//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the following classes: // 1. DominatorTree: Represent dominators as an explicit tree structure. // 2. DominanceFrontier: Calculate and hold the dominance frontier for a // function. // // These data structures are listed in increasing order of complexity. It // takes longer to calculate the dominator frontier, for example, than the // DominatorTree mapping. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_DOMINATORS_H #define LLVM_ANALYSIS_DOMINATORS_H #include "llvm/Pass.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Assembly/Writer.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/raw_ostream.h" #include #include #include namespace llvm { //===----------------------------------------------------------------------===// /// DominatorBase - Base class that other, more interesting dominator analyses /// inherit from. /// template class DominatorBase { protected: std::vector Roots; const bool IsPostDominators; inline explicit DominatorBase(bool isPostDom) : Roots(), IsPostDominators(isPostDom) {} public: /// getRoots - Return the root blocks of the current CFG. This may include /// multiple blocks if we are computing post dominators. For forward /// dominators, this will always be a single block (the entry node). /// inline const std::vector &getRoots() const { return Roots; } /// isPostDominator - Returns true if analysis based of postdoms /// bool isPostDominator() const { return IsPostDominators; } }; //===----------------------------------------------------------------------===// // DomTreeNode - Dominator Tree Node template class DominatorTreeBase; struct PostDominatorTree; class MachineBasicBlock; template class DomTreeNodeBase { NodeT *TheBB; DomTreeNodeBase *IDom; std::vector *> Children; int DFSNumIn, DFSNumOut; template friend class DominatorTreeBase; friend struct PostDominatorTree; public: typedef typename std::vector *>::iterator iterator; typedef typename std::vector *>::const_iterator const_iterator; iterator begin() { return Children.begin(); } iterator end() { return Children.end(); } const_iterator begin() const { return Children.begin(); } const_iterator end() const { return Children.end(); } NodeT *getBlock() const { return TheBB; } DomTreeNodeBase *getIDom() const { return IDom; } const std::vector*> &getChildren() const { return Children; } DomTreeNodeBase(NodeT *BB, DomTreeNodeBase *iDom) : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { } DomTreeNodeBase *addChild(DomTreeNodeBase *C) { Children.push_back(C); return C; } size_t getNumChildren() const { return Children.size(); } void clearAllChildren() { Children.clear(); } bool compare(DomTreeNodeBase *Other) { if (getNumChildren() != Other->getNumChildren()) return true; SmallPtrSet OtherChildren; for (iterator I = Other->begin(), E = Other->end(); I != E; ++I) { NodeT *Nd = (*I)->getBlock(); OtherChildren.insert(Nd); } for (iterator I = begin(), E = end(); I != E; ++I) { NodeT *N = (*I)->getBlock(); if (OtherChildren.count(N) == 0) return true; } return false; } void setIDom(DomTreeNodeBase *NewIDom) { assert(IDom && "No immediate dominator?"); if (IDom != NewIDom) { typename std::vector*>::iterator I = std::find(IDom->Children.begin(), IDom->Children.end(), this); assert(I != IDom->Children.end() && "Not in immediate dominator children set!"); // I am no longer your child... IDom->Children.erase(I); // Switch to new dominator IDom = NewIDom; IDom->Children.push_back(this); } } /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do /// not call them. unsigned getDFSNumIn() const { return DFSNumIn; } unsigned getDFSNumOut() const { return DFSNumOut; } private: // Return true if this node is dominated by other. Use this only if DFS info // is valid. bool DominatedBy(const DomTreeNodeBase *other) const { return this->DFSNumIn >= other->DFSNumIn && this->DFSNumOut <= other->DFSNumOut; } }; EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase); EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase); template static raw_ostream &operator<<(raw_ostream &o, const DomTreeNodeBase *Node) { if (Node->getBlock()) WriteAsOperand(o, Node->getBlock(), false); else o << " <>"; o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}"; return o << "\n"; } template static void