//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the CodeGenDAGPatterns class, which is used to read and // represent the patterns present in a .td file for instructions. // //===----------------------------------------------------------------------===// #include "CodeGenDAGPatterns.h" #include "Record.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Streams.h" #include #include using namespace llvm; //===----------------------------------------------------------------------===// // Helpers for working with extended types. /// FilterVTs - Filter a list of VT's according to a predicate. /// template static std::vector FilterVTs(const std::vector &InVTs, T Filter) { std::vector Result; for (unsigned i = 0, e = InVTs.size(); i != e; ++i) if (Filter(InVTs[i])) Result.push_back(InVTs[i]); return Result; } template static std::vector FilterEVTs(const std::vector &InVTs, T Filter) { std::vector Result; for (unsigned i = 0, e = InVTs.size(); i != e; ++i) if (Filter((MVT::SimpleValueType)InVTs[i])) Result.push_back(InVTs[i]); return Result; } static std::vector ConvertVTs(const std::vector &InVTs) { std::vector Result; for (unsigned i = 0, e = InVTs.size(); i != e; ++i) Result.push_back(InVTs[i]); return Result; } static inline bool isInteger(MVT::SimpleValueType VT) { return MVT(VT).isInteger(); } static inline bool isFloatingPoint(MVT::SimpleValueType VT) { return MVT(VT).isFloatingPoint(); } static inline bool isVector(MVT::SimpleValueType VT) { return MVT(VT).isVector(); } static bool LHSIsSubsetOfRHS(const std::vector &LHS, const std::vector &RHS) { if (LHS.size() > RHS.size()) return false; for (unsigned i = 0, e = LHS.size(); i != e; ++i) if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end()) return false; return true; } namespace llvm { namespace EMVT { /// isExtIntegerInVTs - Return true if the specified extended value type vector /// contains isInt or an integer value type. bool isExtIntegerInVTs(const std::vector &EVTs) { assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!"); return EVTs[0] == isInt || !(FilterEVTs(EVTs, isInteger).empty()); } /// isExtFloatingPointInVTs - Return true if the specified extended value type /// vector contains isFP or a FP value type. bool isExtFloatingPointInVTs(const std::vector &EVTs) { assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!"); return EVTs[0] == isFP || !(FilterEVTs(EVTs, isFloatingPoint).empty()); } } // end namespace EMVT. } // end namespace llvm. /// Dependent variable map for CodeGenDAGPattern variant generation typedef std::map DepVarMap; /// Const iterator shorthand for DepVarMap typedef DepVarMap::const_iterator DepVarMap_citer; namespace { void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { if (N->isLeaf()) { if (dynamic_cast(N->getLeafValue()) != NULL) { DepMap[N->getName()]++; } } else { for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) FindDepVarsOf(N->getChild(i), DepMap); } } //! Find dependent variables within child patterns /*! */ void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { DepVarMap depcounts; FindDepVarsOf(N, depcounts); for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) { if (i->second > 1) { // std::pair DepVars.insert(i->first); } } } //! Dump the dependent variable set: void DumpDepVars(MultipleUseVarSet &DepVars) { if (DepVars.empty()) { DOUT << ""; } else { DOUT << "[ "; for (MultipleUseVarSet::const_iterator i = DepVars.begin(), e = DepVars.end(); i != e; ++i) { DOUT << (*i) << " "; } DOUT << "]"; } } } //===----------------------------------------------------------------------===// // PatternToMatch implementation // /// getPredicateCheck - Return a single string containing all of this /// pattern's predicates concatenated with "&&" operators. /// std::string PatternToMatch::getPredicateCheck() const { std::string PredicateCheck; for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { if (DefInit *Pred = dynamic_cast(Predicates->getElement(i))) { Record *Def = Pred->getDef(); if (!Def->isSubClassOf("Predicate")) { #ifndef NDEBUG Def->dump(); #endif assert(0 && "Unknown predicate type!"); } if (!PredicateCheck.empty()) PredicateCheck += " && "; PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; } } return PredicateCheck; } //===----------------------------------------------------------------------===// // SDTypeConstraint implementation // SDTypeConstraint::SDTypeConstraint(Record *R) { OperandNo = R->getValueAsInt("OperandNum"); if (R->isSubClassOf("SDTCisVT")) { ConstraintType = SDTCisVT; x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); } else if (R->isSubClassOf("SDTCisPtrTy")) { ConstraintType = SDTCisPtrTy; } else if (R->isSubClassOf("SDTCisInt")) { ConstraintType = SDTCisInt; } else if (R->isSubClassOf("SDTCisFP")) { ConstraintType = SDTCisFP; } else if (R->isSubClassOf("SDTCisSameAs")) { ConstraintType = SDTCisSameAs; x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { ConstraintType = SDTCisVTSmallerThanOp; x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { ConstraintType = SDTCisOpSmallerThanOp; x.SDTCisOpSmallerThanOp_Info.BigOperandNum = R->getValueAsInt("BigOperandNum"); } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) { ConstraintType = SDTCisIntVectorOfSameSize; x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); } else if (R->isSubClassOf("SDTCisEltOfVec")) { ConstraintType = SDTCisEltOfVec; x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); } else { cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; exit(1); } } /// getOperandNum - Return the node corresponding to operand #OpNo in tree /// N, which has NumResults results. TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo, TreePatternNode *N, unsigned NumResults) const { assert(NumResults <= 1 && "We only work with nodes with zero or one result so far!"); if (OpNo >= (NumResults + N->getNumChildren())) { cerr << "Invalid operand number " << OpNo << " "; N->dump(); cerr << '\n'; exit(1); } if (OpNo < NumResults) return N; // FIXME: need value # else return N->getChild(OpNo-NumResults); } /// ApplyTypeConstraint - Given a node in a pattern, apply this type /// constraint to the nodes operands. This returns true if it makes a /// change, false otherwise. If a type contradiction is found, throw an /// exception. bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, TreePattern &TP) const { unsigned NumResults = NodeInfo.getNumResults(); assert(NumResults <= 1 && "We only work with nodes with zero or one result so far!"); // Check that the number of operands is sane. Negative operands -> varargs. if (NodeInfo.getNumOperands() >= 0) { if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands()) TP.error(N->getOperator()->getName() + " node requires exactly " + itostr(NodeInfo.getNumOperands()) + " operands!"); } const CodeGenTarget &CGT = TP.getDAGPatterns().getTargetInfo(); TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults); switch (ConstraintType) { default: assert(0 && "Unknown constraint type!"); case SDTCisVT: // Operand must be a particular type. return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP); case SDTCisPtrTy: { // Operand must be same as target pointer type. return NodeToApply->UpdateNodeType(MVT::iPTR, TP); } case SDTCisInt: { // If there is only one integer type supported, this must be it. std::vector IntVTs = FilterVTs(CGT.getLegalValueTypes(), isInteger); // If we found exactly one supported integer type, apply it. if (IntVTs.size() == 1) return NodeToApply->UpdateNodeType(IntVTs[0], TP); return NodeToApply->UpdateNodeType(EMVT::isInt, TP); } case SDTCisFP: { // If there is only one FP type supported, this must be it. std::vector FPVTs = FilterVTs(CGT.getLegalValueTypes(), isFloatingPoint); // If we found exactly one supported FP type, apply it. if (FPVTs.size() == 1) return NodeToApply->UpdateNodeType(FPVTs[0], TP); return NodeToApply->UpdateNodeType(EMVT::isFP, TP); } case SDTCisSameAs: { TreePatternNode *OtherNode = getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults); return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) | OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP); } case SDTCisVTSmallerThanOp: { // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must // have an integer type that is smaller than the VT. if (!NodeToApply->isLeaf() || !dynamic_cast(NodeToApply->getLeafValue()) || !static_cast(NodeToApply->getLeafValue())->getDef() ->isSubClassOf("ValueType")) TP.error(N->getOperator()->getName() + " expects a VT operand!"); MVT::SimpleValueType VT = getValueType(static_cast(NodeToApply->getLeafValue())->getDef()); if (!isInteger(VT)) TP.error(N->getOperator()->getName() + " VT operand must be integer!"); TreePatternNode *OtherNode = getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults); // It must be integer. bool MadeChange = false; MadeChange |= OtherNode->UpdateNodeType(EMVT::isInt, TP); // This code only handles nodes that have one type set. Assert here so // that we can change this if we ever need to deal with multiple value // types at this point. assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!"); if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT) OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error. return false; } case SDTCisOpSmallerThanOp: { TreePatternNode *BigOperand = getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults); // Both operands must be integer or FP, but we don't care which. bool MadeChange = false; // This code does not currently handle nodes which have multiple types, // where some types are integer, and some are fp. Assert that this is not // the case. assert(!