//===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "DAGISelMatcher.h" #include "CodeGenDAGPatterns.h" #include "Record.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include using namespace llvm; /// getRegisterValueType - Look up and return the ValueType of the specified /// register. If the register is a member of multiple register classes which /// have different associated types, return MVT::Other. static MVT::SimpleValueType getRegisterValueType(Record *R, const CodeGenTarget &T) { bool FoundRC = false; MVT::SimpleValueType VT = MVT::Other; const std::vector &RCs = T.getRegisterClasses(); std::vector::const_iterator Element; for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = RCs[rc]; if (!std::count(RC.Elements.begin(), RC.Elements.end(), R)) continue; if (!FoundRC) { FoundRC = true; VT = RC.getValueTypeNum(0); continue; } // In multiple RC's. If the Types of the RC's do not agree, return // MVT::Other. The target is responsible for handling this. if (VT != RC.getValueTypeNum(0)) // FIXME2: when does this happen? Abort? return MVT::Other; } return VT; } namespace { class MatcherGen { const PatternToMatch &Pattern; const CodeGenDAGPatterns &CGP; /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts /// out with all of the types removed. This allows us to insert type checks /// as we scan the tree. TreePatternNode *PatWithNoTypes; /// VariableMap - A map from variable names ('$dst') to the recorded operand /// number that they were captured as. These are biased by 1 to make /// insertion easier. StringMap VariableMap; /// NextRecordedOperandNo - As we emit opcodes to record matched values in /// the RecordedNodes array, this keeps track of which slot will be next to /// record into. unsigned NextRecordedOperandNo; /// MatchedChainNodes - This maintains the position in the recorded nodes /// array of all of the recorded input nodes that have chains. SmallVector MatchedChainNodes; /// PhysRegInputs - List list has an entry for each explicitly specified /// physreg input to the pattern. The first elt is the Register node, the /// second is the recorded slot number the input pattern match saved it in. SmallVector, 2> PhysRegInputs; /// EmittedMergeInputChains - For nodes that match patterns involving /// chains, is set to true if we emitted the "MergeInputChains" operation. bool EmittedMergeInputChains; /// Matcher - This is the top level of the generated matcher, the result. MatcherNode *Matcher; /// CurPredicate - As we emit matcher nodes, this points to the latest check /// which should have future checks stuck into its Next position. MatcherNode *CurPredicate; public: MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp); ~MatcherGen() { delete PatWithNoTypes; } void EmitMatcherCode(); void EmitResultCode(); MatcherNode *GetMatcher() const { return Matcher; } MatcherNode *GetCurPredicate() const { return CurPredicate; } private: void AddMatcherNode(MatcherNode *NewNode); void InferPossibleTypes(); // Matcher Generation. void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes); void EmitLeafMatchCode(const TreePatternNode *N); void EmitOperatorMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes); // Result Code Generation. unsigned getNamedArgumentSlot(StringRef Name) { unsigned VarMapEntry = VariableMap[Name]; assert(VarMapEntry != 0 && "Variable referenced but not defined and not caught earlier!"); return VarMapEntry-1; } /// GetInstPatternNode - Get the pattern for an instruction. const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins, const TreePatternNode *N); void EmitResultOperand(const TreePatternNode *N, SmallVectorImpl &ResultOps); void EmitResultOfNamedOperand(const TreePatternNode *N, SmallVectorImpl &ResultOps); void EmitResultLeafAsOperand(const TreePatternNode *N, SmallVectorImpl &ResultOps); void EmitResultInstructionAsOperand(const TreePatternNode *N, SmallVectorImpl &ResultOps); void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, SmallVectorImpl &ResultOps); }; } // end anon namespace. MatcherGen::MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp) : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0), EmittedMergeInputChains(false), Matcher(0), CurPredicate(0) { // We need to produce the matcher tree for the patterns source pattern. To do // this we need to match the structure as well as the types. To do the type // matching, we want to figure out the fewest number of type checks we need to // emit. For example, if there is only one integer type supported by a // target, there should be no type comparisons at all for integer patterns! // // To figure out the fewest number of type checks needed, clone the pattern, // remove the types, then perform type inference on the pattern as a whole. // If there