PrintDomTree(const DomTreeNodeBase *N, raw_ostream &o, unsigned Lev) { o.indent(2*Lev) << "[" << Lev << "] " << N; for (typename DomTreeNodeBase::const_iterator I = N->begin(), E = N->end(); I != E; ++I) PrintDomTree(*I, o, Lev+1); } typedef DomTreeNodeBase DomTreeNode; //===----------------------------------------------------------------------===// /// DominatorTree - Calculate the immediate dominator tree for a function. /// template void Calculate(DominatorTreeBase::NodeType>& DT, FuncT& F); template class DominatorTreeBase : public DominatorBase { protected: typedef DenseMap*> DomTreeNodeMapType; DomTreeNodeMapType DomTreeNodes; DomTreeNodeBase *RootNode; bool DFSInfoValid; unsigned int SlowQueries; // Information record used during immediate dominators computation. struct InfoRec { unsigned DFSNum; unsigned Semi; unsigned Size; NodeT *Label, *Child; unsigned Parent, Ancestor; std::vector Bucket; InfoRec() : DFSNum(0), Semi(0), Size(0), Label(0), Child(0), Parent(0), Ancestor(0) {} }; DenseMap IDoms; // Vertex - Map the DFS number to the BasicBlock* std::vector Vertex; // Info - Collection of information used during the computation of idoms. DenseMap Info; void reset() { for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(), E = DomTreeNodes.end(); I != E; ++I) delete I->second; DomTreeNodes.clear(); IDoms.clear(); this->Roots.clear(); Vertex.clear(); RootNode = 0; } // NewBB is split and now it has one successor. Update dominator tree to // reflect this change. template void Split(DominatorTreeBase& DT, typename GraphT::NodeType* NewBB) { assert(std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1 && "NewBB should have a single successor!"); typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB); std::vector PredBlocks; typedef GraphTraits > InvTraits; for (typename InvTraits::ChildIteratorType PI = InvTraits::child_begin(NewBB), PE = InvTraits::child_end(NewBB); PI != PE; ++PI) PredBlocks.push_back(*PI); assert(!PredBlocks.empty() && "No predblocks?"); bool NewBBDominatesNewBBSucc = true; for (typename InvTraits::ChildIteratorType PI = InvTraits::child_begin(NewBBSucc), E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) { typename InvTraits::NodeType *ND = *PI; if (ND != NewBB && !DT.dominates(NewBBSucc, ND) && DT.isReachableFromEntry(ND)) { NewBBDominatesNewBBSucc = false; break; } } // Find NewBB's immediate dominator and create new dominator tree node for // NewBB. NodeT *NewBBIDom = 0; unsigned i = 0; for (i = 0; i < PredBlocks.size(); ++i) if (DT.isReachableFromEntry(PredBlocks[i])) { NewBBIDom = PredBlocks[i]; break; } // It's possible that none of the predecessors of NewBB are reachable; // in that case, NewBB itself is unreachable, so nothing needs to be // changed. if (!NewBBIDom) return; for (i = i + 1; i < PredBlocks.size(); ++i) { if (DT.isReachableFromEntry(PredBlocks[i])) NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]); } // Create the new dominator tree node... and set the idom of NewBB. DomTreeNodeBase *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom); // If NewBB strictly dominates other blocks, then it is now the immediate // dominator of NewBBSucc. Update the dominator tree as appropriate. if (NewBBDominatesNewBBSucc) { DomTreeNodeBase *NewBBSuccNode = DT.getNode(NewBBSucc); DT.changeImmediateDominator(NewBBSuccNode, NewBBNode); } } public: explicit DominatorTreeBase(bool isPostDom) : DominatorBase(isPostDom), DFSInfoValid(false), SlowQueries(0) {} virtual ~DominatorTreeBase() { reset(); } // FIXME: Should remove this virtual bool runOnFunction(Function &F) { return false; } /// compare - Return false if the other dominator tree base matches this /// dominator tree base. Otherwise return true. bool compare(DominatorTreeBase &Other) const { const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes; if (DomTreeNodes.size() != OtherDomTreeNodes.size()) return true; for (typename DomTreeNodeMapType::const_iterator I = this->DomTreeNodes.begin(), E = this->DomTreeNodes.end(); I != E; ++I) { NodeT *BB = I->first; typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB); if (OI == OtherDomTreeNodes.end()) return true; DomTreeNodeBase* MyNd = I->second; DomTreeNodeBase* OtherNd = OI->second; if (MyNd->compare(OtherNd)) return true; } return false; } virtual void