// $Id$ //*************************************************************************** // File: // Sparc.cpp // // Purpose: // // History: // 7/15/01 - Vikram Adve - Created //**************************************************************************/ #include "SparcInternals.h" #include "llvm/Target/Sparc.h" #include "llvm/CodeGen/InstrScheduling.h" #include "llvm/CodeGen/InstrSelection.h" #include "llvm/CodeGen/MachineCodeForInstruction.h" #include "llvm/CodeGen/MachineCodeForMethod.h" #include "llvm/CodeGen/PhyRegAlloc.h" #include "llvm/Method.h" #include using std::cerr; // Build the MachineInstruction Description Array... const MachineInstrDescriptor SparcMachineInstrDesc[] = { #define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \ NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \ { OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \ NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS }, #include "SparcInstr.def" }; //---------------------------------------------------------------------------- // allocateSparcTargetMachine - Allocate and return a subclass of TargetMachine // that implements the Sparc backend. (the llvm/CodeGen/Sparc.h interface) //---------------------------------------------------------------------------- // TargetMachine *allocateSparcTargetMachine() { return new UltraSparc(); } //---------------------------------------------------------------------------- // Entry point for register allocation for a module //---------------------------------------------------------------------------- void AllocateRegisters(Method *M, TargetMachine &target) { if ( (M)->isExternal() ) // don't process prototypes return; if( DEBUG_RA ) cerr << "\n******************** Method "<< M->getName() << " ********************\n"; MethodLiveVarInfo LVI(M ); // Analyze live varaibles LVI.analyze(); PhyRegAlloc PRA(M, target, &LVI); // allocate registers PRA.allocateRegisters(); if( DEBUG_RA ) cerr << "\nRegister allocation complete!\n"; } //--------------------------------------------------------------------------- // Function InsertPrologCode // Function InsertEpilogCode // Function InsertPrologEpilog // // Insert prolog code at the unique method entry point. // Insert epilog code at each method exit point. // InsertPrologEpilog invokes these only if the method is not compiled // with the leaf method optimization. //--------------------------------------------------------------------------- static MachineInstr* minstrVec[MAX_INSTR_PER_VMINSTR]; static void InsertPrologCode(Method* method, TargetMachine& target) { BasicBlock* entryBB = method->getEntryNode(); unsigned N = GetInstructionsForProlog(entryBB, target, minstrVec); assert(N <= MAX_INSTR_PER_VMINSTR); if (N > 0) { MachineCodeForBasicBlock& bbMvec = entryBB->getMachineInstrVec(); bbMvec.insert(bbMvec.begin(), minstrVec, minstrVec+N); } } static void InsertEpilogCode(Method* method, TargetMachine& target) { for (Method::iterator I=method->begin(), E=method->end(); I != E; ++I) if ((*I)->getTerminator()->getOpcode() == Instruction::Ret) { BasicBlock* exitBB = *I; unsigned N = GetInstructionsForEpilog(exitBB, target, minstrVec); MachineCodeForBasicBlock& bbMvec = exitBB->getMachineInstrVec(); MachineCodeForInstruction &termMvec = MachineCodeForInstruction::get(exitBB->getTerminator()); // Remove the NOPs in the delay slots of the return instruction const MachineInstrInfo &mii = target.getInstrInfo(); unsigned numNOPs = 0; while (termMvec.back()->getOpCode() == NOP) { assert( termMvec.back() == bbMvec.back()); termMvec.pop_back(); bbMvec.pop_back(); ++numNOPs; } assert(termMvec.back() == bbMvec.back()); // Check that we found the right number of NOPs and have the right // number of instructions to replace them. unsigned ndelays = mii.getNumDelaySlots(termMvec.back()->getOpCode()); assert(numNOPs == ndelays && "Missing NOPs in delay slots?"); assert(N == ndelays && "Cannot use epilog code for delay slots?"); // Append the epilog code to the end of the basic block. bbMvec.push_back(minstrVec[0]); } } // Insert SAVE/RESTORE instructions for the method static void InsertPrologEpilog(Method *method, TargetMachine &target) { MachineCodeForMethod& mcodeInfo = MachineCodeForMethod::get(method); if (mcodeInfo.isCompiledAsLeafMethod()) return; // nothing to do InsertPrologCode(method, target); InsertEpilogCode(method, target); } //--------------------------------------------------------------------------- // class UltraSparcSchedInfo // // Purpose: // Scheduling information for the UltraSPARC. // Primarily just initializes machine-dependent parameters in // class MachineSchedInfo. //--------------------------------------------------------------------------- /*ctor*/ UltraSparcSchedInfo::UltraSparcSchedInfo(const