//===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file provides helpers for the implementation of /// a TargetTransformInfo-conforming class. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H #define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" namespace llvm { /// \brief Base class for use as a mix-in that aids implementing /// a TargetTransformInfo-compatible class. class TargetTransformInfoImplBase { protected: typedef TargetTransformInfo TTI; const DataLayout *DL; explicit TargetTransformInfoImplBase(const DataLayout *DL) : DL(DL) {} public: // Provide value semantics. MSVC requires that we spell all of these out. TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg) : DL(Arg.DL) {} TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg) : DL(std::move(Arg.DL)) {} TargetTransformInfoImplBase & operator=(const TargetTransformInfoImplBase &RHS) { DL = RHS.DL; return *this; } TargetTransformInfoImplBase &operator=(TargetTransformInfoImplBase &&RHS) { DL = std::move(RHS.DL); return *this; } unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) { switch (Opcode) { default: // By default, just classify everything as 'basic'. return TTI::TCC_Basic; case Instruction::GetElementPtr: llvm_unreachable("Use getGEPCost for GEP operations!"); case Instruction::BitCast: assert(OpTy && "Cast instructions must provide the operand type"); if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy())) // Identity and pointer-to-pointer casts are free. return TTI::TCC_Free; // Otherwise, the default basic cost is used. return TTI::TCC_Basic; case Instruction::IntToPtr: { if (!DL) return TTI::TCC_Basic; // An inttoptr cast is free so long as the input is a legal integer type // which doesn't contain values outside the range of a pointer. unsigned OpSize = OpTy->getScalarSizeInBits(); if (DL->isLegalInteger(OpSize) && OpSize <= DL->getPointerTypeSizeInBits(Ty)) return TTI::TCC_Free; // Otherwise it's not a no-op. return TTI::TCC_Basic; } case Instruction::PtrToInt: { if (!DL) return TTI::TCC_Basic; // A ptrtoint cast is free so long as the result is large enough to store // the pointer, and a legal integer type. unsigned DestSize = Ty->getScalarSizeInBits(); if (DL->isLegalInteger(DestSize) && DestSize >= DL->getPointerTypeSizeInBits(OpTy)) return TTI::TCC_Free; // Otherwise it's not a no-op. return TTI::TCC_Basic; } case Instruction::Trunc: // trunc to a native type is free (assuming the target has compare and // shift-right of the same width). if (DL && DL->isLegalInteger(DL->getTypeSizeInBits(Ty))) return TTI::TCC_Free; return TTI::TCC_Basic; } } unsigned getGEPCost(const Value *Ptr, ArrayRef Operands) { // In the basic model, we just assume that all-constant GEPs will be folded // into their uses via addressing modes. for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx) if (!isa(Operands[Idx])) return TTI::TCC_Basic; return TTI::TCC_Free; } unsigned getCallCost(FunctionType *FTy, int NumArgs) { assert(FTy && "FunctionType must be provided to this routine."); // The target-independent implementation just measures the size of the // function by approximating that each argument will take on average one // instruction to prepare. if (NumArgs < 0) // Set the argument number to the number of explicit arguments in the // function. NumArgs = FTy->getNumParams(); return TTI::TCC_Basic * (NumArgs + 1); } unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, ArrayRef ParamTys) { switch (IID) { default: // Intrinsics rarely (if ever) have normal argument setup constraints. // Model them as having a basic instruction cost. // FIXME: This is wrong for libc intrinsics. return TTI::TCC_Basic; case Intrinsic::annotation: case Intrinsic::assume: case Intrinsic::dbg_declare: case Intrinsic::dbg_value: case Intrinsic::invariant_start: case Intrinsic::invariant_end: case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: case Intrinsic::objectsize: case Intrinsic::ptr_annotation: case Intrinsic::var_annotation: case Intrinsic::experimental_gc_result_int: case Intrinsic::experimental_gc_result_float: case Intrinsic::experimental_gc_result_ptr: case Intrinsic::experimental_gc_result: case Intrinsic::experimental_gc_relocate: // These intrinsics don't actually represent code after lowering. return TTI::TCC_Free; } } bool hasBranchDivergence() { return false; } bool isLoweredToCall(const Function *F) { // FIXME: These should almost certainly not be handled here, and instead // handled with the help of TLI or the target itself. This was largely // ported from existing analysis heuristics here so that such refactorings // can take place in the future. if (F->isIntrinsic()) return false; if (F->hasLocalLinkage() || !F->hasName()) return true; StringRef Name = F->getName(); // These will all likely lower to a single selection DAG node. if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" || Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" || Name == "fmin" || Name == "fminf" || Name == "fminl" || Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" || Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" || Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") return false; // These are all likely to be optimized into something smaller. if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" || Name == "exp2l" || Name == "exp2f" || Name == "floor" || Name == "floorf" || Name == "ceil" || Name == "round" || Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" || Name == "llabs") return false; return true; } void getUnrollingPreferences(Loop *, TTI::UnrollingPreferences &) {} bool isLegalAddImmediate(int64_t Imm) { return false; } bool isLegalICmpImmediate(int64_t Imm) { return false; } bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { // Guess that reg+reg addressing is allowed. This heuristic is taken from // the implementation of LSR. return !BaseGV && BaseOffset == 0 && Scale <= 1; } bool isLegalMaskedStore(Type *DataType, int Consecutive) { return false; } bool isLegalMaskedLoad(Type *DataType, int Consecutive) { return false; } int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { // Guess that all legal addressing mode are free. if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale)) return 0; return -1; } bool isTruncateFree(Type *Ty1, Type *Ty2) { return false; } bool isTypeLegal(Type *Ty) { return false; } unsigned getJumpBufAlignment() { return 0; } unsigned getJumpBufSize() { return 0; } bool shouldBuildLookupTables() { return true; } TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) { return TTI::PSK_Software; } bool haveFastSqrt(Type *Ty) { return false; } unsigned getFPOpCost(Type *Ty) { return TargetTransformInfo::TCC_Basic; } unsigned getIntImmCost(const APInt &Imm, Type *Ty) { return TTI::TCC_Basic; } unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty) { return TTI::TCC_Free; } unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty) { return TTI::TCC_Free; } unsigned getNumberOfRegisters(bool Vector) { return 8; } unsigned getRegisterBitWidth(bool Vector) { return 32; } unsigned getMaxInterleaveFactor() { return 1; } unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, TTI::OperandValueProperties Opd2PropInfo) { return 1; } unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Ty, int Index, Type *SubTp) { return 1; } unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { return 1; } unsigned getCFInstrCost(unsigned Opcode) { return 1; } unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) { return 1; } unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { return 1; } unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace) { return 1; } unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace) { return 1; } unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef Tys) { return 1; } unsigned getNumberOfParts(Type *Tp) { return 0; } unsigned getAddressComputationCost(Type *Tp, bool) { return 0; } unsigned getReductionCost(unsigned, Type *, bool) { return 1; } unsigned getCostOfKeepingLiveOverCall(ArrayRef Tys) { return 0; } bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) { return false; } Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType) { return nullptr; } }; /// \brief CRTP base class for use as a mix-in that aids implementing /// a TargetTransformInfo-compatible class. template class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase { private: typedef TargetTransformInfoImplBase BaseT; protected: explicit TargetTransformInfoImplCRTPBase(const DataLayout *DL) : BaseT(DL) {} public: // Provide value semantics. MSVC requires that we spell all of these out. TargetTransformInfoImplCRTPBase(const TargetTransformInfoImplCRTPBase &Arg) : BaseT(static_cast(Arg)) {} TargetTransformInfoImplCRTPBase(TargetTransformInfoImplCRTPBase &&Arg) : BaseT(std::move(static_cast(Arg))) {} TargetTransformInfoImplCRTPBase & operator=(const TargetTransformInfoImplCRTPBase &RHS) { BaseT::operator=(static_cast(RHS)); return *this; } TargetTransformInfoImplCRTPBase & operator=(TargetTransformInfoImplCRTPBase &&RHS) { BaseT::operator=(std::move(static_cast(RHS))); return *this; } using BaseT::getCallCost; unsigned getCallCost(const Function *F, int NumArgs) { assert(F && "A concrete function must be provided to this routine."); if (NumArgs < 0) // Set the argument number to the number of explicit arguments in the // function. NumArgs = F->arg_size(); if (Intrinsic::ID IID = (Intrinsic::ID)F->getIntrinsicID()) { FunctionType *FTy = F->getFunctionType(); SmallVector ParamTys(FTy->param_begin(), FTy->param_end()); return static_cast(this) ->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys); } if (!static_cast(this)->isLoweredToCall(F)) return TTI::TCC_Basic; // Give a basic cost if it will be lowered // directly. return static_cast(this)->getCallCost(F->getFunctionType(), NumArgs); } unsigned getCallCost(const Function *F, ArrayRef Arguments) { // Simply delegate to generic handling of the call. // FIXME: We should use instsimplify or something else to catch calls which // will constant fold with these arguments. return static_cast(this)->getCallCost(F, Arguments.size()); } using BaseT::getIntrinsicCost; unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, ArrayRef Arguments) { // Delegate to the generic intrinsic handling code. This mostly provides an // opportunity for targets to (for example) special case the cost of // certain intrinsics based on constants used as arguments. SmallVector ParamTys; ParamTys.reserve(Arguments.size()); for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx) ParamTys.push_back(Arguments[Idx]->getType()); return static_cast(this)->getIntrinsicCost(IID, RetTy, ParamTys); } unsigned getUserCost(const User *U) { if (isa(U)) return TTI::TCC_Free; // Model all PHI nodes as free. if (const GEPOperator *GEP = dyn_cast(U)) { SmallVector Indices(GEP->idx_begin(), GEP->idx_end()); return static_cast(this) ->getGEPCost(GEP->getPointerOperand(), Indices); } if (ImmutableCallSite CS = U) { const Function *F = CS.getCalledFunction(); if (!F) { // Just use the called value type. Type *FTy = CS.getCalledValue()->getType()->getPointerElementType(); return static_cast(this) ->getCallCost(cast(FTy), CS.arg_size()); } SmallVector Arguments(CS.arg_begin(), CS.arg_end()); return static_cast(this)->getCallCost(F, Arguments); } if (const CastInst *CI = dyn_cast(U)) { // Result of a cmp instruction is often extended (to be used by other // cmp instructions, logical or return instructions). These are usually // nop on most sane targets. if (isa(CI->getOperand(0))) return TTI::TCC_Free; } return static_cast(this)->getOperationCost( Operator::getOpcode(U), U->getType(), U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr); } }; } #endif