(EMVT::isExtIntegerInVTs(NodeToApply->getExtTypes()) && EMVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) && !(EMVT::isExtIntegerInVTs(BigOperand->getExtTypes()) && EMVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) && "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); if (EMVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) MadeChange |= BigOperand->UpdateNodeType(EMVT::isInt, TP); else if (EMVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) MadeChange |= BigOperand->UpdateNodeType(EMVT::isFP, TP); if (EMVT::isExtIntegerInVTs(BigOperand->getExtTypes())) MadeChange |= NodeToApply->UpdateNodeType(EMVT::isInt, TP); else if (EMVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) MadeChange |= NodeToApply->UpdateNodeType(EMVT::isFP, TP); std::vector VTs = CGT.getLegalValueTypes(); if (EMVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) { VTs = FilterVTs(VTs, isInteger); } else if (EMVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) { VTs = FilterVTs(VTs, isFloatingPoint); } else { VTs.clear(); } switch (VTs.size()) { default: // Too many VT's to pick from. case 0: break; // No info yet. case 1: // Only one VT of this flavor. Cannot ever satisfy the constraints. return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw case 2: // If we have exactly two possible types, the little operand must be the // small one, the big operand should be the big one. Common with // float/double for example. assert(VTs[0] < VTs[1] && "Should be sorted!"); MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP); MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP); break; } return MadeChange; } case SDTCisIntVectorOfSameSize: { TreePatternNode *OtherOperand = getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum, N, NumResults); if (OtherOperand->hasTypeSet()) { if (!isVector(OtherOperand->getTypeNum(0))) TP.error(N->getOperator()->getName() + " VT operand must be a vector!"); MVT IVT = OtherOperand->getTypeNum(0); unsigned NumElements = IVT.getVectorNumElements(); IVT = MVT::getIntVectorWithNumElements(NumElements); return NodeToApply->UpdateNodeType(IVT.getSimpleVT(), TP); } return false; } case SDTCisEltOfVec: { TreePatternNode *OtherOperand = getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum, N, NumResults); if (OtherOperand->hasTypeSet()) { if (!isVector(OtherOperand->getTypeNum(0))) TP.error(N->getOperator()->getName() + " VT operand must be a vector!"); MVT IVT = OtherOperand->getTypeNum(0); IVT = IVT.getVectorElementType(); return NodeToApply->UpdateNodeType(IVT.getSimpleVT(), TP); } return false; } } return false; } //===----------------------------------------------------------------------===// // SDNodeInfo implementation // SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { EnumName = R->getValueAsString("Opcode"); SDClassName = R->getValueAsString("SDClass"); Record *TypeProfile = R->getValueAsDef("TypeProfile"); NumResults = TypeProfile->getValueAsInt("NumResults"); NumOperands = TypeProfile->getValueAsInt("NumOperands"); // Parse the properties. Properties = 0; std::vector PropList = R->getValueAsListOfDefs("Properties"); for (unsigned i = 0, e = PropList.size(); i != e; ++i) { if (PropList[i]->getName() == "SDNPCommutative") { Properties |= 1 << SDNPCommutative; } else if (PropList[i]->getName() == "SDNPAssociative") { Properties |= 1 << SDNPAssociative; } else if (PropList[i]->getName() == "SDNPHasChain") { Properties |= 1 << SDNPHasChain; } else if (PropList[i]->getName() == "SDNPOutFlag") { Properties |= 1 << SDNPOutFlag; } else if (PropList[i]->getName() == "SDNPInFlag") { Properties |= 1 << SDNPInFlag; } else if (PropList[i]->getName() == "SDNPOptInFlag") { Properties |= 1 << SDNPOptInFlag; } else if (PropList[i]->getName() == "SDNPMayStore") { Properties |= 1 << SDNPMayStore; } else if (PropList[i]->getName() == "SDNPMayLoad") { Properties |= 1 << SDNPMayLoad; } else if (PropList[i]->getName() == "SDNPSideEffect") { Properties |= 1 << SDNPSideEffect; } else if (PropList[i]->getName() == "SDNPMemOperand") { Properties |= 1 << SDNPMemOperand; } else { cerr << "Unknown SD Node property '" << PropList[i]->getName() << "' on node '" << R->getName() << "'!