//===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to GAS-format ARM assembly language. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "asm-printer" #include "ARM.h" #include "ARMBuildAttrs.h" #include "ARMAddressingModes.h" #include "ARMConstantPoolValue.h" #include "ARMInstPrinter.h" #include "ARMMachineFunctionInfo.h" #include "ARMMCInstLower.h" #include "ARMTargetMachine.h" #include "llvm/Constants.h" #include "llvm/Module.h" #include "llvm/Type.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/DwarfWriter.h" #include "llvm/CodeGen/MachineModuleInfoImpls.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegistry.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSet.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/MathExtras.h" #include using namespace llvm; STATISTIC(EmittedInsts, "Number of machine instrs printed"); static cl::opt EnableMCInst("enable-arm-mcinst-printer", cl::Hidden, cl::desc("enable experimental asmprinter gunk in the arm backend")); namespace { class ARMAsmPrinter : public AsmPrinter { /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can /// make the right decision when printing asm code for different targets. const ARMSubtarget *Subtarget; /// AFI - Keep a pointer to ARMFunctionInfo for the current /// MachineFunction. ARMFunctionInfo *AFI; /// MCP - Keep a pointer to constantpool entries of the current /// MachineFunction. const MachineConstantPool *MCP; public: explicit ARMAsmPrinter(formatted_raw_ostream &O, TargetMachine &TM, const MCAsmInfo *T, bool V) : AsmPrinter(O, TM, T, V), AFI(NULL), MCP(NULL) { Subtarget = &TM.getSubtarget(); } virtual const char *getPassName() const { return "ARM Assembly Printer"; } void printMCInst(const MCInst *MI) { ARMInstPrinter(O, *MAI, VerboseAsm).printInstruction(MI); } void printInstructionThroughMCStreamer(const MachineInstr *MI); void printOperand(const MachineInstr *MI, int OpNum, const char *Modifier = 0); void printSOImmOperand(const MachineInstr *MI, int OpNum); void printSOImm2PartOperand(const MachineInstr *MI, int OpNum); void printSORegOperand(const MachineInstr *MI, int OpNum); void printAddrMode2Operand(const MachineInstr *MI, int OpNum); void printAddrMode2OffsetOperand(const MachineInstr *MI, int OpNum); void printAddrMode3Operand(const MachineInstr *MI, int OpNum); void printAddrMode3OffsetOperand(const MachineInstr *MI, int OpNum); void printAddrMode4Operand(const MachineInstr *MI, int OpNum, const char *Modifier = 0); void printAddrMode5Operand(const MachineInstr *MI, int OpNum, const char *Modifier = 0); void printAddrMode6Operand(const MachineInstr *MI, int OpNum); void printAddrModePCOperand(const MachineInstr *MI, int OpNum, const char *Modifier = 0); void printBitfieldInvMaskImmOperand (const MachineInstr *MI, int OpNum); void printThumbS4ImmOperand(const MachineInstr *MI, int OpNum); void printThumbITMask(const MachineInstr *MI, int OpNum); void printThumbAddrModeRROperand(const MachineInstr *MI, int OpNum); void printThumbAddrModeRI5Operand(const MachineInstr *MI, int OpNum, unsigned Scale); void printThumbAddrModeS1Operand(const MachineInstr *MI, int OpNum); void printThumbAddrModeS2Operand(const MachineInstr *MI, int OpNum); void printThumbAddrModeS4Operand(const MachineInstr *MI, int OpNum); void printThumbAddrModeSPOperand(const MachineInstr *MI, int OpNum); void printT2SOOperand(const MachineInstr *MI, int OpNum); void printT2AddrModeImm12Operand(const MachineInstr *MI, int OpNum); void printT2AddrModeImm8Operand(const MachineInstr *MI, int OpNum); void printT2AddrModeImm8s4Operand(const MachineInstr *MI, int OpNum); void printT2AddrModeImm8OffsetOperand(const MachineInstr *MI, int OpNum); void printT2AddrModeSoRegOperand(const MachineInstr *MI, int OpNum); void printPredicateOperand(const MachineInstr *MI, int OpNum); void printSBitModifierOperand(const MachineInstr *MI, int OpNum); void printPCLabel(const MachineInstr *MI, int OpNum); void printRegisterList(const MachineInstr *MI, int OpNum); void printCPInstOperand(const MachineInstr *MI, int OpNum, const char *Modifier); void printJTBlockOperand(const MachineInstr *MI, int OpNum); void printJT2BlockOperand(const MachineInstr *MI, int OpNum); void printTBAddrMode(const MachineInstr *MI, int OpNum); void printNoHashImmediate(const MachineInstr *MI, int OpNum); void printVFPf32ImmOperand(const MachineInstr *MI, int OpNum); void printVFPf64ImmOperand(const MachineInstr *MI, int OpNum); void printHex8ImmOperand(const MachineInstr *MI, int OpNum) { O << "#0x" << utohexstr(MI->getOperand(OpNum).getImm() & 0xff); } void printHex16ImmOperand(const MachineInstr *MI, int OpNum) { O << "#0x" << utohexstr(MI->getOperand(OpNum).getImm() & 0xffff); } void printHex32ImmOperand(const MachineInstr *MI, int OpNum) { O << "#0x" << utohexstr(MI->getOperand(OpNum).getImm() & 0xffffffff); } void printHex64ImmOperand(const MachineInstr *MI, int OpNum) { O << "#0x" << utohexstr(MI->getOperand(OpNum).getImm()); } virtual bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, unsigned AsmVariant, const char *ExtraCode); virtual bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum, unsigned AsmVariant, const char *ExtraCode); void PrintGlobalVariable(const GlobalVariable* GVar); void printInstruction(const MachineInstr *MI); // autogenerated. static const char *getRegisterName(unsigned RegNo); void printMachineInstruction(const MachineInstr *MI); bool runOnMachineFunction(MachineFunction &F); void EmitStartOfAsmFile(Module &M); void EmitEndOfAsmFile(Module &M); /// EmitMachineConstantPoolValue - Print a machine constantpool value to /// the .s file. virtual void EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { printDataDirective(MCPV->getType()); ARMConstantPoolValue *ACPV = static_cast(MCPV); SmallString<128> TmpNameStr; if (ACPV->isLSDA()) { raw_svector_ostream(TmpNameStr) << MAI->getPrivateGlobalPrefix() << "_LSDA_" << getFunctionNumber(); O << TmpNameStr.str(); } else if (ACPV->isBlockAddress()) { O << GetBlockAddressSymbol(ACPV->getBlockAddress())->getName(); } else if (ACPV->isGlobalValue()) { GlobalValue *GV = ACPV->getGV(); bool isIndirect = Subtarget->isTargetDarwin() && Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel()); if (!isIndirect) O << *GetGlobalValueSymbol(GV); else { // FIXME: Remove this when Darwin transition to @GOT like syntax. MCSymbol *Sym = GetSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); O << *Sym; MachineModuleInfoMachO &MMIMachO = MMI->getObjFileInfo(); const MCSymbol *&StubSym = GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(Sym) : MMIMachO.getGVStubEntry(Sym); if (StubSym == 0) StubSym = GetGlobalValueSymbol(GV); } } else { assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); O << *GetExternalSymbolSymbol(ACPV->getSymbol()); } if (ACPV->hasModifier()) O << "(" << ACPV->getModifier() << ")"; if (ACPV->getPCAdjustment() != 0) { O << "-(" << MAI->getPrivateGlobalPrefix() << "PC" << getFunctionNumber() << "_" << ACPV->getLabelId() << "+" << (unsigned)ACPV->getPCAdjustment(); if (ACPV->mustAddCurrentAddress()) O << "-."; O << ')'; } O << '\n'; } void getAnalysisUsage(AnalysisUsage &AU) const { AsmPrinter::getAnalysisUsage(AU); AU.setPreservesAll(); AU.addRequired(); AU.addRequired(); } }; } // end of anonymous namespace #include "ARMGenAsmWriter.inc" /// runOnMachineFunction - This uses the printInstruction() /// method to print assembly for each instruction. /// bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { this->MF = &MF; AFI = MF.getInfo(); MCP = MF.getConstantPool(); SetupMachineFunction(MF); O << "\n"; // NOTE: we don't print out constant pools here, they are handled as // instructions. O << '\n'; // Print out labels for the function. const Function *F = MF.getFunction(); OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM)); switch (F->getLinkage()) { default: llvm_unreachable("Unknown linkage type!"); case Function::PrivateLinkage: case Function::InternalLinkage: break; case Function::ExternalLinkage: O << "\t.globl\t" << *CurrentFnSym << "\n"; break; case Function::LinkerPrivateLinkage: case Function::WeakAnyLinkage: case Function::WeakODRLinkage: case Function::LinkOnceAnyLinkage: case Function::LinkOnceODRLinkage: if (Subtarget->isTargetDarwin()) { O << "\t.globl\t" << *CurrentFnSym << "\n"; O << "\t.weak_definition\t" << *CurrentFnSym << "\n"; } else { O << MAI->getWeakRefDirective() << *CurrentFnSym << "\n"; } break; } printVisibility(CurrentFnSym, F->getVisibility()); unsigned FnAlign = 1 << MF.getAlignment(); // MF alignment is log2. if (AFI->isThumbFunction()) { EmitAlignment(FnAlign, F, AFI->getAlign()); O << "\t.code\t16\n"; O << "\t.thumb_func"; if (Subtarget->isTargetDarwin()) O << "\t" << *CurrentFnSym; O << "\n"; } else { EmitAlignment(FnAlign, F); } O << *CurrentFnSym << ":\n"; // Emit pre-function debug information. DW->BeginFunction(&MF); if (Subtarget->isTargetDarwin()) { // If the function is empty, then we need to emit *something*. Otherwise, // the function's label might be associated with something that it wasn't // meant to be associated with. We emit a noop in this situation. MachineFunction::iterator I = MF.begin(); if (++I == MF.end() && MF.front().empty()) O << "\tnop\n"; } // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block. if (I != MF.begin()) EmitBasicBlockStart(I); // Print the assembly for the instruction. for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) printMachineInstruction(II); } if (MAI->hasDotTypeDotSizeDirective()) O << "\t.size " << *CurrentFnSym << ", .-" << *CurrentFnSym << "\n"; // Emit post-function debug information. DW->EndFunction(&MF); return false; } void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, const char *Modifier) { const MachineOperand &MO = MI->getOperand(OpNum); unsigned TF = MO.getTargetFlags(); switch (MO.getType()) { default: assert(0 && ""); case MachineOperand::MO_Register: { unsigned Reg = MO.getReg(); assert(TargetRegisterInfo::isPhysicalRegister(Reg)); if (Modifier && strcmp(Modifier, "dregpair") == 0) { unsigned DRegLo = TRI->getSubReg(Reg, 5); // arm_dsubreg_0 unsigned DRegHi = TRI->getSubReg(Reg, 6); // arm_dsubreg_1 O << '{' << getRegisterName(DRegLo) << ',' << getRegisterName(DRegHi) << '}'; } else if (Modifier && strcmp(Modifier, "lane") == 0) { unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(Reg); unsigned DReg = TRI->getMatchingSuperReg(Reg, RegNum & 1 ? 