are unresolved types, emit an explicit check for those types, // apply the type to the tree, then rerun type inference. Iterate until all // types are resolved. // PatWithNoTypes = Pattern.getSrcPattern()->clone(); PatWithNoTypes->RemoveAllTypes(); // If there are types that are manifestly known, infer them. InferPossibleTypes(); } /// InferPossibleTypes - As we emit the pattern, we end up generating type /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we /// want to propagate implied types as far throughout the tree as possible so /// that we avoid doing redundant type checks. This does the type propagation. void MatcherGen::InferPossibleTypes() { // TP - Get *SOME* tree pattern, we don't care which. It is only used for // diagnostics, which we know are impossible at this point. TreePattern &TP = *CGP.pf_begin()->second; try { bool MadeChange = true; while (MadeChange) MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP, true/*Ignore reg constraints*/); } catch (...) { errs() << "Type constraint application shouldn't fail!"; abort(); } } /// AddMatcherNode - Add a matcher node to the current graph we're building. void MatcherGen::AddMatcherNode(MatcherNode *NewNode) { if (CurPredicate != 0) CurPredicate->setNext(NewNode); else Matcher = NewNode; CurPredicate = NewNode; } //===----------------------------------------------------------------------===// // Pattern Match Generation //===----------------------------------------------------------------------===// /// EmitLeafMatchCode - Generate matching code for leaf nodes. void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { assert(N->isLeaf() && "Not a leaf?"); // If there are node predicates for this node, generate their checks. for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i) AddMatcherNode(new CheckPredicateMatcherNode(N->getPredicateFns()[i])); // Direct match against an integer constant. if (IntInit *II = dynamic_cast(N->getLeafValue())) return AddMatcherNode(new CheckIntegerMatcherNode(II->getValue())); DefInit *DI = dynamic_cast(N->getLeafValue()); if (DI == 0) { errs() << "Unknown leaf kind: " << *DI << "\n"; abort(); } Record *LeafRec = DI->getDef(); if (// Handle register references. Nothing to do here, they always match. LeafRec->isSubClassOf("RegisterClass") || LeafRec->isSubClassOf("PointerLikeRegClass") || // Place holder for SRCVALUE nodes. Nothing to do here. LeafRec->getName() == "srcvalue") return; // If we have a physreg reference like (mul gpr:$src, EAX) then we need to // record the register if (LeafRec->isSubClassOf("Register")) { AddMatcherNode(new RecordMatcherNode("physreg input "+LeafRec->getName())); PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++)); return; } if (LeafRec->isSubClassOf("ValueType")) return AddMatcherNode(new CheckValueTypeMatcherNode(LeafRec->getName())); if (LeafRec->isSubClassOf("CondCode")) return AddMatcherNode(new CheckCondCodeMatcherNode(LeafRec->getName())); if (LeafRec->isSubClassOf("ComplexPattern")) { // We can't model ComplexPattern uses that don't have their name taken yet. // The OPC_CheckComplexPattern operation implicitly records the results. if (N->getName().empty()) { errs() << "We expect complex pattern uses to have names: " << *N << "\n"; exit(1); } // Handle complex pattern. const ComplexPattern &CP = CGP.getComplexPattern(LeafRec); AddMatcherNode(new CheckComplexPatMatcherNode(CP)); // If the complex pattern has a chain, then we need to keep track of the // fact that we just recorded a chain input. The chain input will be // matched as the last operand of the predicate if it was successful. if (CP.hasProperty(SDNPHasChain)) { // It is the last operand recorded. assert(NextRecordedOperandNo > 1 && "Should have recorded input/result chains at least!"); MatchedChainNodes.push_back(NextRecordedOperandNo-1); // If we need to check chains, do so, see comment for // "NodeHasProperty(SDNPHasChain" below. if (MatchedChainNodes.size() > 1) { // FIXME2: This is broken, we should eliminate this nonsense completely, // but we want to produce the same selections that the old matcher does // for now. unsigned PrevOp = MatchedChainNodes[MatchedChainNodes.size()-2]; AddMatcherNode(new CheckChainCompatibleMatcherNode(PrevOp)); } } return; } errs() << "Unknown leaf kind: " << *N << "\n"; abort(); } void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes) { assert(!N->isLeaf() && "Not an operator?"); const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator()); // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is // a constant without a predicate fn that has more that one bit set, handle // this as a special case. This is usually for targets that have special // handling of certain large constants (e.g. alpha with it's 8/16/32-bit // handling