//===- AlphaISelPattern.cpp - A pattern matching inst selector for Alpha -===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a pattern matching instruction selector for Alpha. // //===----------------------------------------------------------------------===// #include "Alpha.h" #include "AlphaRegisterInfo.h" #include "llvm/Constants.h" // FIXME: REMOVE #include "llvm/Function.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineConstantPool.h" // FIXME: REMOVE #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Support/MathExtras.h" #include "llvm/ADT/Statistic.h" #include using namespace llvm; //===----------------------------------------------------------------------===// // AlphaTargetLowering - Alpha Implementation of the TargetLowering interface namespace { class AlphaTargetLowering : public TargetLowering { int VarArgsFrameIndex; // FrameIndex for start of varargs area. unsigned GP; //GOT vreg public: AlphaTargetLowering(TargetMachine &TM) : TargetLowering(TM) { // Set up the TargetLowering object. addRegisterClass(MVT::i64, Alpha::GPRCRegisterClass); addRegisterClass(MVT::f64, Alpha::FPRCRegisterClass); setOperationAction(ISD::EXTLOAD , MVT::i1 , Expand); setOperationAction(ISD::ZEXTLOAD , MVT::i1 , Expand); setOperationAction(ISD::ZEXTLOAD , MVT::i32 , Expand); setOperationAction(ISD::SEXTLOAD , MVT::i1 , Expand); setOperationAction(ISD::SEXTLOAD , MVT::i8 , Expand); setOperationAction(ISD::SEXTLOAD , MVT::i16 , Expand); setOperationAction(ISD::ZERO_EXTEND_INREG, MVT::i1, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); // setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand); // setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand); setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote); setOperationAction(ISD::FP_TO_SINT , MVT::f32 , Promote); computeRegisterProperties(); // addLegalFPImmediate(+0.0); // FLD0 // addLegalFPImmediate(+1.0); // FLD1 // addLegalFPImmediate(-0.0); // FLD0/FCHS // addLegalFPImmediate(-1.0); // FLD1/FCHS } /// LowerArguments - This hook must be implemented to indicate how we should /// lower the arguments for the specified function, into the specified DAG. virtual std::vector LowerArguments(Function &F, SelectionDAG &DAG); /// LowerCallTo - This hook lowers an abstract call to a function into an /// actual call. virtual std::pair LowerCallTo(SDOperand Chain, const Type *RetTy, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG); virtual std::pair LowerVAStart(SDOperand Chain, SelectionDAG &DAG); virtual std::pair LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList, const Type *ArgTy, SelectionDAG &DAG); virtual std::pair LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth, SelectionDAG &DAG); void restoreGP(MachineBasicBlock* BB) { BuildMI(BB, Alpha::BIS, 2, Alpha::R29).addReg(GP).addReg(GP); } }; } //http://www.cs.arizona.edu/computer.help/policy/DIGITAL_unix/AA-PY8AC-TET1_html/callCH3.html#BLOCK21 //For now, just use variable size stack frame format //In a standard call, the first six items are passed in registers $16 //- $21 and/or registers $f16 - $f21. (See Section 4.1.2 for details //of argument-to-register correspondence.) The remaining items are //collected in a memory argument list that is a naturally aligned //array of quadwords. In a standard call, this list, if present, must //be passed at 0(SP). //7 ... n 0(SP) ... (n-7)*8(SP) std::vector AlphaTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { std::vector ArgValues; // //#define FP $15 // //#define RA $26 // //#define PV $27 // //#define GP $29 // //#define SP $30 // assert(0 && "TODO"); MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); GP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); MachineBasicBlock& BB = MF.front(); //Handle the return address //BuildMI(&BB, Alpha::IDEF, 0, Alpha::R26); unsigned args_int[] = {Alpha::R16, Alpha::R17, Alpha::R18, Alpha::R19, Alpha::R20, Alpha::R21}; unsigned args_float[] = {Alpha::F16, Alpha::F17, Alpha::F18, Alpha::F19, Alpha::F20, Alpha::F21}; std::vector argVreg; std::vector argPreg; int count = 0; for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I) { ++count; assert(count <= 6 && "More than 6 args not supported"); switch (getValueType(I->getType())) { default: std::cerr << "Unknown Type " << getValueType(I->getType()) << "\n"; abort(); case MVT::f64: case MVT::f32: BuildMI(&BB, Alpha::IDEF, 0, args_float[count - 1]); argVreg.push_back(MF.getSSARegMap()->createVirtualRegister(getRegClassFor(getValueType(I->getType())))); argPreg.push_back(args_float[count - 1]); break; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: BuildMI(&BB, Alpha::IDEF, 0, args_int[count - 1]); argVreg.push_back(MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64))); argPreg.push_back(args_int[count - 1]); break; } } BuildMI(&BB, Alpha::IDEF, 0, Alpha::R29); BuildMI(&BB, Alpha::BIS, 2, GP).addReg(Alpha::R29).addReg(Alpha::R29); count = 0; for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I) { SDOperand newroot; unsigned Opc; switch (getValueType(I->getType())) { default: assert(0 && "Unhandled type"); case MVT::i64: case MVT::i32: case MVT::i16: case MVT::i8: case MVT::i1: Opc = Alpha::BIS; break; case MVT::f32: case MVT::f64: Opc = Alpha::CPYS; break; } BuildMI(&BB, Opc, 2, argVreg[count]).addReg(argPreg[count]).addReg(argPreg[count]); newroot = DAG.getCopyFromReg(argVreg[count], getValueType(I->getType()), DAG.getRoot()); DAG.setRoot(newroot.getValue(1)); ArgValues.push_back(newroot); ++count; } return ArgValues; } std::pair AlphaTargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) { int NumBytes = 0; Chain = DAG.getNode(ISD::ADJCALLSTACKDOWN, MVT::Other, Chain, DAG.getConstant(NumBytes, getPointerTy())); std::vector args_to_use; for (unsigned i = 0, e = Args.size(); i != e; ++i) { switch (getValueType(Args[i].second)) { default: assert(0 && "Unexpected ValueType for argument!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: // Promote the integer to 64 bits. If the input type is signed use a // sign extend, otherwise use a zero extend. if (Args[i].second->isSigned()) Args[i].first = DAG.getNode(ISD::SIGN_EXTEND_INREG, MVT::i64, Args[i].first); else Args[i].first = DAG.getNode(ISD::ZERO_EXTEND_INREG, MVT::i64, Args[i].first); break; case MVT::i64: break; } args_to_use.push_back(Args[i].first); } std::vector RetVals; MVT::ValueType RetTyVT = getValueType(RetTy); if (RetTyVT != MVT::isVoid) RetVals.push_back(RetTyVT); RetVals.push_back(MVT::Other); SDOperand TheCall = SDOperand(DAG.getCall(RetVals, Chain, Callee, args_to_use), 0); Chain = TheCall.getValue(RetTyVT != MVT::isVoid); Chain = DAG.getNode(ISD::ADJCALLSTACKUP, MVT::Other, Chain, DAG.getConstant(NumBytes, getPointerTy())); return std::make_pair(TheCall, Chain); } std::pair AlphaTargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) { //vastart just returns the address of the VarArgsFrameIndex slot. return std::make_pair(DAG.getFrameIndex(VarArgsFrameIndex, MVT::i64), Chain); } std::pair AlphaTargetLowering:: LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList, const Type *ArgTy, SelectionDAG &DAG) { abort(); } std::pair AlphaTargetLowering:: LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth, SelectionDAG &DAG) { abort(); } namespace { //===--------------------------------------------------------------------===// /// ISel - Alpha specific code to