OpF] = OpG; else if (SpeculationMap[OpF] != OpG) return false; continue; } else if (isa(OpF)) { assert(isa(FI) && "BasicBlock referenced by non-Terminator non-PHI"); // This call changes the ValueMap, hence we can't use // Value *& = ValueMap[...] if (!equals(cast(OpF), cast(OpG), ValueMap, SpeculationMap)) return false; } else { if (!compare(OpF, OpG)) return false; } ValueMap[OpF] = OpG; } ValueMap[FI] = GI; ++FI, ++GI; } while (FI != FE && GI != GE); return FI == FE && GI == GE; } static bool equals(const Function *F, const Function *G) { // We need to recheck everything, but check the things that weren't included // in the hash first. if (F->getAttributes() != G->getAttributes()) return false; if (F->hasGC() != G->hasGC()) return false; if (F->hasGC() && F->getGC() != G->getGC()) return false; if (F->hasSection() != G->hasSection()) return false; if (F->hasSection() && F->getSection() != G->getSection()) return false; // TODO: if it's internal and only used in direct calls, we could handle this // case too. if (F->getCallingConv() != G->getCallingConv()) return false; // TODO: We want to permit cases where two functions take T* and S* but // only load or store them into T** and S**. if (F->getType() != G->getType()) return false; DenseMap ValueMap; DenseMap SpeculationMap; ValueMap[F] = G; assert(F->arg_size() == G->arg_size() && "Identical functions have a different number of args."); for (Function::const_arg_iterator fi = F->arg_begin(), gi = G->arg_begin(), fe = F->arg_end(); fi != fe; ++fi, ++gi) ValueMap[fi] = gi; if (!equals(&F->getEntryBlock(), &G->getEntryBlock(), ValueMap, SpeculationMap)) return false; for (DenseMap::iterator I = SpeculationMap.begin(), E = SpeculationMap.end(); I != E; ++I) { if (ValueMap[I->first] != I->second) return false; } return true; } static bool fold(std::vector &FnVec, unsigned i, unsigned j) { if (FnVec[i]->mayBeOverridden() && !FnVec[j]->mayBeOverridden()) std::swap(FnVec[i], FnVec[j]); Function *F = FnVec[i]; Function *G = FnVec[j]; if (!F->mayBeOverridden()) { if (G->hasLocalLinkage()) { F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); G->replaceAllUsesWith(F); G->eraseFromParent(); ++NumFunctionsMerged; return true; } if (G->hasExternalLinkage() || G->hasWeakLinkage()) { GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "", F, G->getParent()); F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); GA->takeName(G); GA->setVisibility(G->getVisibility()); G->replaceAllUsesWith(GA); G->eraseFromParent(); ++NumFunctionsMerged; return true; } } if (F->hasWeakLinkage() && G->hasWeakLinkage()) { GlobalAlias *GA_F = new GlobalAlias(F->getType(), F->getLinkage(), "", 0, F->getParent()); GA_F->takeName(F); GA_F->setVisibility(F->getVisibility()); F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); F->replaceAllUsesWith(GA_F); F->setName("folded." + GA_F->getName()); F->setLinkage(GlobalValue::ExternalLinkage); GA_F->setAliasee(F); GlobalAlias *GA_G = new GlobalAlias(G->getType(), G->getLinkage(), "", F, G->getParent()); GA_G->takeName(G); GA_G->setVisibility(G->getVisibility()); G->replaceAllUsesWith(GA_G); G->eraseFromParent(); ++NumFunctionsMerged; return true; } DOUT << "Failed on " << F->getName() << " and " << G->getName() << "\n"; ++NumMergeFails; return false; } static bool hasAddressTaken(User *U) { for (User::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I) { User *Use = *I; // 'call (bitcast @F to ...)' happens a lot. while (isa(Use) && Use->hasOneUse()) { Use = *Use->use_begin(); } if (isa(Use)) { if (hasAddressTaken(Use)) return true; } if (!isa(Use) && !isa(Use)) return true; // Make sure we aren't passing U as a parameter to call instead of the // callee. if (CallSite(cast(Use)).hasArgument(U)) return true; } return false; } bool MergeFunctions::runOnModule(Module &M) { bool Changed = false; std::map > FnMap; for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { if (F->isDeclaration() || F->isIntrinsic()) continue; if (!F->hasLocalLinkage() && !F->hasExternalLinkage() && !F->hasWeakLinkage()) continue; if (hasAddressTaken(F)) continue; FnMap[hash(F)].push_back(F); } // TODO: instead of running in a loop, we could also fold functions in callgraph // order. Constructing the CFG probably isn't cheaper than just running in a loop. bool LocalChanged; do { LocalChanged = false; for (std::map >::iterator I = FnMap.begin(), E = FnMap.end(); I != E; ++I) { DOUT << "size: " << FnMap.size() << "\n"; std::vector &FnVec = I->second; DOUT << "hash (" << I->first << "): " << FnVec.size() << "\n"; for (int i = 0, e = FnVec.size(); i != e; ++i) { for (int j = i + 1; j != e; ++j) { bool isEqual = equals(FnVec[i], FnVec[j]); DOUT << " " << FnVec[i]->getName() << (isEqual ? " == " : " != ") << FnVec[j]->getName() << "\n"; if (isEqual) { if (fold(FnVec, i, j)) { LocalChanged = true; FnVec.erase(FnVec.begin() + j); --j, --e; } } } } } Changed |= LocalChanged; } while (LocalChanged); return Changed; }