TargetMachine& tgt) : MachineSchedInfo(tgt, (unsigned int) SPARC_NUM_SCHED_CLASSES, SparcRUsageDesc, SparcInstrUsageDeltas, SparcInstrIssueDeltas, sizeof(SparcInstrUsageDeltas)/sizeof(InstrRUsageDelta), sizeof(SparcInstrIssueDeltas)/sizeof(InstrIssueDelta)) { maxNumIssueTotal = 4; longestIssueConflict = 0; // computed from issuesGaps[] branchMispredictPenalty = 4; // 4 for SPARC IIi branchTargetUnknownPenalty = 2; // 2 for SPARC IIi l1DCacheMissPenalty = 8; // 7 or 9 for SPARC IIi l1ICacheMissPenalty = 8; // ? for SPARC IIi inOrderLoads = true; // true for SPARC IIi inOrderIssue = true; // true for SPARC IIi inOrderExec = false; // false for most architectures inOrderRetire= true; // true for most architectures // must be called after above parameters are initialized. this->initializeResources(); } void UltraSparcSchedInfo::initializeResources() { // Compute MachineSchedInfo::instrRUsages and MachineSchedInfo::issueGaps MachineSchedInfo::initializeResources(); // Machine-dependent fixups go here. None for now. } //--------------------------------------------------------------------------- // class UltraSparcFrameInfo // // Purpose: // Interface to stack frame layout info for the UltraSPARC. // Starting offsets for each area of the stack frame are aligned at // a multiple of getStackFrameSizeAlignment(). //--------------------------------------------------------------------------- int UltraSparcFrameInfo::getFirstAutomaticVarOffset(MachineCodeForMethod& , bool& pos) const { pos = false; // static stack area grows downwards return StaticAreaOffsetFromFP; } int UltraSparcFrameInfo::getRegSpillAreaOffset(MachineCodeForMethod& mcInfo, bool& pos) const { pos = false; // static stack area grows downwards unsigned int autoVarsSize = mcInfo.getAutomaticVarsSize(); if (int mod = autoVarsSize % getStackFrameSizeAlignment()) autoVarsSize += (getStackFrameSizeAlignment() - mod); return StaticAreaOffsetFromFP - autoVarsSize; } int UltraSparcFrameInfo::getTmpAreaOffset(MachineCodeForMethod& mcInfo, bool& pos) const { pos = false; // static stack area grows downwards unsigned int autoVarsSize = mcInfo.getAutomaticVarsSize(); unsigned int spillAreaSize = mcInfo.getRegSpillsSize(); int offset = autoVarsSize + spillAreaSize; if (int mod = offset % getStackFrameSizeAlignment()) offset += (getStackFrameSizeAlignment() - mod); return StaticAreaOffsetFromFP - offset; } int UltraSparcFrameInfo::getDynamicAreaOffset(MachineCodeForMethod& mcInfo, bool& pos) const { // dynamic stack area grows downwards starting at top of opt-args area unsigned int optArgsSize = mcInfo.getMaxOptionalArgsSize(); int offset = optArgsSize + FirstOptionalOutgoingArgOffsetFromSP; assert(offset % getStackFrameSizeAlignment() == 0); return offset; } //--------------------------------------------------------------------------- // class UltraSparcMachine // // Purpose: // Primary interface to machine description for the UltraSPARC. // Primarily just initializes machine-dependent parameters in // class TargetMachine, and creates machine-dependent subclasses // for classes such as MachineInstrInfo. // //--------------------------------------------------------------------------- UltraSparc::UltraSparc() : TargetMachine("UltraSparc-Native"), instrInfo(*this), schedInfo(*this), regInfo(*this), frameInfo(*this), cacheInfo(*this) { optSizeForSubWordData = 4; minMemOpWordSize = 8; maxAtomicMemOpWordSize = 8; } void ApplyPeepholeOptimizations(Method *method, TargetMachine &target) { return; // OptimizeLeafProcedures(); // DeleteFallThroughBranches(); // RemoveChainedBranches(); // should be folded with previous // RemoveRedundantOps(); // operations with %g0, NOP, etc. } bool UltraSparc::compileMethod(Method *method) { // Construct and initialize the MachineCodeForMethod object for this method. MachineCodeForMethod::construct(method, *this); if (SelectInstructionsForMethod(method, *this)) { cerr << "Instruction selection failed for method " << method->getName() << "\n\n"; return true; } /* if (ScheduleInstructionsWithSSA(method, *this)) { cerr << "Instruction scheduling before allocation failed for method " << method->getName() << "\n\n"; return true; } */ AllocateRegisters(method, *this); // allocate registers ApplyPeepholeOptimizations(method, *this); // machine-dependent peephole opts InsertPrologEpilog(method, *this); return false; } static void freeMachineCode(Instruction *I) { MachineCodeForInstruction::destroy(I); } // // freeCompiledMethod - Release all memory associated with the compiled image // for this method. // void UltraSparc::freeCompiledMethod(Method *M) { for_each(M->inst_begin(), M->inst_end(), freeMachineCode); // Don't destruct MachineCodeForMethod - The global printer needs it //MachineCodeForMethod::destruct(M); }