\n"; exit(1); } } // Parse the type constraints. std::vector ConstraintList = TypeProfile->getValueAsListOfDefs("Constraints"); TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); } //===----------------------------------------------------------------------===// // TreePatternNode implementation // TreePatternNode::~TreePatternNode() { #if 0 // FIXME: implement refcounted tree nodes! for (unsigned i = 0, e = getNumChildren(); i != e; ++i) delete getChild(i); #endif } /// UpdateNodeType - Set the node type of N to VT if VT contains /// information. If N already contains a conflicting type, then throw an /// exception. This returns true if any information was updated. /// bool TreePatternNode::UpdateNodeType(const std::vector &ExtVTs, TreePattern &TP) { assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!"); if (ExtVTs[0] == EMVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs)) return false; if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) { setTypes(ExtVTs); return true; } if (getExtTypeNum(0) == MVT::iPTR || getExtTypeNum(0) == MVT::iPTRAny) { if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny || ExtVTs[0] == EMVT::isInt) return false; if (EMVT::isExtIntegerInVTs(ExtVTs)) { std::vector FVTs = FilterEVTs(ExtVTs, isInteger); if (FVTs.size()) { setTypes(ExtVTs); return true; } } } if ((ExtVTs[0] == EMVT::isInt || ExtVTs[0] == MVT::iAny) && EMVT::isExtIntegerInVTs(getExtTypes())) { assert(hasTypeSet() && "should be handled above!"); std::vector FVTs = FilterEVTs(getExtTypes(), isInteger); if (getExtTypes() == FVTs) return false; setTypes(FVTs); return true; } if ((ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny) && EMVT::isExtIntegerInVTs(getExtTypes())) { //assert(hasTypeSet() && "should be handled above!"); std::vector FVTs = FilterEVTs(getExtTypes(), isInteger); if (getExtTypes() == FVTs) return false; if (FVTs.size()) { setTypes(FVTs); return true; } } if ((ExtVTs[0] == EMVT::isFP || ExtVTs[0] == MVT::fAny) && EMVT::isExtFloatingPointInVTs(getExtTypes())) { assert(hasTypeSet() && "should be handled above!"); std::vector FVTs = FilterEVTs(getExtTypes(), isFloatingPoint); if (getExtTypes() == FVTs) return false; setTypes(FVTs); return true; } // If we know this is an int or fp type, and we are told it is a specific one, // take the advice. // // Similarly, we should probably set the type here to the intersection of // {isInt|isFP} and ExtVTs if (((getExtTypeNum(0) == EMVT::isInt || getExtTypeNum(0) == MVT::iAny) && EMVT::isExtIntegerInVTs(ExtVTs)) || ((getExtTypeNum(0) == EMVT::isFP || getExtTypeNum(0) == MVT::fAny) && EMVT::isExtFloatingPointInVTs(ExtVTs))) { setTypes(ExtVTs); return true; } if (getExtTypeNum(0) == EMVT::isInt && (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny)) { setTypes(ExtVTs); return true; } if (isLeaf()) { dump(); cerr << " "; TP.error("Type inference contradiction found in node!"); } else { TP.error("Type inference contradiction found in node " + getOperator()->getName() + "!"); } return true; // unreachable } void TreePatternNode::print(std::ostream &OS) const { if (isLeaf()) { OS << *getLeafValue(); } else { OS << "(" << getOperator()->getName(); } // FIXME: At some point we should handle printing all the value types for // nodes that are multiply typed. switch (getExtTypeNum(0)) { case MVT::Other: OS << ":Other"; break; case EMVT::isInt: OS << ":isInt"; break; case EMVT::isFP : OS << ":isFP"; break; case EMVT::isUnknown: ; /*OS << ":?";*/ break; case MVT::iPTR: OS << ":iPTR"; break; case MVT::iPTRAny: OS << ":iPTRAny"; break; default: { std::string VTName = llvm::getName(getTypeNum(0)); // Strip off MVT:: prefix if present. if (VTName.substr(0,5) == "MVT::") VTName = VTName.substr(5); OS << ":" << VTName; break; } } if (!isLeaf()) { if (getNumChildren() != 0) { OS << " "; getChild(0)->print(OS); for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { OS << ", "; getChild(i)->print(OS); } } OS << ")"; } for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) OS << "<>"; if (TransformFn) OS << "<getName() << ">>"; if (!getName().empty()) OS << ":$" << getName(); } void TreePatternNode::dump() const { print(*cerr.stream()); } /// isIsomorphicTo - Return true if this