releaseMemory() { reset(); } /// getNode - return the (Post)DominatorTree node for the specified basic /// block. This is the same as using operator[] on this class. /// inline DomTreeNodeBase *getNode(NodeT *BB) const { typename DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB); return I != DomTreeNodes.end() ? I->second : 0; } /// getRootNode - This returns the entry node for the CFG of the function. If /// this tree represents the post-dominance relations for a function, however, /// this root may be a node with the block == NULL. This is the case when /// there are multiple exit nodes from a particular function. Consumers of /// post-dominance information must be capable of dealing with this /// possibility. /// DomTreeNodeBase *getRootNode() { return RootNode; } const DomTreeNodeBase *getRootNode() const { return RootNode; } /// properlyDominates - Returns true iff this dominates N and this != N. /// Note that this is not a constant time operation! /// bool properlyDominates(const DomTreeNodeBase *A, const DomTreeNodeBase *B) const { if (A == 0 || B == 0) return false; return dominatedBySlowTreeWalk(A, B); } inline bool properlyDominates(const NodeT *A, const NodeT *B) { if (A == B) return false; // Cast away the const qualifiers here. This is ok since // this function doesn't actually return the values returned // from getNode. return properlyDominates(getNode(const_cast(A)), getNode(const_cast(B))); } bool dominatedBySlowTreeWalk(const DomTreeNodeBase *A, const DomTreeNodeBase *B) const { const DomTreeNodeBase *IDom; if (A == 0 || B == 0) return false; while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B) B = IDom; // Walk up the tree return IDom != 0; } /// isReachableFromEntry - Return true if A is dominated by the entry /// block of the function containing it. bool isReachableFromEntry(const NodeT* A) { assert(!this->isPostDominator() && "This is not implemented for post dominators"); return dominates(&A->getParent()->front(), A); } /// dominates - Returns true iff A dominates B. Note that this is not a /// constant time operation! /// inline bool dominates(const DomTreeNodeBase *A, const DomTreeNodeBase *B) { if (B == A) return true; // A node trivially dominates itself. if (A == 0 || B == 0) return false; // Compare the result of the tree walk and the dfs numbers, if expensive // checks are enabled. #ifdef XDEBUG assert((!DFSInfoValid || (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) && "Tree walk disagrees with dfs numbers!"); #endif if (DFSInfoValid) return B->DominatedBy(A); // If we end up with too many slow queries, just update the // DFS numbers on the theory that we are going to keep querying. SlowQueries++; if (SlowQueries > 32) { updateDFSNumbers(); return B->DominatedBy(A); } return dominatedBySlowTreeWalk(A, B); } inline bool dominates(const NodeT *A, const NodeT *B) { if (A == B) return true; // Cast away the const qualifiers here. This is ok since // this function doesn't actually return the values returned // from getNode. return dominates(getNode(const_cast(A)), getNode(const_cast(B))); } NodeT *getRoot() const { assert(this->Roots.size() == 1 && "Should always have entry node!"); return this->Roots[0]; } /// findNearestCommonDominator - Find nearest common dominator basic block /// for basic block A and B. If there is no such block then return NULL. NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) { assert(A->getParent() == B->getParent() && "Two blocks are not in same function"); // If either A or B is a entry block then it is nearest common dominator // (for forward-dominators). if (!this->isPostDominator()) { NodeT &Entry = A->getParent()->front(); if (A == &Entry || B == &Entry) return &Entry; } // If B dominates A then B is nearest common dominator. if (dominates(B, A)) return B; // If A dominates B then A is nearest common dominator. if (dominates(A, B)) return A; DomTreeNodeBase *NodeA = getNode(A); DomTreeNodeBase *NodeB = getNode(B); // Collect NodeA dominators set. SmallPtrSet*, 16> NodeADoms; NodeADoms.insert(NodeA); DomTreeNodeBase *IDomA = NodeA->getIDom(); while (IDomA) { NodeADoms.insert(IDomA); IDomA = IDomA->getIDom(); } // Walk NodeB immediate dominators chain and find common dominator node. DomTreeNodeBase *IDomB = NodeB->getIDom(); while (IDomB) { if (NodeADoms.count(IDomB) != 0) return IDomB->getBlock(); IDomB = IDomB->getIDom(); } return NULL; } const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) { // Cast away the const qualifiers here. This is ok since // const is re-introduced on the return type. return findNearestCommonDominator(const_cast(A), const_cast(B)); } //===--------------------------------------------------------------------===// // API to update (Post)DominatorTree information based on modifications to // the CFG... /// addNewBlock - Add a new node to the dominator tree information. This /// creates a new node as a child of DomBB dominator node,linking it into /// the children list of the immediate dominator. DomTreeNodeBase *addNewBlock(NodeT *BB, NodeT *DomBB) { assert(getNode(BB) == 0 && "Block already in dominator tree!"); DomTreeNodeBase *IDomNode = getNode(DomBB); assert(IDomNode && "Not immediate dominator specified for block!"); DFSInfoValid = false; return DomTreeNodes[BB] = IDomNode->addChild(new DomTreeNodeBase(BB, IDomNode)); } /// changeImmediateDominator - This method is used to update the dominator /// tree information when a node's immediate dominator changes. /// void changeImmediateDominator(DomTreeNodeBase *N, DomTreeNodeBase *NewIDom) { assert(N && NewIDom && "Cannot change null node pointers!"); DFSInfoValid = false; N->setIDom(NewIDom); } void changeImmediateDominator(NodeT *BB, NodeT *NewBB) { changeImmediateDominator(getNode(BB), getNode(NewBB)); } /// eraseNode - Removes a node from the dominator tree. Block must not /// dominate any other blocks. Removes node from its immediate dominator's /// children list. Deletes dominator node associated with basic block BB. void eraseNode(NodeT *BB) { DomTreeNodeBase *Node = getNode(BB); assert(Node && "Removing node that isn't in dominator tree."); assert(Node->getChildren().empty() && "Node is not a leaf node."); // Remove node from immediate dominator's children list. DomTreeNodeBase *IDom = Node->getIDom(); if (IDom) { typename std::vector*>::iterator I = std::find(IDom->Children.begin(), IDom->Children.end(), Node); assert(I != IDom->Children.end() && "Not in immediate dominator children set!"); // I am no longer your child... IDom->Children.erase(I); } DomTreeNodes.erase(BB); delete Node; } /// removeNode - Removes a node from the dominator tree. Block must not /// dominate any other blocks. Invalidates any node pointing to removed /// block. void removeNode(NodeT *BB) { assert(getNode(BB) && "Removing node that isn't in dominator tree."); DomTreeNodes.erase(BB); } /// splitBlock - BB is split and now it has one successor. Update dominator /// tree to reflect this change. void splitBlock(NodeT* NewBB) { if (this->IsPostDominators) this->Split, GraphTraits > >(*this, NewBB); else this->Split >(*this, NewBB); } /// print - Convert to human readable form /// void print(raw_ostream &o) const { o << "=============================--------------------------------\n"; if (this->isPostDominator()) o << "Inorder PostDominator Tree: "; else o << "Inorder Dominator Tree: "; if (this->DFSInfoValid) o << "DFSNumbers invalid: " << SlowQueries << " slow queries."; o << "\n"; // The postdom tree can have a null root if there are no returns. if (getRootNode()) PrintDomTree(getRootNode(), o, 1); } protected: template friend void Compress(DominatorTreeBase& DT, typename GraphT::NodeType* VIn); template friend typename GraphT::NodeType* Eval( DominatorTreeBase& DT, typename GraphT::NodeType* V); template friend void Link(DominatorTreeBase& DT, unsigned DFSNumV, typename GraphT::NodeType* W, typename DominatorTreeBase::InfoRec &WInfo); template friend unsigned DFSPass(DominatorTreeBase& DT, typename GraphT::NodeType* V, unsigned N); template friend void Calculate(DominatorTreeBase::NodeType>& DT, FuncT& F); /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking /// dominator tree in dfs order. void updateDFSNumbers() { unsigned DFSNum = 0; SmallVector*, typename DomTreeNodeBase::iterator>, 32> WorkStack; DomTreeNodeBase *ThisRoot = getRootNode(); if (!ThisRoot) return; // Even in the case of multiple exits that form the post dominator root // nodes, do not iterate over all exits, but start from the virtual root // node. Otherwise bbs, that are not post dominated by any exit but by the // virtual root node, will never be assigned a DFS number. WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin())); ThisRoot->DFSNumIn = DFSNum++; while (!WorkStack.empty()) { DomTreeNodeBase *Node = WorkStack.back().first; typename DomTreeNodeBase::iterator ChildIt = WorkStack.back().second; // If we visited all of the children of this node, "recurse" back up the // stack setting the DFOutNum. if (ChildIt == Node->end()) { Node->DFSNumOut = DFSNum++; WorkStack.pop_back(); } else { // Otherwise, recursively visit this child. DomTreeNodeBase *Child = *ChildIt; ++WorkStack.back().second; WorkStack.push_back(std::make_pair(Child, Child->begin())); Child->DFSNumIn = DFSNum++; } } SlowQueries = 0; DFSInfoValid = true; } DomTreeNodeBase *getNodeForBlock(NodeT *BB) { typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.find(BB); if (I != this->DomTreeNodes.end() && I->second) return I->second; // Haven't calculated this node yet? Get or calculate the node for the // immediate dominator. NodeT *IDom = getIDom(BB); assert(IDom || this->DomTreeNodes[NULL]); DomTreeNodeBase *IDomNode = getNodeForBlock(IDom); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode DomTreeNodeBase *C = new DomTreeNodeBase(BB, IDomNode); return this->DomTreeNodes[BB] = IDomNode->addChild(C); } inline NodeT *getIDom(NodeT *BB) const { typename DenseMap::const_iterator I = IDoms.find(BB); return I != IDoms.end() ? I->second : 0; } inline void addRoot(NodeT* BB) { this->Roots.push_back(BB); } public: /// recalculate - compute a dominator tree for the given function template void recalculate(FT& F) { reset(); this->Vertex.push_back(0); if (!this->IsPostDominators) { // Initialize root this->Roots.push_back(&F.front()); this->IDoms[&F.front()] = 0; this->DomTreeNodes[&F.front()] = 0; Calculate(*this, F); } else { // Initialize the roots list for (typename FT::iterator I = F.begin(), E = F.end(); I != E; ++I) { if (std::distance(GraphTraits::child_begin(I), GraphTraits::child_end(I)) == 0) addRoot(I); // Prepopulate maps so that we don't get iterator invalidation issues later. this->IDoms[I] = 0; this->DomTreeNodes[I] = 0; } Calculate >(*this, F); } } }; EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase); //===------------------------------------- /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to /// compute a normal dominator tree. /// class DominatorTree : public FunctionPass { public: static char ID; // Pass ID, replacement for typeid DominatorTreeBase* DT; DominatorTree() : FunctionPass(ID) { initializeDominatorTreePass(*PassRegistry::getPassRegistry()); DT = new DominatorTreeBase(false); } ~DominatorTree() { delete DT; } DominatorTreeBase& getBase() { return *DT; } /// getRoots - Return the root blocks of the current CFG. This may include /// multiple blocks if we are computing post dominators. For forward /// dominators, this will always be a single block (the entry node). /// inline const std::vector &getRoots() const { return DT->getRoots(); } inline BasicBlock *getRoot() const { return DT->getRoot(); } inline DomTreeNode *getRootNode() const { return DT->getRootNode(); } /// compare - Return false if the other dominator tree matches this /// dominator tree. Otherwise return true. inline bool compare(DominatorTree &Other) const { DomTreeNode *R = getRootNode(); DomTreeNode *OtherR = Other.getRootNode(); if (!R || !OtherR || R->getBlock() != OtherR->getBlock()) return true; if (DT->compare(Other.getBase())) return true; return false; } virtual bool runOnFunction(Function &F); virtual void verifyAnalysis() const; virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); } inline bool dominates(const DomTreeNode* A, const DomTreeNode* B) const { return DT->dominates(A, B); } inline bool dominates(const BasicBlock* A, const BasicBlock* B) const { return DT->dominates(A, B); } // dominates - Return true if A dominates B. This performs the // special checks necessary if A and B are in the same basic block. bool dominates(const Instruction *A, const Instruction *B) const; bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const { return DT->properlyDominates(A, B); } bool properlyDominates(const BasicBlock *A, const BasicBlock *B) const { return DT->properlyDominates(A, B); } /// findNearestCommonDominator - Find nearest common