stuff). Using these instructions is often far more efficient // than materializing the constant. Unfortunately, both the instcombiner // and the dag combiner can often infer that bits are dead, and thus drop // them from the mask in the dag. For example, it might turn 'AND X, 255' // into 'AND X, 254' if it knows the low bit is set. Emit code that checks // to handle this. if ((N->getOperator()->getName() == "and" || N->getOperator()->getName() == "or") && N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() && N->getPredicateFns().empty()) { if (IntInit *II = dynamic_cast(N->getChild(1)->getLeafValue())) { if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. if (N->getOperator()->getName() == "and") AddMatcherNode(new CheckAndImmMatcherNode(II->getValue())); else AddMatcherNode(new CheckOrImmMatcherNode(II->getValue())); // Match the LHS of the AND as appropriate. AddMatcherNode(new MoveChildMatcherNode(0)); EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0)); AddMatcherNode(new MoveParentMatcherNode()); return; } } } // Check that the current opcode lines up. AddMatcherNode(new CheckOpcodeMatcherNode(CInfo.getEnumName())); // If there are node predicates for this node, generate their checks. for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i) AddMatcherNode(new CheckPredicateMatcherNode(N->getPredicateFns()[i])); // If this node has memory references (i.e. is a load or store), tell the // interpreter to capture them in the memref array. if (N->NodeHasProperty(SDNPMemOperand, CGP)) AddMatcherNode(new RecordMemRefMatcherNode()); // If this node has a chain, then the chain is operand #0 is the SDNode, and // the child numbers of the node are all offset by one. unsigned OpNo = 0; if (N->NodeHasProperty(SDNPHasChain, CGP)) { // Record the node and remember it in our chained nodes list. AddMatcherNode(new RecordMatcherNode("'" + N->getOperator()->getName() + "' chained node")); // Remember all of the input chains our pattern will match. MatchedChainNodes.push_back(NextRecordedOperandNo++); // If this is the second (e.g. indbr(load) or store(add(load))) or third // input chain (e.g. (store (add (load, load))) from msp430) we need to make // sure that folding the chain won't induce cycles in the DAG. This could // happen if there were an intermediate node between the indbr and load, for // example. if (MatchedChainNodes.size() > 1) { // FIXME2: This is broken, we should eliminate this nonsense completely, // but we want to produce the same selections that the old matcher does // for now. unsigned PrevOp = MatchedChainNodes[MatchedChainNodes.size()-2]; AddMatcherNode(new CheckChainCompatibleMatcherNode(PrevOp)); } // Don't look at the input chain when matching the tree pattern to the // SDNode. OpNo = 1; // If this node is not the root and the subtree underneath it produces a // chain, then the result of matching the node is also produce a chain. // Beyond that, this means that we're also folding (at least) the root node // into the node that produce the chain (for example, matching // "(add reg, (load ptr))" as a add_with_memory on X86). This is // problematic, if the 'reg' node also uses the load (say, its chain). // Graphically: // // [LD] // ^ ^ // | \ DAG's like cheese. // / | // / [YY] // | ^ // [XX]--/ // // It would be invalid to fold XX and LD. In this case, folding the two // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG' // To prevent this, we emit a dynamic check for legality before allowing // this to be folded. // const TreePatternNode *Root = Pattern.getSrcPattern(); if (N != Root) { // Not the root of the pattern. // If there is a node between the root and this node, then we definitely // need to emit the check. bool NeedCheck = !Root->hasChild(N); // If it *is* an immediate child of the root, we can still need a check if // the root SDNode has multiple inputs. For us, this means that it is an // intrinsic, has multiple operands, or has other inputs like chain or // flag). if (!NeedCheck) { const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator()); NeedCheck = Root->getOperator() == CGP.get_intrinsic_void_sdnode() || Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() || Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() || PInfo.getNumOperands() > 1 || PInfo.hasProperty(SDNPHasChain) || PInfo.hasProperty(SDNPInFlag) || PInfo.hasProperty(SDNPOptInFlag); } if (NeedCheck) AddMatcherNode(new CheckFoldableChainNodeMatcherNode()); } } // If this node is known to have an input flag or if it *might* have an input // flag, capture it as the flag input of the pattern. if (N->NodeHasProperty(SDNPOptInFlag, CGP) || N->NodeHasProperty(SDNPInFlag, CGP)) AddMatcherNode(new CaptureFlagInputMatcherNode()); for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { // Get the code suitable for matching this child. Move to the child, check // it then move back to the parent. AddMatcherNode(new MoveChildMatcherNode(OpNo)); EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i)); AddMatcherNode(new MoveParentMatcherNode()); } } void MatcherGen::EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes) { // If N and NodeNoTypes don't agree on a type, then this is a case where we // need to do a type check. Emit the check, apply the tyep to NodeNoTypes and // reinfer any correlated types. if (NodeNoTypes->getExtTypes() != N->getExtTypes()) { AddMatcherNode(new CheckTypeMatcherNode(N->getTypeNum(0))); NodeNoTypes->setTypes(N->getExtTypes()); InferPossibleTypes(); } // If this node has a name associated with it, capture it in VariableMap. If // we already saw this in the pattern, emit code to verify dagness. if (!N->getName().empty()) { unsigned &VarMapEntry = VariableMap[N->getName()]; if (VarMapEntry == 0) { VarMapEntry = NextRecordedOperandNo+1; unsigned NumRecorded; // If this is a complex pattern, the match operation for it will // implicitly record all of the outputs of it (which may be more than // one). if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) { // Record the right number of operands. NumRecorded = CP->getNumOperands(); if (CP->hasProperty(SDNPHasChain)) ++NumRecorded; // Chained node operand. } else { // If it is a normal named node, we must emit a 'Record' opcode. AddMatcherNode(new RecordMatcherNode("$" + N->getName())); NumRecorded = 1; } NextRecordedOperandNo += NumRecorded; } else { // If we get here, this is a second reference to a specific name. Since // we already have checked that the first reference is valid, we don't // have to recursively match it, just check that it's the same as the // previously named thing. AddMatcherNode(new CheckSameMatcherNode(VarMapEntry-1)); return; } } if (N->isLeaf()) EmitLeafMatchCode(N); else EmitOperatorMatchCode(N, NodeNoTypes); } void MatcherGen::EmitMatcherCode() { // If the pattern has a predicate on it (e.g. only enabled when a subtarget // feature is around, do the check). if (!Pattern.getPredicateCheck().empty()) AddMatcherNode(new CheckPatternPredicateMatcherNode(Pattern.getPredicateCheck())); // Emit the matcher for the pattern structure and types. EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes); } //===----------------------------------------------------------------------===// // Node Result Generation //===----------------------------------------------------------------------===// void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N, SmallVectorImpl &ResultOps){ assert(!N->getName().empty() && "Operand not named!"); unsigned SlotNo = getNamedArgumentSlot(N->getName()); // A reference to a complex pattern gets all of the results of the complex // pattern's match. if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) { for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) ResultOps.push_back(SlotNo+i); return; } // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target // version of the immediate so that it doesn't get selected due to some other // node use. if (!N->isLeaf()) { StringRef OperatorName = N->getOperator()->getName(); if (OperatorName == "imm" || OperatorName == "fpimm") { AddMatcherNode(new EmitConvertToTargetMatcherNode(SlotNo)); ResultOps.push_back(NextRecordedOperandNo++); return; } } ResultOps.push_back(SlotNo); } void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N, SmallVectorImpl &ResultOps) { assert(N->isLeaf() && "Must be a leaf"); if (IntInit *II = dynamic_cast(N->getLeafValue())) { AddMatcherNode(new EmitIntegerMatcherNode(II->getValue(),N->getTypeNum(0))); ResultOps.push_back(NextRecordedOperandNo++); return; } // If this is an explicit register reference, handle it. if (DefInit *DI = dynamic_cast(N->getLeafValue())) { if (DI->getDef()->isSubClassOf("Register")) { AddMatcherNode(new EmitRegisterMatcherNode(DI->getDef(), N->getTypeNum(0))); ResultOps.push_back(NextRecordedOperandNo++); return; } if (DI->getDef()->getName() == "zero_reg") { AddMatcherNode(new EmitRegisterMatcherNode(0, N->getTypeNum(0))); ResultOps.push_back(NextRecordedOperandNo++); return; } // Handle a reference to a register class. This is used // in COPY_TO_SUBREG instructions. if (DI->getDef()->isSubClassOf("RegisterClass")) { std::string Value = getQualifiedName(DI->getDef()) + "RegClassID"; AddMatcherNode(new EmitStringIntegerMatcherNode(Value, N->getTypeNum(0))); ResultOps.push_back(NextRecordedOperandNo++); return; } } errs() << "unhandled leaf node: \n"; N->dump(); } /// GetInstPatternNode - Get the pattern for an instruction. /// const TreePatternNode *MatcherGen:: GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) { const