2 : 1, &ARM::DPR_VFP2RegClass); O << getRegisterName(DReg) << '[' << (RegNum & 1) << ']'; } else { assert(!MO.getSubReg() && "Subregs should be eliminated!"); O << getRegisterName(Reg); } break; } case MachineOperand::MO_Immediate: { int64_t Imm = MO.getImm(); O << '#'; if ((Modifier && strcmp(Modifier, "lo16") == 0) || (TF & ARMII::MO_LO16)) O << ":lower16:"; else if ((Modifier && strcmp(Modifier, "hi16") == 0) || (TF & ARMII::MO_HI16)) O << ":upper16:"; O << Imm; break; } case MachineOperand::MO_MachineBasicBlock: O << *GetMBBSymbol(MO.getMBB()->getNumber()); return; case MachineOperand::MO_GlobalAddress: { bool isCallOp = Modifier && !strcmp(Modifier, "call"); GlobalValue *GV = MO.getGlobal(); if ((Modifier && strcmp(Modifier, "lo16") == 0) || (TF & ARMII::MO_LO16)) O << ":lower16:"; else if ((Modifier && strcmp(Modifier, "hi16") == 0) || (TF & ARMII::MO_HI16)) O << ":upper16:"; O << *GetGlobalValueSymbol(GV); printOffset(MO.getOffset()); if (isCallOp && Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_) O << "(PLT)"; break; } case MachineOperand::MO_ExternalSymbol: { bool isCallOp = Modifier && !strcmp(Modifier, "call"); O << *GetExternalSymbolSymbol(MO.getSymbolName()); if (isCallOp && Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_) O << "(PLT)"; break; } case MachineOperand::MO_ConstantPoolIndex: O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' << MO.getIndex(); break; case MachineOperand::MO_JumpTableIndex: O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << MO.getIndex(); break; } } static void printSOImm(formatted_raw_ostream &O, int64_t V, bool VerboseAsm, const MCAsmInfo *MAI) { // Break it up into two parts that make up a shifter immediate. V = ARM_AM::getSOImmVal(V); assert(V != -1 && "Not a valid so_imm value!"); unsigned Imm = ARM_AM::getSOImmValImm(V); unsigned Rot = ARM_AM::getSOImmValRot(V); // Print low-level immediate formation info, per // A5.1.3: "Data-processing operands - Immediate". if (Rot) { O << "#" << Imm << ", " << Rot; // Pretty printed version. if (VerboseAsm) { O.PadToColumn(MAI->getCommentColumn()); O << MAI->getCommentString() << ' '; O << (int)ARM_AM::rotr32(Imm, Rot); } } else { O << "#" << Imm; } } /// printSOImmOperand - SOImm is 4-bit rotate amount in bits 8-11 with 8-bit /// immediate in bits 0-7. void ARMAsmPrinter::printSOImmOperand(const MachineInstr *MI, int OpNum) { const MachineOperand &MO = MI->getOperand(OpNum); assert(MO.isImm() && "Not a valid so_imm value!"); printSOImm(O, MO.getImm(), VerboseAsm, MAI); } /// printSOImm2PartOperand - SOImm is broken into two pieces using a 'mov' /// followed by an 'orr' to materialize. void ARMAsmPrinter::printSOImm2PartOperand(const MachineInstr *MI, int OpNum) { const MachineOperand &MO = MI->getOperand(OpNum); assert(MO.isImm() && "Not a valid so_imm value!"); unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO.getImm()); unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO.getImm()); printSOImm(O, V1, VerboseAsm, MAI); O << "\n\torr"; printPredicateOperand(MI, 2); O << "\t"; printOperand(MI, 0); O << ", "; printOperand(MI, 0); O << ", "; printSOImm(O, V2, VerboseAsm, MAI); } // so_reg is a 4-operand unit corresponding to register forms of the A5.1 // "Addressing Mode 1 - Data-processing operands" forms. This includes: // REG 0 0 - e.g. R5 // REG REG 0,SH_OPC - e.g. R5, ROR R3 // REG 0 IMM,SH_OPC - e.g. R5, LSL #3 void ARMAsmPrinter::printSORegOperand(const MachineInstr *MI, int Op) { const MachineOperand &MO1 = MI->getOperand(Op); const MachineOperand &MO2 = MI->getOperand(Op+1); const MachineOperand &MO3 = MI->getOperand(Op+2); O << getRegisterName(MO1.getReg()); // Print the shift opc. O << ", " << ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO3.getImm())) << " "; if (MO2.getReg()) { O << getRegisterName(MO2.getReg()); assert(ARM_AM::getSORegOffset(MO3.getImm()) == 0); } else { O << "#" << ARM_AM::getSORegOffset(MO3.getImm()); } } void ARMAsmPrinter::printAddrMode2Operand(const MachineInstr *MI, int Op) { const MachineOperand &MO1 = MI->getOperand(Op); const MachineOperand &MO2 = MI->getOperand(Op+1); const MachineOperand &MO3 = MI->getOperand(Op+2); if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right. printOperand(MI, Op); return; } O << "[" << getRegisterName(MO1.getReg()); if (!MO2.getReg()) { if (ARM_AM::getAM2Offset(MO3.getImm())) // Don't print +0. O << ", #" << (char)ARM_AM::getAM2Op(MO3.getImm()) << ARM_AM::getAM2Offset(MO3.getImm()); O << "]"; return; } O << ", " << (char)ARM_AM::getAM2Op(MO3.getImm()) << getRegisterName(MO2.getReg()); if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm())) O << ", " << ARM_AM::getShiftOpcStr(ARM_AM::getAM2ShiftOpc(MO3.getImm())) << " #" << ShImm; O << "]"; } void ARMAsmPrinter::printAddrMode2OffsetOperand(const MachineInstr *MI, int Op){ const MachineOperand &MO1 = MI->getOperand(Op); const MachineOperand &MO2 = MI->getOperand(Op+1); if (!MO1.getReg()) { unsigned ImmOffs = ARM_AM::getAM2Offset(MO2.getImm()); assert(ImmOffs && "Malformed indexed load / store!"); O << "#" << (char)ARM_AM::getAM2Op(MO2.getImm()) << ImmOffs; return; } O << (char)ARM_AM::getAM2Op(MO2.getImm()) << getRegisterName(MO1.getReg()); if (unsigned ShImm = ARM_AM::getAM2Offset(MO2.getImm())) O << ", " << ARM_AM::getShiftOpcStr(ARM_AM::getAM2ShiftOpc(MO2.getImm())) << " #" << ShImm; } void ARMAsmPrinter::printAddrMode3Operand(const MachineInstr *MI, int Op) { const MachineOperand &MO1 = MI->getOperand(Op); const MachineOperand &MO2 = MI->getOperand(Op+1); const MachineOperand &MO3 = MI->getOperand(Op+2); assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg())); O << "[" << getRegisterName(MO1.getReg()); if (MO2.getReg()) { O << ", " << (char)ARM_AM::getAM3Op(MO3.getImm()) << getRegisterName(MO2.getReg()) << "]"; return; } if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm())) O << ", #" << (char)ARM_AM::getAM3Op(MO3.getImm()) << ImmOffs; O << "]"; } void ARMAsmPrinter::printAddrMode3OffsetOperand(const MachineInstr *MI, int Op){ const MachineOperand &MO1 = MI->getOperand(Op); const MachineOperand &MO2 = MI->getOperand(Op+1); if (MO1.getReg()) { O << (char)ARM_AM::getAM3Op(MO2.getImm()) << getRegisterName(MO1.getReg()); return; } unsigned ImmOffs = ARM_AM::getAM3Offset(MO2.getImm()); assert(ImmOffs && "Malformed indexed load / store!"); O << "#" << (char)ARM_AM::getAM3Op(MO2.getImm()) << ImmOffs; } void