select Alpha machine instructions for /// SelectionDAG operations. /// class ISel : public SelectionDAGISel { /// AlphaLowering - This object fully describes how to lower LLVM code to an /// Alpha-specific SelectionDAG. AlphaTargetLowering AlphaLowering; /// ExprMap - As shared expressions are codegen'd, we keep track of which /// vreg the value is produced in, so we only emit one copy of each compiled /// tree. std::map ExprMap; std::set LoweredTokens; public: ISel(TargetMachine &TM) : SelectionDAGISel(AlphaLowering), AlphaLowering(TM) { } /// InstructionSelectBasicBlock - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) { // Codegen the basic block. Select(DAG.getRoot()); // Clear state used for selection. ExprMap.clear(); LoweredTokens.clear(); } unsigned SelectExpr(SDOperand N); void Select(SDOperand N); }; } unsigned ISel::SelectExpr(SDOperand N) { unsigned Result; unsigned Tmp1, Tmp2, Tmp3; unsigned Opc = 0; SDNode *Node = N.Val; unsigned &Reg = ExprMap[N]; if (Reg) return Reg; if (N.getOpcode() != ISD::CALL) Reg = Result = (N.getValueType() != MVT::Other) ? MakeReg(N.getValueType()) : 1; else { // If this is a call instruction, make sure to prepare ALL of the result // values as well as the chain. if (Node->getNumValues() == 1) Reg = Result = 1; // Void call, just a chain. else { Result = MakeReg(Node->getValueType(0)); ExprMap[N.getValue(0)] = Result; for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i) ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1; } } switch (N.getOpcode()) { default: Node->dump(); assert(0 && "Node not handled!\n"); case ISD::FrameIndex: Tmp1 = cast(N)->getIndex(); BuildMI(BB, Alpha::LDA, 2, Result).addImm(Tmp1 * 8).addReg(Alpha::R30); return Result; case ISD::EXTLOAD: // Make sure we generate both values. if (Result != 1) ExprMap[N.getValue(1)] = 1; // Generate the token else Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); Select(Node->getOperand(0)); // chain Tmp1 = SelectExpr(Node->getOperand(1)); switch(Node->getValueType(0)) { default: Node->dump(); assert(0 && "Unknown type to sign extend to."); case MVT::i64: switch (cast(Node)->getExtraValueType()) { default: Node->dump(); assert(0 && "Bad extend load!"); case MVT::i64: BuildMI(BB, Alpha::LDQ, 2, Result).addImm(0).addReg(Tmp1); break; case MVT::i32: BuildMI(BB, Alpha::LDL, 2, Result).addImm(0).addReg(Tmp1); break; case MVT::i16: BuildMI(BB, Alpha::LDWU, 2, Result).addImm(0).addReg(Tmp1); break; case MVT::i8: case MVT::i1: //FIXME: DAG does not expand i8?? BuildMI(BB, Alpha::LDBU, 2, Result).addImm(0).addReg(Tmp1); break; } break; } return Result; case ISD::SEXTLOAD: // Make sure we generate both values. if (Result != 1) ExprMap[N.getValue(1)] = 1; // Generate the token else Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); Select(Node->getOperand(0)); // chain Tmp1 = SelectExpr(Node->getOperand(1)); switch(Node->getValueType(0)) { default: Node->dump(); assert(0 && "Unknown type to sign extend to."); case MVT::i64: switch (cast(Node)->getExtraValueType()) { default: Node->dump(); assert(0 && "Bad sign extend!"); case MVT::i32: BuildMI(BB, Alpha::LDL, 2, Result).addImm(0).addReg(Tmp1); break; // case MVT::i16: // BuildMI(BB, Alpha::LDW, 2, Result).addImm(0).addReg(Tmp1); // break; // case MVT::i8: // BuildMI(BB, Alpha::LDB, 2, Result).addImm(0).addReg(Tmp1); // break; } break; } return Result; case ISD::ZEXTLOAD: // Make sure we generate both values. if (Result != 1) ExprMap[N.getValue(1)] = 1; // Generate the token else Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); Select(Node->getOperand(0)); // chain Tmp1 = SelectExpr(Node->getOperand(1)); switch(Node->getValueType(0)) { default: Node->dump(); assert(0 && "Unknown type to zero extend to."); case MVT::i64: switch (cast(Node)->getExtraValueType()) { default: Node->dump(); assert(0 && "Bad sign extend!"); case MVT::i16: BuildMI(BB, Alpha::LDWU, 2, Result).addImm(0).addReg(Tmp1); break; case MVT::i8: BuildMI(BB, Alpha::LDBU, 2, Result).addImm(0).addReg(Tmp1); break; } break; } return Result; case ISD::GlobalAddress: AlphaLowering.restoreGP(BB); BuildMI(BB, Alpha::LOAD_ADDR, 1, Result) .addGlobalAddress(cast(N)->getGlobal()); return Result; case ISD::CALL: { Select(N.getOperand(0)); // The chain for this call is now lowered. ExprMap.insert(std::make_pair(N.getValue(Node->getNumValues()-1), 1)); //grab the arguments std::vector argvregs; assert(Node->getNumOperands() < 8 && "Only 6 args supported"); for(int i = 2, e = Node->getNumOperands(); i < e; ++i) argvregs.push_back(SelectExpr(N.getOperand(i))); for(int i = 0, e = argvregs.size(); i < e; ++i) { unsigned args_int[] = {Alpha::R16, Alpha::R17, Alpha::R18, Alpha::R19, Alpha::R20, Alpha::R21}; unsigned args_float[] = {Alpha::F16, Alpha::F17, Alpha::F18, Alpha::F19, Alpha::F20, Alpha::F21}; switch(N.getOperand(i).getValueType()) { default: Node->dump(); assert(0 && "Unknown value type for call"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: BuildMI(BB, Alpha::BIS, 2, args_int[i]).addReg(argvregs[i]).addReg(argvregs[i]); break; case MVT::f32: case MVT::f64: BuildMI(BB, Alpha::CPYS, 2, args_float[i]).addReg(argvregs[i]).addReg(argvregs[i]); break; } } //build the right kind of call if (GlobalAddressSDNode *GASD = dyn_cast(N.getOperand(1))) { Select(N.getOperand(0)); AlphaLowering.restoreGP(BB); BuildMI(BB, Alpha::CALL, 1).addGlobalAddress(GASD->getGlobal(),true); } else if (ExternalSymbolSDNode *ESSDN = dyn_cast(N.getOperand(1))) { Select(N.getOperand(0)); AlphaLowering.restoreGP(BB); BuildMI(BB, Alpha::CALL, 0).addExternalSymbol(ESSDN->getSymbol(), true); } else { Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); BuildMI(BB, Alpha::CALL, 1).addReg(Tmp1); AlphaLowering.restoreGP(BB); } //push the result into a virtual register // if (Result != 1) // BuildMI(BB, Alpha::BIS, 2, Result).addReg(Alpha::R0).addReg(Alpha::R0); switch (Node->getValueType(0)) { default: Node->dump(); assert(0 && "Unknown value type for call result!"); case MVT::Other: return 1; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: BuildMI(BB, Alpha::BIS, 2, Result).addReg(Alpha::R0).addReg(Alpha::R0); break; case MVT::f32: case MVT::f64: BuildMI(BB, Alpha::CPYS, 2, Result).addReg(Alpha::F0).addReg(Alpha::F0); break; } return Result+N.ResNo; } case ISD::SIGN_EXTEND: case ISD::SIGN_EXTEND_INREG: { Tmp1 = SelectExpr(N.getOperand(0)); MVTSDNode* MVN = dyn_cast(Node); //std::cerr << "SrcT: " << MVN->getExtraValueType() << "\n"; switch(MVN->getExtraValueType()) { default: Node->dump(); assert(0 && "Sign Extend InReg not there yet"); break; case MVT::i32: { BuildMI(BB, Alpha::ADDLi, 2, Result).addReg(Tmp1).addImm(0); break; } case MVT::i16: BuildMI(BB, Alpha::SEXTW, 1, Result).addReg(Tmp1); break; case MVT::i8: BuildMI(BB, Alpha::SEXTB, 1, Result).addReg(Tmp1); break; } return Result; } case ISD::ZERO_EXTEND_INREG: { Tmp1 = SelectExpr(N.getOperand(0)); MVTSDNode* MVN = dyn_cast(Node); //std::cerr << "SrcT: " << MVN->getExtraValueType() << "\n"; switch(MVN->getExtraValueType()) { default: Node->dump(); assert(0 && "Zero Extend InReg not there yet"); break; case MVT::i32: Tmp2 = 0xf0; break; case MVT::i16: Tmp2 = 0xfc; break; case MVT::i8: Tmp2 = 0xfe; break; } BuildMI(BB, Alpha::ZAPi, 2, Result).addReg(Tmp1).addImm(Tmp2); return Result; } case ISD::SETCC: Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); if (SetCCSDNode *SetCC = dyn_cast(Node)) { if (MVT::isInteger(SetCC->getOperand(0).getValueType())) { switch (SetCC->getCondition()) { default: Node->dump(); assert(0 && "Unknown integer comparison!"); case ISD::SETEQ: BuildMI(BB, Alpha::CMPEQ, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETGT: BuildMI(BB, Alpha::CMPLT, 2, Result).addReg(Tmp2).addReg(Tmp1); break; case ISD::SETGE: BuildMI(BB, Alpha::CMPLE, 2, Result).addReg(Tmp2).addReg(Tmp1); break; case ISD::SETLT: BuildMI(BB, Alpha::CMPLT, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETLE: BuildMI(BB, Alpha::CMPLE, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETNE: { unsigned Tmp3 = MakeReg(MVT::i64); BuildMI(BB, Alpha::CMPEQ, 2, Tmp3).addReg(Tmp1).addReg(Tmp2); BuildMI(BB, Alpha::CMPEQ, 2, Result).addReg(Tmp3).addReg(Alpha::R31); break; } case ISD::SETULT: BuildMI(BB, Alpha::CMPULT, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETUGT: BuildMI(BB, Alpha::CMPULT, 2, Result).addReg(Tmp2).addReg(Tmp1); break; case ISD::SETULE: BuildMI(BB, Alpha::CMPULE, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::SETUGE: BuildMI(BB, Alpha::CMPULE, 2, Result).addReg(Tmp2).addReg(Tmp1); break; } } else { Node->dump(); assert(0 && "only integer"); } } else { Node->dump(); assert(0 && "Not a setcc in setcc"); } return Result; case ISD::CopyFromReg: { if (Result == 1) Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); SDOperand Chain = N.getOperand(0); Select(Chain); unsigned r = dyn_cast(Node)->getReg(); //std::cerr << "CopyFromReg " << Result << " = " << r << "\n"; BuildMI(BB, Alpha::BIS, 2, Result).addReg(r).addReg(r); return Result; } //Most of the plain arithmetic and logic share the same form, and the same //constant immediate test case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::SHL: case ISD::SRL: case ISD::MUL: switch (N.getValueType()) { default: Node->dump(); assert (0 && "unhandled type"); case MVT::f64: assert(N.getOpcode() == ISD::MUL && "only mul here please"); Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, Alpha::MULT, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case MVT::f32: assert(N.getOpcode() == ISD::MUL && "only mul here please"); Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, Alpha::MULS, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case MVT::i64: if(N.getOperand(1).getOpcode() == ISD::Constant && cast(N.getOperand(1))->getValue() >= 0 && cast(N.getOperand(1))->getValue() <= 255) { switch(N.getOpcode()) { case ISD::AND: Opc = Alpha::ANDi; break; case ISD::OR: Opc = Alpha::BISi; break; case ISD::XOR: Opc = Alpha::XORi; break; case ISD::SHL: Opc = Alpha::SLi; break; case ISD::SRL: Opc = Alpha::SRLi; break; case ISD::SRA: Opc = Alpha::SRAi; break; case ISD::MUL: Opc = Alpha::MULQi; break; }; Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = cast(N.getOperand(1))->getValue(); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(Tmp2); } else { switch(N.getOpcode()) { case ISD::AND: Opc = Alpha::AND; break; case ISD::OR: Opc = Alpha::BIS; break; case ISD::XOR: Opc = Alpha::XOR; break; case ISD::SHL: Opc = Alpha::SL; break; case ISD::SRL: Opc = Alpha::SRL; break; case ISD::SRA: Opc = Alpha::SRA; break; case ISD::MUL: Opc = Alpha::MULQ; break; }; Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); } break; } return Result; case ISD::ADD: case ISD::SUB: { bool isAdd = N.getOpcode() == ISD::ADD; switch (N.getValueType()) { default: Node->dump(); assert(0 && "Unhandled type"); case MVT::i64: { //FIXME: first check for Scaled Adds and Subs! if(N.getOperand(1).getOpcode() == ISD::Constant && cast(N.getOperand(1))->getValue() >= 0 && cast(N.getOperand(1))->getValue() <= 255) { //Normal imm add/sub Opc = isAdd ? Alpha::ADDQi : Alpha::SUBQi; Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = cast(N.getOperand(1))->getValue(); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(Tmp2); } else if(N.getOperand(1).getOpcode() == ISD::Constant && cast(N.getOperand(1))->getValue() >= 0 && cast(N.getOperand(1))->getValue() <= 32767) { //LDA //FIXME: expand the above condition a bit Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = cast(N.getOperand(1))->getValue(); if (!isAdd) Tmp2 = -Tmp2; BuildMI(BB, Alpha::LDA, 2, Result).addImm(Tmp2).addReg(Tmp1); } else { //Normal add/sub Opc = isAdd ? Alpha::ADDQ : Alpha::SUBQ; Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); } } break; case MVT::f64: case MVT::f32: if (N.getValueType() == MVT::f64) Opc = isAdd ? Alpha::ADDT : Alpha::SUBT; else Opc = isAdd ? Alpha::ADDS : Alpha::SUBS; // Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); break; } return Result; } case ISD::UREM: case ISD::SREM: case ISD::SDIV: case ISD::UDIV: switch (N.getValueType()) { default: Node->dump(); assert (0 && "unhandled type"); case MVT::f64: assert(N.getOpcode() == ISD::SDIV && "only div here please"); Opc = Alpha::DIVT; break; case MVT::f32: assert(N.getOpcode() == ISD::SDIV && "only div here please"); Opc = Alpha::DIVS; break; case MVT::i64: //FIXME: alpha really doesn't support any of these operations, // the ops are expanded into special library calls with // special calling conventions switch(N.getOpcode()) { case ISD::UREM: Opc = Alpha::REMQU; break; case ISD::SREM: Opc = Alpha::REMQ; break; case ISD::UDIV: Opc = Alpha::DIVQU; break; case ISD::SDIV: Opc = Alpha::DIVQ; break; } break; } Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); return Result; // case ISD::SINT_TO_FP: // MVT::ValueType DestTy = N.getValueType(); // Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register // Tmp2 = MakeReg(DestTy); // Opc = DestTy == MVT::f64 ? ITOFT : ITOFS; // BuildMI(BB, Opc, 1, Tmp2).addReg(Tmp1); // Opc = DestTy == MVT::f64 ? CVTQT : CVTQS; // BuildMI(BB, Opc, 1, Result).addReg(Tmp1); // // case ISD::UINT_TO_FP: // case ISD::FP_TO_SINT: // assert (N.getValueType() == MVT::f64 && "Only can convert for doubles"); // Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register // Tmp2 = MakeReg(SrcTy); // BuildMI(BB, CVTTQ, 1, Tmp2).addReg(Tmp1); // BuildMI(BB, FTOIT, 1, Result).addReg(Tmp2); // return result; // // case ISD::FP_TO_UINT: case ISD::SELECT: { Tmp2 = SelectExpr(N.getOperand(1)); //Use if TRUE Tmp3 = SelectExpr(N.getOperand(2)); //Use if FALSE Tmp1 = SelectExpr(N.getOperand(0)); //Cond // Get the condition into the zero flag. unsigned dummy = MakeReg(MVT::i64); BuildMI(BB, Alpha::BIS, 2, dummy).addReg(Tmp3).addReg(Tmp3); BuildMI(BB, Alpha::CMOVEQ, 2, Result).addReg(Tmp2).addReg(Tmp1); return Result; } case ISD::Constant: { long val = cast(N)->getValue(); BuildMI(BB, Alpha::LOAD_IMM, 1, Result).addImm(val); return Result; } case ISD::LOAD: { // Make sure we generate both values. if (Result != 1) ExprMap[N.getValue(1)] = 1; // Generate the token else Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); SDOperand Chain = N.getOperand(0); SDOperand Address = N.getOperand(1); if (Address.getOpcode() == ISD::GlobalAddress) { Select(Chain); AlphaLowering.restoreGP(BB); BuildMI(BB, Alpha::LOAD, 1, Result).addGlobalAddress(cast(Address)->getGlobal()); } else { Select(Chain); Tmp2 = SelectExpr(Address); BuildMI(BB, Alpha::LDQ, 2, Result).addImm(0).addReg(Tmp2); } return Result; } } return 0; } void ISel::Select(SDOperand N) { unsigned Tmp1, Tmp2, Opc; // FIXME: Disable for our current expansion model! if (/*!N->hasOneUse() &&*/ !LoweredTokens.insert(N).second) return; // Already selected. SDNode *Node = N.Val; switch (N.getOpcode()) { default: Node->dump(); std::cerr << "\n"; assert(0 && "Node not handled yet!"); case ISD::BRCOND: { MachineBasicBlock *Dest = cast(N.getOperand(2))->getBasicBlock(); Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); BuildMI(BB, Alpha::BNE, 2).addReg(Tmp1).addMBB(Dest); return; } case ISD::BR: { MachineBasicBlock *Dest = cast(N.getOperand(1))->getBasicBlock(); Select(N.getOperand(0)); BuildMI(BB, Alpha::BR, 1, Alpha::R31).addMBB(Dest); return; } case ISD::ImplicitDef: Select(N.getOperand(0)); BuildMI(BB, Alpha::IDEF, 0, cast(N)->getReg()); return; case ISD::EntryToken: return; // Noop case ISD::TokenFactor: for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) Select(Node->getOperand(i)); //N.Val->dump(); std::cerr << "\n"; //assert(0 && "Node not handled yet!"); return; case ISD::CopyToReg: Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); Tmp2 = cast(N)->getReg(); if (Tmp1 != Tmp2) { BuildMI(BB, Alpha::BIS, 2, Tmp2).addReg(Tmp1).addReg(Tmp1); } return; case ISD::RET: switch (N.getNumOperands()) { default: std::cerr << N.getNumOperands() << "\n"; for (unsigned i = 0; i < N.getNumOperands(); ++i) std::cerr << N.getOperand(i).getValueType() << "\n"; Node->dump(); assert(0 && "Unknown return instruction!"); case 2: Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); switch (N.getOperand(1).getValueType()) { default: Node->dump(); assert(0 && "All other types should have been promoted!!"); case MVT::f64: case MVT::f32: BuildMI(BB, Alpha::CPYS, 2, Alpha::F0).addReg(Tmp1).addReg(Tmp1); break; case MVT::i32: case MVT::i64: BuildMI(BB, Alpha::BIS, 2, Alpha::R0).addReg(Tmp1).addReg(Tmp1); break; } break; case 1: Select(N.getOperand(0)); break; } //Tmp2 = AlphaLowering.getRetAddr(); //BuildMI(BB, Alpha::BIS, 2, Alpha::R26).addReg(Tmp2).addReg(Tmp2); BuildMI(BB, Alpha::RETURN, 0); // Just emit a 'ret' instruction return; case ISD::STORE: Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); //value if (N.getOperand(2).getOpcode() == ISD::GlobalAddress) { AlphaLowering.restoreGP(BB); BuildMI(BB, Alpha::STORE, 2).addReg(Tmp1).addGlobalAddress(cast(N.getOperand(2))->getGlobal()); } else { Tmp2 = SelectExpr(N.getOperand(2)); //address BuildMI(BB, Alpha::STQ, 3).addReg(Tmp1).addImm(0).addReg(Tmp2); } return; case ISD::EXTLOAD: case ISD::SEXTLOAD: case ISD::ZEXTLOAD: case ISD::LOAD: case ISD::CopyFromReg: case ISD::CALL: // case ISD::DYNAMIC_STACKALLOC: SelectExpr(N); return; case ISD::TRUNCSTORE: { // truncstore chain, val, ptr :storety MVT::ValueType StoredTy = cast(Node)->getExtraValueType(); if (StoredTy == MVT::i64) { Node->dump(); assert(StoredTy != MVT::i64 && "Unsupported TRUNCSTORE for this target!"); } Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); Tmp2 = SelectExpr(N.getOperand(2)); switch (StoredTy) { default: Node->dump(); assert(0 && "Unhandled Type"); break; case MVT::i1: //FIXME: DAG does not promote this load case MVT::i8: Opc = Alpha::STB; break; case MVT::i16: Opc = Alpha::STW; break; case MVT::i32: Opc = Alpha::STL; break; } BuildMI(BB, Opc, 2).addReg(Tmp1).addImm(0).addReg(Tmp2); return; } case ISD::ADJCALLSTACKDOWN: case ISD::ADJCALLSTACKUP: Select(N.getOperand(0)); Tmp1 = cast(N.getOperand(1))->getValue(); Opc = N.getOpcode() == ISD::ADJCALLSTACKDOWN ? Alpha::ADJUSTSTACKDOWN : Alpha::ADJUSTSTACKUP; BuildMI(BB, Opc, 1).addImm(Tmp1); return; } assert(0 && "Should not be reached!"); } /// createAlphaPatternInstructionSelector - This pass converts an LLVM function /// into a machine code representation using pattern matching and a machine /// description file. /// FunctionPass *llvm::createAlphaPatternInstructionSelector(TargetMachine &TM) { return new ISel(TM); }