dominator basic block /// for basic block A and B. If there is no such block then return NULL. inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) { return DT->findNearestCommonDominator(A, B); } inline const BasicBlock *findNearestCommonDominator(const BasicBlock *A, const BasicBlock *B) { return DT->findNearestCommonDominator(A, B); } inline DomTreeNode *operator[](BasicBlock *BB) const { return DT->getNode(BB); } /// getNode - return the (Post)DominatorTree node for the specified basic /// block. This is the same as using operator[] on this class. /// inline DomTreeNode *getNode(BasicBlock *BB) const { return DT->getNode(BB); } /// addNewBlock - Add a new node to the dominator tree information. This /// creates a new node as a child of DomBB dominator node,linking it into /// the children list of the immediate dominator. inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) { return DT->addNewBlock(BB, DomBB); } /// changeImmediateDominator - This method is used to update the dominator /// tree information when a node's immediate dominator changes. /// inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) { DT->changeImmediateDominator(N, NewIDom); } inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) { DT->changeImmediateDominator(N, NewIDom); } /// eraseNode - Removes a node from the dominator tree. Block must not /// dominate any other blocks. Removes node from its immediate dominator's /// children list. Deletes dominator node associated with basic block BB. inline void eraseNode(BasicBlock *BB) { DT->eraseNode(BB); } /// splitBlock - BB is split and now it has one successor. Update dominator /// tree to reflect this change. inline void splitBlock(BasicBlock* NewBB) { DT->splitBlock(NewBB); } bool isReachableFromEntry(const BasicBlock* A) { return DT->isReachableFromEntry(A); } virtual void releaseMemory() { DT->releaseMemory(); } virtual void print(raw_ostream &OS, const Module* M= 0) const; }; //===------------------------------------- /// DominatorTree GraphTraits specialization so the DominatorTree can be /// iterable by generic graph iterators. /// template <> struct GraphTraits { typedef DomTreeNode NodeType; typedef NodeType::iterator ChildIteratorType; static NodeType *getEntryNode(NodeType *N) { return N; } static inline ChildIteratorType child_begin(NodeType *N) { return N->begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->end(); } typedef df_iterator nodes_iterator; static nodes_iterator nodes_begin(DomTreeNode *N) { return df_begin(getEntryNode(N)); } static nodes_iterator nodes_end(DomTreeNode *N) { return df_end(getEntryNode(N)); } }; template <> struct GraphTraits : public GraphTraits { static NodeType *getEntryNode(DominatorTree *DT) { return DT->getRootNode(); } static nodes_iterator nodes_begin(DominatorTree *N) { return df_begin(getEntryNode(N)); } static nodes_iterator nodes_end(DominatorTree *N) { return df_end(getEntryNode(N)); } }; //===----------------------------------------------------------------------===// /// DominanceFrontierBase - Common base class for computing forward and inverse /// dominance frontiers for a function. /// class DominanceFrontierBase : public FunctionPass { public: typedef std::set DomSetType; // Dom set for a bb typedef std::map DomSetMapType; // Dom set map protected: DomSetMapType Frontiers; std::vector Roots; const bool IsPostDominators; public: DominanceFrontierBase(char &ID, bool isPostDom) : FunctionPass(ID), IsPostDominators(isPostDom) {} /// getRoots - Return the root blocks of the current CFG. This may include /// multiple blocks if we are computing post dominators. For forward /// dominators, this will always be a single block (the entry node). /// inline const std::vector &getRoots() const { return Roots; } /// isPostDominator - Returns true if analysis based of postdoms /// bool isPostDominator() const { return IsPostDominators; } virtual void releaseMemory() { Frontiers.clear(); } // Accessor interface: typedef DomSetMapType::iterator iterator; typedef DomSetMapType::const_iterator const_iterator; iterator begin() { return Frontiers.begin(); } const_iterator begin() const { return Frontiers.begin(); } iterator end() { return Frontiers.end(); } const_iterator end() const { return Frontiers.end(); } iterator find(BasicBlock *B) { return