ARMAsmPrinter::printAddrMode4Operand(const MachineInstr *MI, int Op, const char *Modifier) { const MachineOperand &MO1 = MI->getOperand(Op); const MachineOperand &MO2 = MI->getOperand(Op+1); ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO2.getImm()); if (Modifier && strcmp(Modifier, "submode") == 0) { if (MO1.getReg() == ARM::SP) { // FIXME bool isLDM = (MI->getOpcode() == ARM::LDM || MI->getOpcode() == ARM::LDM_RET || MI->getOpcode() == ARM::t2LDM || MI->getOpcode() == ARM::t2LDM_RET); O << ARM_AM::getAMSubModeAltStr(Mode, isLDM); } else O << ARM_AM::getAMSubModeStr(Mode); } else if (Modifier && strcmp(Modifier, "wide") == 0) { ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO2.getImm()); if (Mode == ARM_AM::ia) O << ".w"; } else { printOperand(MI, Op); if (ARM_AM::getAM4WBFlag(MO2.getImm())) O << "!"; } } void ARMAsmPrinter::printAddrMode5Operand(const MachineInstr *MI, int Op, const char *Modifier) { const MachineOperand &MO1 = MI->getOperand(Op); const MachineOperand &MO2 = MI->getOperand(Op+1); if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right. printOperand(MI, Op); return; } assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg())); if (Modifier && strcmp(Modifier, "submode") == 0) { ARM_AM::AMSubMode Mode = ARM_AM::getAM5SubMode(MO2.getImm()); O << ARM_AM::getAMSubModeStr(Mode); return; } else if (Modifier && strcmp(Modifier, "base") == 0) { // Used for FSTM{D|S} and LSTM{D|S} operations. O << getRegisterName(MO1.getReg()); if (ARM_AM::getAM5WBFlag(MO2.getImm())) O << "!"; return; } O << "[" << getRegisterName(MO1.getReg()); if (unsigned ImmOffs = ARM_AM::getAM5Offset(MO2.getImm())) { O << ", #" << (char)ARM_AM::getAM5Op(MO2.getImm()) << ImmOffs*4; } O << "]"; } void ARMAsmPrinter::printAddrMode6Operand(const MachineInstr *MI, int Op) { const MachineOperand &MO1 = MI->getOperand(Op); const MachineOperand &MO2 = MI->getOperand(Op+1); const MachineOperand &MO3 = MI->getOperand(Op+2); const MachineOperand &MO4 = MI->getOperand(Op+3); O << "[" << getRegisterName(MO1.getReg()); if (MO4.getImm()) { // FIXME: Both darwin as and GNU as violate ARM docs here. O << ", :" << MO4.getImm(); } O << "]"; if (ARM_AM::getAM6WBFlag(MO3.getImm())) { if (MO2.getReg() == 0) O << "!"; else O << ", " << getRegisterName(MO2.getReg()); } } void ARMAsmPrinter::printAddrModePCOperand(const MachineInstr *MI, int Op, const char *Modifier) { if (Modifier && strcmp(Modifier, "label") == 0) { printPCLabel(MI, Op+1); return; } const MachineOperand &MO1 = MI->getOperand(Op); assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg())); O << "[pc, +" << getRegisterName(MO1.getReg()) << "]"; } void ARMAsmPrinter::printBitfieldInvMaskImmOperand(const MachineInstr *MI, int Op) { const MachineOperand &MO = MI->getOperand(Op); uint32_t v = ~MO.getImm(); int32_t lsb = CountTrailingZeros_32(v); int32_t width = (32 - CountLeadingZeros_32 (v)) - lsb; assert(MO.isImm() && "Not a valid bf_inv_mask_imm value!"); O << "#" << lsb << ", #" << width; } //===--------------------------------------------------------------------===// void ARMAsmPrinter::printThumbS4ImmOperand(const MachineInstr *MI, int Op) { O << "#" << MI->getOperand(Op).getImm() * 4; } void ARMAsmPrinter::printThumbITMask(const MachineInstr *MI, int Op) { // (3 - the number of trailing zeros) is the number of then / else. unsigned Mask = MI->getOperand(Op).getImm(); unsigned NumTZ = CountTrailingZeros_32(Mask); assert(NumTZ <= 3 && "Invalid IT mask!"); for (unsigned Pos = 3, e = NumTZ; Pos > e; --Pos) { bool T = (Mask & (1 << Pos)) == 0; if (T) O << 't'; else O << 'e'; } } void ARMAsmPrinter::printThumbAddrModeRROperand(const MachineInstr *MI, int Op) { const MachineOperand &MO1 = MI->getOperand(Op); const MachineOperand &MO2 = MI->getOperand(Op+1); O << "[" << getRegisterName(MO1.getReg()); O << ", " << getRegisterName(MO2.getReg()) << "]"; } void ARMAsmPrinter::printThumbAddrModeRI5Operand(const MachineInstr *MI, int Op, unsigned Scale) { const MachineOperand &MO1 = MI->getOperand(Op); const MachineOperand &MO2 = MI->getOperand(Op+1); const MachineOperand &MO3 = MI->getOperand(Op+2); if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right. printOperand(MI, Op); return; } O << "[" << getRegisterName(MO1.getReg()); if (MO3.getReg()) O << ", " << getRegisterName(MO3.getReg()); else if (unsigned ImmOffs = MO2.getImm()) O << ", #+" << ImmOffs * Scale; O << "]"; } void ARMAsmPrinter::printThumbAddrModeS1Operand(const MachineInstr *MI, int Op) { printThumbAddrModeRI5Operand(MI, Op, 1); } void ARMAsmPrinter::printThumbAddrModeS2Operand(const MachineInstr *MI, int Op) { printThumbAddrModeRI5Operand(MI, Op, 2); } void ARMAsmPrinter::printThumbAddrModeS4Operand(const MachineInstr *MI, int Op) { printThumbAddrModeRI5Operand(MI, Op, 4); } void ARMAsmPrinter::printThumbAddrModeSPOperand(const MachineInstr *MI,int Op) { const MachineOperand &MO1 = MI->getOperand(Op); const MachineOperand &MO2 = MI->getOperand(Op+1); O << "[" << getRegisterName(MO1.getReg()); if (unsigned ImmOffs = MO2.getImm()) O << ", #+" << ImmOffs*4; O << "]"; } //===--------------------------------------------------------------------===// // Constant shifts t2_so_reg is a 2-operand unit corresponding to the Thumb2 // register with shift forms. // REG 0 0 - e.g. R5 // REG IMM, SH_OPC - e.g. R5, LSL #3 void ARMAsmPrinter::printT2SOOperand(const MachineInstr *MI, int OpNum) { const MachineOperand &MO1 = MI->getOperand(OpNum); const MachineOperand &MO2 = MI->getOperand(OpNum+1); unsigned Reg = MO1.getReg(); assert(TargetRegisterInfo::isPhysicalRegister(Reg)); O << getRegisterName(Reg); // Print the