node is recursively /// isomorphic to the specified node. For this comparison, the node's /// entire state is considered. The assigned name is ignored, since /// nodes with differing names are considered isomorphic. However, if /// the assigned name is present in the dependent variable set, then /// the assigned name is considered significant and the node is /// isomorphic if the names match. bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, const MultipleUseVarSet &DepVars) const { if (N == this) return true; if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || getPredicateFns() != N->getPredicateFns() || getTransformFn() != N->getTransformFn()) return false; if (isLeaf()) { if (DefInit *DI = dynamic_cast(getLeafValue())) { if (DefInit *NDI = dynamic_cast(N->getLeafValue())) { return ((DI->getDef() == NDI->getDef()) && (DepVars.find(getName()) == DepVars.end() || getName() == N->getName())); } } return getLeafValue() == N->getLeafValue(); } if (N->getOperator() != getOperator() || N->getNumChildren() != getNumChildren()) return false; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) return false; return true; } /// clone - Make a copy of this tree and all of its children. /// TreePatternNode *TreePatternNode::clone() const { TreePatternNode *New; if (isLeaf()) { New = new TreePatternNode(getLeafValue()); } else { std::vector CChildren; CChildren.reserve(Children.size()); for (unsigned i = 0, e = getNumChildren(); i != e; ++i) CChildren.push_back(getChild(i)->clone()); New = new TreePatternNode(getOperator(), CChildren); } New->setName(getName()); New->setTypes(getExtTypes()); New->setPredicateFns(getPredicateFns()); New->setTransformFn(getTransformFn()); return New; } /// SubstituteFormalArguments - Replace the formal arguments in this tree /// with actual values specified by ArgMap. void TreePatternNode:: SubstituteFormalArguments(std::map &ArgMap) { if (isLeaf()) return; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { TreePatternNode *Child = getChild(i); if (Child->isLeaf()) { Init *Val = Child->getLeafValue(); if (dynamic_cast(Val) && static_cast(Val)->getDef()->getName() == "node") { // We found a use of a formal argument, replace it with its value. TreePatternNode *NewChild = ArgMap[Child->getName()]; assert(NewChild && "Couldn't find formal argument!"); assert((Child->getPredicateFns().empty() || NewChild->getPredicateFns() == Child->getPredicateFns()) && "Non-empty child predicate clobbered!"); setChild(i, NewChild); } } else { getChild(i)->SubstituteFormalArguments(ArgMap); } } } /// InlinePatternFragments - If this pattern refers to any pattern /// fragments, inline them into place, giving us a pattern without any /// PatFrag references. TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { if (isLeaf()) return this; // nothing to do. Record *Op = getOperator(); if (!Op->isSubClassOf("PatFrag")) { // Just recursively inline children nodes. for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { TreePatternNode *Child = getChild(i); TreePatternNode *NewChild = Child->InlinePatternFragments(TP); assert((Child->getPredicateFns().empty() || NewChild->getPredicateFns() == Child->getPredicateFns()) && "Non-empty child predicate clobbered!"); setChild(i, NewChild); } return this; } // Otherwise, we found a reference to a fragment. First, look up its // TreePattern record. TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); // Verify that we are passing the right number of operands. if (Frag->getNumArgs() != Children.size()) TP.error("'" + Op->getName() + "' fragment requires " + utostr(Frag->getNumArgs()) + " operands!"); TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); std::string Code = Op->getValueAsCode("Predicate"); if (!Code.empty()) FragTree->addPredicateFn("Predicate_"+Op->getName()); // Resolve formal arguments to their actual value. if (Frag->getNumArgs()) { // Compute the map of formal to actual arguments. std::map ArgMap; for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); FragTree->SubstituteFormalArguments(ArgMap); } FragTree->setName(getName()); FragTree->UpdateNodeType(getExtTypes(), TP); // Transfer in the old predicates. for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i) FragTree->addPredicateFn(getPredicateFns()[i]); // Get a new copy of this fragment to stitch into here. //delete this; // FIXME: implement refcounting! // The fragment we inlined could have recursive inlining that is needed. See // if there are any pattern fragments in it and inline them