Frontiers.find(B); } const_iterator find(BasicBlock *B) const { return Frontiers.find(B); } iterator addBasicBlock(BasicBlock *BB, const DomSetType &frontier) { assert(find(BB) == end() && "Block already in DominanceFrontier!"); return Frontiers.insert(std::make_pair(BB, frontier)).first; } /// removeBlock - Remove basic block BB's frontier. void removeBlock(BasicBlock *BB) { assert(find(BB) != end() && "Block is not in DominanceFrontier!"); for (iterator I = begin(), E = end(); I != E; ++I) I->second.erase(BB); Frontiers.erase(BB); } void addToFrontier(iterator I, BasicBlock *Node) { assert(I != end() && "BB is not in DominanceFrontier!"); I->second.insert(Node); } void removeFromFrontier(iterator I, BasicBlock *Node) { assert(I != end() && "BB is not in DominanceFrontier!"); assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB"); I->second.erase(Node); } /// compareDomSet - Return false if two domsets match. Otherwise /// return true; bool compareDomSet(DomSetType &DS1, const DomSetType &DS2) const { std::set tmpSet; for (DomSetType::const_iterator I = DS2.begin(), E = DS2.end(); I != E; ++I) tmpSet.insert(*I); for (DomSetType::const_iterator I = DS1.begin(), E = DS1.end(); I != E; ) { BasicBlock *Node = *I++; if (tmpSet.erase(Node) == 0) // Node is in DS1 but not in DS2. return true; } if (!tmpSet.empty()) // There are nodes that are in DS2 but not in DS1. return true; // DS1 and DS2 matches. return false; } /// compare - Return true if the other dominance frontier base matches /// this dominance frontier base. Otherwise return false. bool compare(DominanceFrontierBase &Other) const { DomSetMapType tmpFrontiers; for (DomSetMapType::const_iterator I = Other.begin(), E = Other.end(); I != E; ++I) tmpFrontiers.insert(std::make_pair(I->first, I->second)); for (DomSetMapType::iterator I = tmpFrontiers.begin(), E = tmpFrontiers.end(); I != E; ) { BasicBlock *Node = I->first; const_iterator DFI = find(Node); if (DFI == end()) return true; if (compareDomSet(I->second, DFI->second)) return true; ++I; tmpFrontiers.erase(Node); } if (!tmpFrontiers.empty()) return true; return false; } /// print - Convert to human readable form /// virtual void print(raw_ostream &OS, const Module* = 0) const; /// dump - Dump the dominance frontier to dbgs(). void dump() const; }; //===------------------------------------- /// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is /// used to compute a forward dominator frontiers. /// class DominanceFrontier : public DominanceFrontierBase { public: static char ID; // Pass ID, replacement for typeid DominanceFrontier() : DominanceFrontierBase(ID, false) { initializeDominanceFrontierPass(*PassRegistry::getPassRegistry()); } BasicBlock *getRoot() const { assert(Roots.size() == 1 && "Should always have entry node!"); return Roots[0]; } virtual bool runOnFunction(Function &) { Frontiers.clear(); DominatorTree &DT = getAnalysis(); Roots = DT.getRoots(); assert(Roots.size() == 1 && "Only one entry block for forward domfronts!"); calculate(DT, DT[Roots[0]]); return false; } virtual void verifyAnalysis() const; virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); } /// splitBlock - BB is split and now it has one successor. Update dominance /// frontier to reflect this change. void splitBlock(BasicBlock *BB); /// BasicBlock BB's new dominator is NewBB. Update BB's dominance frontier /// to reflect this change. void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB, DominatorTree *DT) { // NewBB is now dominating BB. Which means BB's dominance // frontier is now part of NewBB's dominance frontier. However, BB // itself is not member of NewBB's dominance frontier. DominanceFrontier::iterator NewDFI = find(NewBB); DominanceFrontier::iterator DFI = find(BB); // If BB was an entry block then its frontier is empty. if (DFI == end()) return; DominanceFrontier::DomSetType BBSet = DFI->second; for (DominanceFrontier::DomSetType::iterator BBSetI = BBSet.begin(), BBSetE = BBSet.end(); BBSetI != BBSetE; ++BBSetI) { BasicBlock *DFMember = *BBSetI; // Insert only if NewBB dominates DFMember. if (!DT->dominates(NewBB, DFMember)) NewDFI->second.insert(DFMember); } NewDFI->second.erase(BB); } const DomSetType &calculate(const DominatorTree &DT, const DomTreeNode *Node); }; } // End llvm namespace #endif