shift opc. O << ", " << ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO2.getImm())) << " "; assert(MO2.isImm() && "Not a valid t2_so_reg value!"); O << "#" << ARM_AM::getSORegOffset(MO2.getImm()); } void ARMAsmPrinter::printT2AddrModeImm12Operand(const MachineInstr *MI, int OpNum) { const MachineOperand &MO1 = MI->getOperand(OpNum); const MachineOperand &MO2 = MI->getOperand(OpNum+1); O << "[" << getRegisterName(MO1.getReg()); unsigned OffImm = MO2.getImm(); if (OffImm) // Don't print +0. O << ", #+" << OffImm; O << "]"; } void ARMAsmPrinter::printT2AddrModeImm8Operand(const MachineInstr *MI, int OpNum) { const MachineOperand &MO1 = MI->getOperand(OpNum); const MachineOperand &MO2 = MI->getOperand(OpNum+1); O << "[" << getRegisterName(MO1.getReg()); int32_t OffImm = (int32_t)MO2.getImm(); // Don't print +0. if (OffImm < 0) O << ", #-" << -OffImm; else if (OffImm > 0) O << ", #+" << OffImm; O << "]"; } void ARMAsmPrinter::printT2AddrModeImm8s4Operand(const MachineInstr *MI, int OpNum) { const MachineOperand &MO1 = MI->getOperand(OpNum); const MachineOperand &MO2 = MI->getOperand(OpNum+1); O << "[" << getRegisterName(MO1.getReg()); int32_t OffImm = (int32_t)MO2.getImm() / 4; // Don't print +0. if (OffImm < 0) O << ", #-" << -OffImm * 4; else if (OffImm > 0) O << ", #+" << OffImm * 4; O << "]"; } void ARMAsmPrinter::printT2AddrModeImm8OffsetOperand(const MachineInstr *MI, int OpNum) { const MachineOperand &MO1 = MI->getOperand(OpNum); int32_t OffImm = (int32_t)MO1.getImm(); // Don't print +0. if (OffImm < 0) O << "#-" << -OffImm; else if (OffImm > 0) O << "#+" << OffImm; } void ARMAsmPrinter::printT2AddrModeSoRegOperand(const MachineInstr *MI, int OpNum) { const MachineOperand &MO1 = MI->getOperand(OpNum); const MachineOperand &MO2 = MI->getOperand(OpNum+1); const MachineOperand &MO3 = MI->getOperand(OpNum+2); O << "[" << getRegisterName(MO1.getReg()); assert(MO2.getReg() && "Invalid so_reg load / store address!"); O << ", " << getRegisterName(MO2.getReg()); unsigned ShAmt = MO3.getImm(); if (ShAmt) { assert(ShAmt <= 3 && "Not a valid Thumb2 addressing mode!"); O << ", lsl #" << ShAmt; } O << "]"; } //===--------------------------------------------------------------------===// void ARMAsmPrinter::printPredicateOperand(const MachineInstr *MI, int OpNum) { ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(OpNum).getImm(); if (CC != ARMCC::AL) O << ARMCondCodeToString(CC); } void ARMAsmPrinter::printSBitModifierOperand(const MachineInstr *MI, int OpNum){ unsigned Reg = MI->getOperand(OpNum).getReg(); if (Reg) { assert(Reg == ARM::CPSR && "Expect ARM CPSR register!"); O << 's'; } } void ARMAsmPrinter::printPCLabel(const MachineInstr *MI, int OpNum) { int Id = (int)MI->getOperand(OpNum).getImm(); O << MAI->getPrivateGlobalPrefix() << "PC" << getFunctionNumber() << "_" << Id; } void ARMAsmPrinter::printRegisterList(const MachineInstr *MI, int OpNum) { O << "{"; // Always skip the first operand, it's the optional (and implicit writeback). for (unsigned i = OpNum+1, e = MI->getNumOperands(); i != e; ++i) { if (MI->getOperand(i).isImplicit()) continue; if ((int)i != OpNum+1) O << ", "; printOperand(MI, i); } O << "}"; } void ARMAsmPrinter::printCPInstOperand(const MachineInstr *MI, int OpNum, const char *Modifier) { assert(Modifier && "This operand only works with a modifier!"); // There are two aspects to a CONSTANTPOOL_ENTRY operand, the label and the // data itself. if (!strcmp(Modifier, "label")) { unsigned ID = MI->getOperand(OpNum).getImm(); O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' << ID << ":\n"; } else { assert(!strcmp(Modifier, "cpentry") && "Unknown modifier for CPE"); unsigned CPI = MI->getOperand(OpNum).getIndex(); const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; if (MCPE.isMachineConstantPoolEntry()) { EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); } else { EmitGlobalConstant(MCPE.Val.ConstVal); } } } void ARMAsmPrinter::printJTBlockOperand(const MachineInstr *MI, int OpNum) { assert(!Subtarget->isThumb2() && "Thumb2 should use double-jump jumptables!"); const MachineOperand &MO1 = MI->getOperand(OpNum); const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id unsigned JTI = MO1.getIndex(); O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << JTI << '_' << MO2.getImm() << ":\n"; const char *JTEntryDirective = MAI->getData32bitsDirective(); const MachineFunction *MF = MI->getParent()->getParent(); const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); const std::vector &JT = MJTI->getJumpTables(); const std::vector &JTBBs = JT[JTI].MBBs; bool UseSet= MAI->getSetDirective() && TM.getRelocationModel() == Reloc::PIC_; SmallPtrSet JTSets; for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { MachineBasicBlock *MBB = JTBBs[i]; bool isNew = JTSets.insert(MBB); if (UseSet && isNew) printPICJumpTableSetLabel(JTI, MO2.getImm(), MBB); O << JTEntryDirective << ' '; if (UseSet) O << MAI->getPrivateGlobalPrefix() << getFunctionNumber() << '_' << JTI << '_' << MO2.getImm() << "_set_" << MBB->getNumber(); else if (TM.getRelocationModel() == Reloc::PIC_) { O << *GetMBBSymbol(MBB->getNumber()) << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << JTI << '_' << MO2.getImm(); } else { O << *GetMBBSymbol(MBB->getNumber()); } if (i != e-1) O << '\n'; } } void ARMAsmPrinter::printJT2BlockOperand(const MachineInstr *MI, int OpNum) { const MachineOperand &MO1 = MI->getOperand(OpNum); const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id unsigned JTI = MO1.getIndex(); O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << JTI << '_' << MO2.getImm() << ":\n"; const MachineFunction *MF = MI->getParent()->getParent(); const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); const std::vector &JT = MJTI->getJumpTables(); const std::vector &JTBBs = JT[JTI].MBBs; bool ByteOffset = false, HalfWordOffset = false; if (MI->getOpcode() == ARM::t2TBB) ByteOffset = true; else if (MI->getOpcode() == ARM::t2TBH) HalfWordOffset = true; for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { MachineBasicBlock *MBB = JTBBs[i]; if (ByteOffset) O << MAI->getData8bitsDirective(); else if (HalfWordOffset) O << MAI->getData16bitsDirective(); if (ByteOffset || HalfWordOffset) { O << '(' << *GetMBBSymbol(MBB->getNumber()); O << "-" << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << JTI << '_' << MO2.getImm() << ")/2"; } else { O << "\tb.w " << *GetMBBSymbol(MBB->getNumber()); } if (i != e-1) O << '\n'; } // Make sure the instruction that follows TBB is 2-byte aligned. // FIXME: Constant island pass should insert an "ALIGN" instruction instead. if (ByteOffset && (JTBBs.size() & 1)) { O << '\n'; EmitAlignment(1); } } void ARMAsmPrinter::printTBAddrMode(const MachineInstr *MI, int OpNum) { O << "[pc, " << getRegisterName(MI->getOperand(OpNum).getReg()); if (MI->getOpcode() == ARM::t2TBH) O << ", lsl #1"; O << ']'; } void ARMAsmPrinter::printNoHashImmediate(const MachineInstr *MI, int OpNum) { O << MI->getOperand(OpNum).getImm(); } void ARMAsmPrinter::printVFPf32ImmOperand(const MachineInstr *MI, int OpNum) { const ConstantFP *FP = MI->getOperand(OpNum).getFPImm(); O << '#' << FP->getValueAPF().convertToFloat(); if (VerboseAsm) { O.PadToColumn(MAI->getCommentColumn()); O << MAI->getCommentString() << ' '; WriteAsOperand(O, FP, /*PrintType=*/false); } } void ARMAsmPrinter::printVFPf64ImmOperand(const MachineInstr *MI, int OpNum) { const ConstantFP *FP = MI->getOperand(OpNum).getFPImm(); O << '#' << FP->getValueAPF().convertToDouble(); if (VerboseAsm) { O.PadToColumn(MAI->getCommentColumn()); O << MAI->getCommentString() << ' '; WriteAsOperand(O, FP, /*PrintType=*/false); } } bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, unsigned AsmVariant, const char *ExtraCode){ // Does this asm operand have a single letter operand modifier? if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { default: return true; // Unknown modifier. case 'a': // Print as a memory address. if (MI->getOperand(OpNum).isReg()) { O << "[" << getRegisterName(MI->getOperand(OpNum).getReg()) << "]"; return false; } // Fallthrough case 'c': // Don't print "#" before an immediate operand. if (!MI->getOperand(OpNum).isImm()) return true; printNoHashImmediate(MI, OpNum); return false; case 'P': // Print a VFP double precision register. case 'q': // Print a NEON quad precision register. printOperand(MI, OpNum); return false; case 'Q': if (TM.getTargetData()->isLittleEndian()) break; // Fallthrough case 'R': if (TM.getTargetData()->isBigEndian()) break; // Fallthrough case 'H': // Write second word of DI / DF reference. // Verify that this operand has two consecutive registers. if (!MI->getOperand(OpNum).isReg() || OpNum+1 == MI->getNumOperands() || !MI->getOperand(OpNum+1).isReg()) return true; ++OpNum; // Return the high-part. } } printOperand(MI, OpNum); return false; } bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum, unsigned AsmVariant, const char *ExtraCode) { if (ExtraCode && ExtraCode[0]) return true; // Unknown modifier. const MachineOperand &MO = MI->getOperand(OpNum); assert(MO.isReg() && "unexpected inline asm memory operand"); O << "[" << getRegisterName(MO.getReg()) << "]"; return false; } void ARMAsmPrinter::printMachineInstruction(const MachineInstr *MI) { ++EmittedInsts; // Call the autogenerated instruction printer routines. processDebugLoc(MI, true); if (EnableMCInst) { printInstructionThroughMCStreamer(MI); } else { int Opc = MI->getOpcode(); if (Opc == ARM::CONSTPOOL_ENTRY) EmitAlignment(2); printInstruction(MI); } if (VerboseAsm) EmitComments(*MI); O << '\n'; processDebugLoc(MI, false); } void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { if (Subtarget->isTargetDarwin()) { Reloc::Model RelocM = TM.getRelocationModel(); if (RelocM == Reloc::PIC_ || RelocM == Reloc::DynamicNoPIC) { // Declare all the text sections up front (before the DWARF sections // emitted by AsmPrinter::doInitialization) so the assembler will keep // them together at the beginning of the object file. This helps // avoid out-of-range branches that are due a fundamental limitation of // the way symbol offsets are encoded with the current Darwin ARM // relocations. TargetLoweringObjectFileMachO &TLOFMacho = static_cast(getObjFileLowering()); OutStreamer.SwitchSection(TLOFMacho.getTextSection()); OutStreamer.SwitchSection(TLOFMacho.getTextCoalSection()); OutStreamer.SwitchSection(TLOFMacho.getConstTextCoalSection()); if (RelocM == Reloc::DynamicNoPIC) { const MCSection *sect = TLOFMacho.getMachOSection("__TEXT", "__symbol_stub4", MCSectionMachO::S_SYMBOL_STUBS, 12, SectionKind::getText()); OutStreamer.SwitchSection(sect); } else { const MCSection *sect = TLOFMacho.getMachOSection("__TEXT", "__picsymbolstub4", MCSectionMachO::S_SYMBOL_STUBS, 16, SectionKind::getText()); OutStreamer.SwitchSection(sect); } } } // Use unified assembler syntax. O << "\t.syntax unified\n"; // Emit ARM Build Attributes if (Subtarget->isTargetELF()) { // CPU Type std::string CPUString = Subtarget->getCPUString(); if (CPUString != "generic") O << "\t.cpu " << CPUString << '\n'; // FIXME: Emit FPU type if (Subtarget->hasVFP2()) O << "\t.eabi_attribute " << ARMBuildAttrs::VFP_arch << ", 2\n"; // Signal