as needed. return FragTree->InlinePatternFragments(TP); } /// getImplicitType - Check to see if the specified record has an implicit /// type which should be applied to it. This infer the type of register /// references from the register file information, for example. /// static std::vector getImplicitType(Record *R, bool NotRegisters, TreePattern &TP) { // Some common return values std::vector Unknown(1, EMVT::isUnknown); std::vector Other(1, MVT::Other); // Check to see if this is a register or a register class... if (R->isSubClassOf("RegisterClass")) { if (NotRegisters) return Unknown; const CodeGenRegisterClass &RC = TP.getDAGPatterns().getTargetInfo().getRegisterClass(R); return ConvertVTs(RC.getValueTypes()); } else if (R->isSubClassOf("PatFrag")) { // Pattern fragment types will be resolved when they are inlined. return Unknown; } else if (R->isSubClassOf("Register")) { if (NotRegisters) return Unknown; const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); return T.getRegisterVTs(R); } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { // Using a VTSDNode or CondCodeSDNode. return Other; } else if (R->isSubClassOf("ComplexPattern")) { if (NotRegisters) return Unknown; std::vector ComplexPat(1, TP.getDAGPatterns().getComplexPattern(R).getValueType()); return ComplexPat; } else if (R->getName() == "ptr_rc") { Other[0] = MVT::iPTR; return Other; } else if (R->getName() == "node" || R->getName() == "srcvalue" || R->getName() == "zero_reg") { // Placeholder. return Unknown; } TP.error("Unknown node flavor used in pattern: " + R->getName()); return Other; } /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the /// CodeGenIntrinsic information for it, otherwise return a null pointer. const CodeGenIntrinsic *TreePatternNode:: getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { if (getOperator() != CDP.get_intrinsic_void_sdnode() && getOperator() != CDP.get_intrinsic_w_chain_sdnode() && getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) return 0; unsigned IID = dynamic_cast(getChild(0)->getLeafValue())->getValue(); return &CDP.getIntrinsicInfo(IID); } /// isCommutativeIntrinsic - Return true if the node corresponds to a /// commutative intrinsic. bool TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) return Int->isCommutative; return false; } /// ApplyTypeConstraints - Apply all of the type constraints relevant to /// this node and its children in the tree. This returns true if it makes a /// change, false otherwise. If a type contradiction is found, throw an /// exception. bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); if (isLeaf()) { if (DefInit *DI = dynamic_cast(getLeafValue())) { // If it's a regclass or something else known, include the type. return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP); } else if (IntInit *II = dynamic_cast(getLeafValue())) { // Int inits are always integers. :) bool MadeChange = UpdateNodeType(EMVT::isInt, TP); if (hasTypeSet()) { // At some point, it may make sense for this tree pattern to have // multiple types. Assert here that it does not, so we revisit this // code when appropriate. assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!"); MVT::SimpleValueType VT = getTypeNum(0); for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i) assert(getTypeNum(i) == VT && "TreePattern has too many types!"); VT = getTypeNum(0); if (VT != MVT::iPTR && VT != MVT::iPTRAny) { unsigned Size = MVT(VT).getSizeInBits(); // Make sure that the value is representable for this type. if (Size < 32) { int Val = (II->getValue() << (32-Size)) >> (32-Size); if (Val != II->getValue()) { // If sign-extended doesn't fit, does it fit as unsigned? unsigned ValueMask; unsigned UnsignedVal; ValueMask = unsigned(~uint32_t(0UL) >> (32-Size)); UnsignedVal = unsigned(II->getValue()); if ((ValueMask & UnsignedVal) != UnsignedVal) { TP.error("Integer value '" + itostr(II->getValue())+ "' is out of range for type '" + getEnumName(getTypeNum(0)) + "'!"); } } } } } return MadeChange; } return false; } // special handling for set, which isn't really an SDNode. if (getOperator()->getName() == "set") { assert (getNumChildren() >= 2 && "Missing RHS of a set?"); unsigned NC = getNumChildren(); bool MadeChange = false; for (unsigned i = 0; i < NC-1; ++i) { MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters); // Types of operands must match. MadeChange |= getChild(i)->UpdateNodeType(getChild(NC-1)->getExtTypes(), TP); MadeChange |= getChild(NC-1)->UpdateNodeType(getChild(i)->getExtTypes(), TP); MadeChange |= UpdateNodeType(MVT::isVoid, TP); } return MadeChange; } else if (getOperator()->getName() == "implicit" || getOperator()->getName() == "parallel") { bool MadeChange = false; for (unsigned i = 0; i < getNumChildren(); ++i) MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); MadeChange |= UpdateNodeType(MVT::isVoid, TP); return MadeChange; } else if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { bool MadeChange = false; // Apply the result type to the node. unsigned NumRetVTs = Int->IS.RetVTs.size(); unsigned NumParamVTs = Int->IS.ParamVTs.size(); for (unsigned i = 0, e = NumRetVTs; i != e; ++i) MadeChange |= UpdateNodeType(Int->IS.RetVTs[i], TP); if (getNumChildren() != NumParamVTs + NumRetVTs) TP.error("Intrinsic '" + Int->Name + "' expects " + utostr(NumParamVTs + NumRetVTs - 1) + " operands, not " + utostr(getNumChildren() - 1) + " operands!"); // Apply type info to the intrinsic ID. MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP); for (unsigned i = NumRetVTs, e = getNumChildren(); i != e; ++i) { MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i - NumRetVTs]; MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP); MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); } return MadeChange; } else if (getOperator()->isSubClassOf("SDNode")) { const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); bool MadeChange = NI.ApplyTypeConstraints(this, TP); for (unsigned i = 0, e = getNumChildren(); i != e; ++i) MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); // Branch, etc. do not produce results and top-level forms in instr pattern // must have void types. if (NI.getNumResults() == 0) MadeChange |= UpdateNodeType(MVT::isVoid, TP); // If this is a vector_shuffle operation, apply types to the build_vector // operation. The types of the integers don't matter, but this ensures they // won't get checked. if (getOperator()->getName() == "vector_shuffle" && getChild(2)->getOperator()->getName() == "build_vector") { TreePatternNode *BV = getChild(2); const std::vector &LegalVTs = CDP.getTargetInfo().getLegalValueTypes(); MVT::SimpleValueType LegalIntVT = MVT::Other; for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i) if (isInteger(LegalVTs[i]) && !isVector(LegalVTs[i])) { LegalIntVT = LegalVTs[i]; break; } assert(LegalIntVT != MVT::Other && "No legal integer VT?"); for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i) MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP); } return MadeChange; } else if (getOperator()->isSubClassOf("Instruction")) { const DAGInstruction &Inst = CDP.getInstruction(getOperator()); bool MadeChange = false; unsigned NumResults = Inst.getNumResults(); assert(NumResults <= 1 && "Only supports zero or one result instrs!"); CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(getOperator()->getName()); // Apply the result type to the node if (NumResults == 0 || InstInfo.NumDefs == 0) { MadeChange = UpdateNodeType(MVT::isVoid, TP); } else { Record *ResultNode = Inst.getResult(0); if (ResultNode->getName() == "ptr_rc") { std::vector VT; VT.push_back(MVT::iPTR); MadeChange = UpdateNodeType(VT, TP); } else if (ResultNode->getName() == "unknown") { std::vector VT; VT.push_back(EMVT::isUnknown); MadeChange = UpdateNodeType(VT, TP); } else { assert(ResultNode->isSubClassOf("RegisterClass") && "Operands should be register classes!"); const CodeGenRegisterClass &RC = CDP.getTargetInfo().getRegisterClass(ResultNode); MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP); } } unsigned ChildNo = 0; for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { Record *OperandNode = Inst.getOperand(i); // If the instruction expects a predicate or optional def operand, we // codegen this by setting the operand to it's default value if it has a // non-empty DefaultOps field. if ((OperandNode->isSubClassOf("PredicateOperand") || OperandNode->isSubClassOf("OptionalDefOperand")) && !