TreePattern *InstPat = Inst.getPattern(); // FIXME2?: Assume actual pattern comes before "implicit". TreePatternNode *InstPatNode; if (InstPat) InstPatNode = InstPat->getTree(0); else if (/*isRoot*/ N == Pattern.getDstPattern()) InstPatNode = Pattern.getSrcPattern(); else return 0; if (InstPatNode && !InstPatNode->isLeaf() && InstPatNode->getOperator()->getName() == "set") InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1); return InstPatNode; } void MatcherGen:: EmitResultInstructionAsOperand(const TreePatternNode *N, SmallVectorImpl &OutputOps) { Record *Op = N->getOperator(); const CodeGenTarget &CGT = CGP.getTargetInfo(); CodeGenInstruction &II = CGT.getInstruction(Op->getName()); const DAGInstruction &Inst = CGP.getInstruction(Op); // If we can, get the pattern for the instruction we're generating. We derive // a variety of information from this pattern, such as whether it has a chain. // // FIXME2: This is extremely dubious for several reasons, not the least of // which it gives special status to instructions with patterns that Pat<> // nodes can't duplicate. const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N); // NodeHasChain - Whether the instruction node we're creating takes chains. bool NodeHasChain = InstPatNode && InstPatNode->TreeHasProperty(SDNPHasChain, CGP); bool isRoot = N == Pattern.getDstPattern(); // NodeHasOutFlag - True if this node has a flag. bool NodeHasInFlag = false, NodeHasOutFlag = false; if (isRoot) { const TreePatternNode *SrcPat = Pattern.getSrcPattern(); NodeHasInFlag = SrcPat->TreeHasProperty(SDNPOptInFlag, CGP) || SrcPat->TreeHasProperty(SDNPInFlag, CGP); // FIXME2: this is checking the entire pattern, not just the node in // question, doing this just for the root seems like a total hack. NodeHasOutFlag = SrcPat->TreeHasProperty(SDNPOutFlag, CGP); } // NumResults - This is the number of results produced by the instruction in // the "outs" list. unsigned NumResults = Inst.getNumResults(); // Loop over all of the operands of the instruction pattern, emitting code // to fill them all in. The node 'N' usually has number children equal to // the number of input operands of the instruction. However, in cases // where there are predicate operands for an instruction, we need to fill // in the 'execute always' values. Match up the node operands to the // instruction operands to do this. SmallVector InstOps; for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.OperandList.size(); InstOpNo != e; ++InstOpNo) { // Determine what to emit for this operand. Record *OperandNode = II.OperandList[InstOpNo].Rec; if ((OperandNode->isSubClassOf("PredicateOperand") || OperandNode->isSubClassOf("OptionalDefOperand")) && !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) { // This is a predicate or optional def operand; emit the // 'default ops' operands. const DAGDefaultOperand &DefaultOp = CGP.getDefaultOperand(II.OperandList[InstOpNo].Rec); for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) EmitResultOperand(DefaultOp.DefaultOps[i], InstOps); continue; } // Otherwise this is a normal operand or a predicate operand without // 'execute always'; emit it. EmitResultOperand(N->getChild(ChildNo), InstOps); ++ChildNo; } // Nodes that match patterns with (potentially multiple) chain inputs have to // merge them together into a token factor. if (NodeHasChain && !EmittedMergeInputChains) { // FIXME2: Move this out of emitresult to a top level place. assert(!MatchedChainNodes.empty() && "How can this node have chain if no inputs do?"); // Otherwise, we have to emit an operation to merge the input chains and // set this as the current input chain. AddMatcherNode(new EmitMergeInputChainsMatcherNode (MatchedChainNodes.data(), MatchedChainNodes.size())); EmittedMergeInputChains = true; } // If this node has an input flag or explicitly specified input physregs, we // need to add chained and flagged copyfromreg nodes and materialize the flag // input. if (isRoot && !PhysRegInputs.empty()) { // Emit all of the CopyToReg nodes for the input physical registers. These // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src). for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) AddMatcherNode(new EmitCopyToRegMatcherNode(PhysRegInputs[i].second, PhysRegInputs[i].first)); // Even if the node has no other flag inputs, the resultant node must be // flagged to the CopyFromReg nodes we just generated. NodeHasInFlag = true; } // Result order: node results, chain, flags // Determine the result types. SmallVector ResultVTs; if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) { // FIXME2: If the node has multiple results, we should add them. For now, // preserve existing behavior?! ResultVTs.push_back(N->getTypeNum(0)); } // If