various FP modes. if (!UnsafeFPMath) O << "\t.eabi_attribute " << ARMBuildAttrs::ABI_FP_denormal << ", 1\n" << "\t.eabi_attribute " << ARMBuildAttrs::ABI_FP_exceptions << ", 1\n"; if (FiniteOnlyFPMath()) O << "\t.eabi_attribute " << ARMBuildAttrs::ABI_FP_number_model << ", 1\n"; else O << "\t.eabi_attribute " << ARMBuildAttrs::ABI_FP_number_model << ", 3\n"; // 8-bytes alignment stuff. O << "\t.eabi_attribute " << ARMBuildAttrs::ABI_align8_needed << ", 1\n" << "\t.eabi_attribute " << ARMBuildAttrs::ABI_align8_preserved << ", 1\n"; // Hard float. Use both S and D registers and conform to AAPCS-VFP. if (Subtarget->isAAPCS_ABI() && FloatABIType == FloatABI::Hard) O << "\t.eabi_attribute " << ARMBuildAttrs::ABI_HardFP_use << ", 3\n" << "\t.eabi_attribute " << ARMBuildAttrs::ABI_VFP_args << ", 1\n"; // FIXME: Should we signal R9 usage? } } void ARMAsmPrinter::PrintGlobalVariable(const GlobalVariable* GVar) { const TargetData *TD = TM.getTargetData(); if (!GVar->hasInitializer()) // External global require no code return; // Check to see if this is a special global used by LLVM, if so, emit it. if (EmitSpecialLLVMGlobal(GVar)) { if (Subtarget->isTargetDarwin() && TM.getRelocationModel() == Reloc::Static) { if (GVar->getName() == "llvm.global_ctors") O << ".reference .constructors_used\n"; else if (GVar->getName() == "llvm.global_dtors") O << ".reference .destructors_used\n"; } return; } MCSymbol *GVarSym = GetGlobalValueSymbol(GVar); Constant *C = GVar->getInitializer(); const Type *Type = C->getType(); unsigned Size = TD->getTypeAllocSize(Type); unsigned Align = TD->getPreferredAlignmentLog(GVar); bool isDarwin = Subtarget->isTargetDarwin(); printVisibility(GVarSym, GVar->getVisibility()); if (Subtarget->isTargetELF()) O << "\t.type " << *GVarSym << ",%object\n"; SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GVar, TM); // Handle normal common symbols. if (GVKind.isCommon()) { if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. O << ".comm " << *GVarSym << ',' << Size; if (MAI->getCOMMDirectiveTakesAlignment()) O << ',' << (MAI->getAlignmentIsInBytes() ? (1 << Align) : Align); if (VerboseAsm) { O << "\t\t" << MAI->getCommentString() << " '"; WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent()); O << '\''; } O << '\n'; return; } const MCSection *TheSection = getObjFileLowering().SectionForGlobal(GVar, GVKind, Mang, TM); // Handle the zerofill directive on darwin, which is a special form of BSS // emission. if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { // .globl _foo OutStreamer.EmitSymbolAttribute(GVarSym, MCStreamer::Global); // .zerofill __DATA, __common, _foo, 400, 5 OutStreamer.EmitZerofill(TheSection, GVarSym, Size, 1 << Align); return; } if (GVKind.isBSSLocal()) { if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. if (isDarwin) { O << MAI->getLCOMMDirective() << *GVarSym << ',' << Size << ',' << Align; } else if (MAI->getLCOMMDirective() != NULL) { O << MAI->getLCOMMDirective() << *GVarSym << "," << Size; } else { if (GVar->hasLocalLinkage()) O << "\t.local\t" << *GVarSym << '\n'; O << MAI->getCOMMDirective() << *GVarSym << "," << Size; if (MAI->getCOMMDirectiveTakesAlignment()) O << "," << (MAI->getAlignmentIsInBytes() ? (1 << Align) : Align); } if (VerboseAsm) { O.PadToColumn(MAI->getCommentColumn()); O << MAI->getCommentString() << ' '; WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent()); } O << "\n"; return; } OutStreamer.SwitchSection(TheSection); switch (GVar->getLinkage()) { case GlobalValue::CommonLinkage: case GlobalValue::LinkOnceAnyLinkage: case GlobalValue::LinkOnceODRLinkage: case GlobalValue::WeakAnyLinkage: case GlobalValue::WeakODRLinkage: case GlobalValue::LinkerPrivateLinkage: if (isDarwin) { O << "\t.globl " << *GVarSym << "\n\t.weak_definition " << *GVarSym << "\n"; } else { O << "\t.weak " << *GVarSym << "\n"; } break; case GlobalValue::AppendingLinkage: // FIXME: appending linkage variables should go into a section of // their name or something. For now, just emit them as external. case GlobalValue::ExternalLinkage: O << "\t.globl " << *GVarSym << "\n"; break; case GlobalValue::PrivateLinkage: case GlobalValue::InternalLinkage: break; default: llvm_unreachable("Unknown linkage type!"); } EmitAlignment(Align, GVar); O << *GVarSym << ":"; if (VerboseAsm) { O.PadToColumn(MAI->getCommentColumn()); O << MAI->getCommentString() << ' '; WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent()); } O << "\n"; if (MAI->hasDotTypeDotSizeDirective()) O << "\t.size " << *GVarSym << ", " << Size << "\n"; EmitGlobalConstant(C); O << '\n'; } void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { if (Subtarget->isTargetDarwin()) { // All darwin targets use mach-o. TargetLoweringObjectFileMachO &TLOFMacho = static_cast(getObjFileLowering()); MachineModuleInfoMachO &MMIMacho = MMI->getObjFileInfo(); O << '\n'; // Output non-lazy-pointers for external and common global variables. MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); if (!Stubs.empty()) { // Switch with ".non_lazy_symbol_pointer" directive. OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); EmitAlignment(2); for (unsigned i = 0, e = Stubs.size(); i != e; ++i) { O << *Stubs[i].first << ":\n\t.indirect_symbol "; O << *Stubs[i].second << "\n\t.long\t0\n"; } } Stubs = MMIMacho.GetHiddenGVStubList(); if (!Stubs.empty()) { OutStreamer.SwitchSection(getObjFileLowering().getDataSection()); EmitAlignment(2); for (unsigned i = 0, e = Stubs.size(); i != e; ++i) O << *Stubs[i].first << ":\n\t.long " << *Stubs[i].second << "\n"; } // Funny Darwin hack: This flag tells the linker that no global symbols // contain code that falls through to other global symbols (e.g. the obvious // implementation of multiple entry points). If this doesn't occur, the // linker can safely perform dead code stripping. Since LLVM never // generates code that does this, it is always safe to set. OutStreamer.EmitAssemblerFlag(MCStreamer::SubsectionsViaSymbols); } } //===----------------------------------------------------------------------===// void ARMAsmPrinter::printInstructionThroughMCStreamer(const MachineInstr *MI) { ARMMCInstLower MCInstLowering(OutContext, *Mang, *this); switch (MI->getOpcode()) { case ARM::t2MOVi32imm: assert(0 && "Should be lowered by thumb2it pass"); default: break; case TargetInstrInfo::DBG_LABEL: case TargetInstrInfo::EH_LABEL: case TargetInstrInfo::GC_LABEL: printLabel(MI); return; case TargetInstrInfo::KILL: printKill(MI); return; case TargetInstrInfo::INLINEASM: printInlineAsm(MI); return; case TargetInstrInfo::IMPLICIT_DEF: printImplicitDef(MI); return; case ARM::PICADD: { // FIXME: Remove asm string from td file. // This is a pseudo op for a label + instruction sequence, which looks like: // LPC0: // add r0, pc, r0 // This adds the address of LPC0 to r0. // Emit the label. // FIXME: MOVE TO SHARED PLACE. unsigned Id = (unsigned)MI->getOperand(2).getImm(); const char *Prefix = MAI->getPrivateGlobalPrefix(); MCSymbol *Label =OutContext.GetOrCreateSymbol(Twine(Prefix) + "PC" + Twine(getFunctionNumber()) + "_" + Twine(Id)); OutStreamer.EmitLabel(Label); // Form and emit tha dd. MCInst AddInst; AddInst.setOpcode(ARM::ADDrr); AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); AddInst.addOperand(MCOperand::CreateReg(ARM::PC)); AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg())); printMCInst(&AddInst); return; } case ARM::CONSTPOOL_ENTRY: { // FIXME: Remove asm string from td file. /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool /// in the function. The first operand is the ID# for this instruction, the /// second is the index into the MachineConstantPool that this is, the third /// is the size in bytes of this constant pool entry. unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); EmitAlignment(2); const char *Prefix = MAI->getPrivateGlobalPrefix(); MCSymbol *Label = OutContext.GetOrCreateSymbol(Twine(Prefix)+"CPI"+ Twine(getFunctionNumber())+ "_"+ Twine(LabelId)); OutStreamer.EmitLabel(Label); const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; if (MCPE.isMachineConstantPoolEntry()) EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); else EmitGlobalConstant(MCPE.Val.ConstVal); return; } case ARM::MOVi2pieces: { // FIXME: Remove asmstring from td file. // This is a hack that lowers as a two instruction sequence. unsigned DstReg = MI->getOperand(0).getReg(); unsigned ImmVal = (unsigned)MI->getOperand(1).getImm(); unsigned SOImmValV1 = ARM_AM::getSOImmTwoPartFirst(ImmVal); unsigned SOImmValV2 = ARM_AM::getSOImmTwoPartSecond(ImmVal); { MCInst TmpInst; TmpInst.setOpcode(ARM::MOVi); TmpInst.addOperand(MCOperand::CreateReg(DstReg)); TmpInst.addOperand(MCOperand::CreateImm(SOImmValV1)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm())); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(3).getReg())); TmpInst.addOperand(MCOperand::CreateReg(0)); // cc_out printMCInst(&TmpInst); O << '\n'; } { MCInst TmpInst; TmpInst.setOpcode(ARM::ORRri); TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // dstreg TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // inreg TmpInst.addOperand(MCOperand::CreateImm(SOImmValV2)); // so_imm // Predicate. TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm())); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(3).getReg())); TmpInst.addOperand(MCOperand::CreateReg(0)); // cc_out printMCInst(&TmpInst); } return; } case ARM::MOVi32imm: { // FIXME: Remove asmstring from td file. // This is a hack that lowers as a two instruction sequence. unsigned DstReg = MI->getOperand(0).getReg(); unsigned ImmVal = (unsigned)MI->getOperand(1).getImm(); { MCInst TmpInst; TmpInst.setOpcode(ARM::MOVi16); TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // dstreg TmpInst.addOperand(MCOperand::CreateImm(ImmVal & 65535)); // lower16(imm) // Predicate. TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm())); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(3).getReg())); printMCInst(&TmpInst); O << '\n'; } { MCInst TmpInst; TmpInst.setOpcode(ARM::MOVTi16); TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // dstreg TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // srcreg TmpInst.addOperand(MCOperand::CreateImm(ImmVal >> 16)); // upper16(imm) // Predicate. TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm())); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(3).getReg())); printMCInst(&TmpInst); } return; } } MCInst TmpInst; MCInstLowering.Lower(MI, TmpInst); printMCInst(&TmpInst); } //===----------------------------------------------------------------------===// // Target Registry Stuff //===----------------------------------------------------------------------===// static MCInstPrinter *createARMMCInstPrinter(const Target &T, unsigned SyntaxVariant, const MCAsmInfo &MAI, raw_ostream &O) { if (SyntaxVariant == 0) return new ARMInstPrinter(O, MAI, false); return 0; } // Force static initialization. extern "C" void LLVMInitializeARMAsmPrinter() { RegisterAsmPrinter X(TheARMTarget); RegisterAsmPrinter Y(TheThumbTarget); TargetRegistry::RegisterMCInstPrinter(TheARMTarget, createARMMCInstPrinter); TargetRegistry::RegisterMCInstPrinter(TheThumbTarget, createARMMCInstPrinter); }