this is the root instruction of a pattern that has physical registers in // its result pattern, add output VTs for them. For example, X86 has: // (set AL, (mul ...)) // This also handles implicit results like: // (implicit EFLAGS) if (isRoot && Pattern.getDstRegs().size() != 0) { for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) if (Pattern.getDstRegs()[i]->isSubClassOf("Register")) ResultVTs.push_back(getRegisterValueType(Pattern.getDstRegs()[i], CGT)); } if (NodeHasChain) ResultVTs.push_back(MVT::Other); if (NodeHasOutFlag) ResultVTs.push_back(MVT::Flag); // FIXME2: Instead of using the isVariadic flag on the instruction, we should // have an SDNP that indicates variadicism. The TargetInstrInfo isVariadic // property should be inferred from this when an instruction has a pattern. int NumFixedArityOperands = -1; if (isRoot && II.isVariadic) NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren(); // If this is the root node and any of the nodes matched nodes in the input // pattern have MemRefs in them, have the interpreter collect them and plop // them onto this node. // // FIXME3: This is actively incorrect for result patterns where the root of // the pattern is not the memory reference and is also incorrect when the // result pattern has multiple memory-referencing instructions. For example, // in the X86 backend, this pattern causes the memrefs to get attached to the // CVTSS2SDrr instead of the MOVSSrm: // // def : Pat<(extloadf32 addr:$src), // (CVTSS2SDrr (MOVSSrm addr:$src))>; // bool NodeHasMemRefs = isRoot && Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP); // FIXME: Eventually add a SelectNodeTo form. It works if the new node has a // superset of the results of the old node, in the same places. E.g. turning // (add (load)) -> add32rm is ok because result #0 is the result and result #1 // is new. AddMatcherNode(new EmitNodeMatcherNode(II.Namespace+"::"+II.TheDef->getName(), ResultVTs.data(), ResultVTs.size(), InstOps.data(), InstOps.size(), NodeHasChain, NodeHasInFlag, NodeHasMemRefs,NumFixedArityOperands)); // The newly emitted node gets recorded. // FIXME2: This should record all of the results except the (implicit) one. if (ResultVTs[0] != MVT::Other) OutputOps.push_back(NextRecordedOperandNo++); // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode // variants. Call MorphNodeTo instead of SelectNodeTo. } void MatcherGen:: EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, SmallVectorImpl &ResultOps) { assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?"); // Emit the operand. SmallVector InputOps; // FIXME2: Could easily generalize this to support multiple inputs and outputs // to the SDNodeXForm. For now we just support one input and one output like // the old instruction selector. assert(N->getNumChildren() == 1); EmitResultOperand(N->getChild(0), InputOps); // The input currently must have produced exactly one result. assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm"); AddMatcherNode(new EmitNodeXFormMatcherNode(InputOps[0], N->getOperator())); ResultOps.push_back(NextRecordedOperandNo++); } void MatcherGen::EmitResultOperand(const TreePatternNode *N, SmallVectorImpl &ResultOps) { // This is something selected from the pattern we matched. if (!N->getName().empty()) return EmitResultOfNamedOperand(N, ResultOps); if (N->isLeaf()) return EmitResultLeafAsOperand(N, ResultOps); Record *OpRec = N->getOperator(); if (OpRec->isSubClassOf("Instruction")) return EmitResultInstructionAsOperand(N, ResultOps); if (OpRec->isSubClassOf("SDNodeXForm")) return EmitResultSDNodeXFormAsOperand(N, ResultOps); errs() << "Unknown result node to emit code for: " << *N << '\n'; throw std::string("Unknown node in result pattern!"); } void MatcherGen::EmitResultCode() { SmallVector Ops; EmitResultOperand(Pattern.getDstPattern(), Ops); // We know that the resulting pattern has exactly one result/ // FIXME2: why? what about something like (set a,b,c, (complexpat)) // FIXME2: Implicit results should be pushed here I guess? assert(Ops.size() <= 1); // FIXME: Handle Ops. // FIXME: Handle (set EAX, (foo)) but not (implicit EFLAGS) AddMatcherNode(new CompleteMatchMatcherNode(Ops.data(), Ops.size(), Pattern)); } MatcherNode *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern, const CodeGenDAGPatterns &CGP) { MatcherGen Gen(Pattern, CGP); // Generate the code for the matcher. Gen.EmitMatcherCode(); // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence. // FIXME2: Split result code out to another table, and make the matcher end // with an "Emit " command. This allows result generation stuff to be // shared and factored? // If the match succeeds, then we generate Pattern. Gen.EmitResultCode(); // Unconditional match. return Gen.GetMatcher(); }