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) continue; // Verify that we didn't run out of provided operands. if (ChildNo >= getNumChildren()) TP.error("Instruction '" + getOperator()->getName() + "' expects more operands than were provided."); MVT::SimpleValueType VT; TreePatternNode *Child = getChild(ChildNo++); if (OperandNode->isSubClassOf("RegisterClass")) { const CodeGenRegisterClass &RC = CDP.getTargetInfo().getRegisterClass(OperandNode); MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP); } else if (OperandNode->isSubClassOf("Operand")) { VT = getValueType(OperandNode->getValueAsDef("Type")); MadeChange |= Child->UpdateNodeType(VT, TP); } else if (OperandNode->getName() == "ptr_rc") { MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP); } else if (OperandNode->getName() == "unknown") { MadeChange |= Child->UpdateNodeType(EMVT::isUnknown, TP); } else { assert(0 && "Unknown operand type!"); abort(); } MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); } if (ChildNo != getNumChildren()) TP.error("Instruction '" + getOperator()->getName() + "' was provided too many operands!"); return MadeChange; } else { assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); // Node transforms always take one operand. if (getNumChildren() != 1) TP.error("Node transform '" + getOperator()->getName() + "' requires one operand!"); // If either the output or input of the xform does not have exact // type info. We assume they must be the same. Otherwise, it is perfectly // legal to transform from one type to a completely different type. if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP); MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP); return MadeChange; } return false; } } /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the /// RHS of a commutative operation, not the on LHS. static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { if (!N->isLeaf() && N->getOperator()->getName() == "imm") return true; if (N->isLeaf() && dynamic_cast(N->getLeafValue())) return true; return false; } /// canPatternMatch - If it is impossible for this pattern to match on this /// target, fill in Reason and return false. Otherwise, return true. This is /// used as a sanity check for .td files (to prevent people from writing stuff /// that can never possibly work), and to prevent the pattern permuter from /// generating stuff that is useless. bool TreePatternNode::canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP) { if (isLeaf()) return true; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) if (!getChild(i)->canPatternMatch(Reason, CDP)) return false; // If this is an intrinsic, handle cases that would make it not match. For // example, if an operand is required to be an immediate. if (getOperator()->isSubClassOf("Intrinsic")) { // TODO: return true; } // If this node is a commutative operator, check that the LHS isn't an // immediate. const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); bool isCommIntrinsic = isCommutativeIntrinsic(CDP); if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { // Scan all of the operands of the node and make sure that only the last one // is a constant node, unless the RHS also is. if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) if (OnlyOnRHSOfCommutative(getChild(i))) { Reason="Immediate value must be on the RHS of commutative operators!"; return false; } } } return true; } //===----------------------------------------------------------------------===// // TreePattern implementation // TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ isInputPattern = isInput; for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i))); } TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ isInputPattern = isInput; Trees.push_back(ParseTreePattern(Pat)); } TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ isInputPattern = isInput; Trees.push_back(Pat); } void TreePattern::error(const std::string &Msg) const { dump(); throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); } TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) { DefInit *OpDef = dynamic_cast(Dag->getOperator()); if (!OpDef) error("Pattern has unexpected operator type!"); Record *Operator = OpDef->getDef(); if (Operator->isSubClassOf("ValueType")) { // If the operator is a ValueType, then this must be "type cast" of a leaf // node. if (Dag->getNumArgs() != 1) error("Type cast only takes one operand!"); Init *Arg = Dag->getArg(0); TreePatternNode *New; if (DefInit *DI = dynamic_cast(Arg)) { Record *R = DI->getDef(); if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { Dag->setArg(0, new DagInit(DI, "", std::vector >())); return ParseTreePattern(Dag); } New = new TreePatternNode(DI); } else if (DagInit *DI = dynamic_cast(Arg)) { New = ParseTreePattern(DI); } else if (IntInit *II = dynamic_cast(Arg)) { New = new TreePatternNode(II); if (!Dag->getArgName(0).empty()) error("Constant int argument should not have a name!"); } else if (BitsInit *BI = dynamic_cast(Arg)) { // Turn this into an IntInit. Init *II = BI->convertInitializerTo(new IntRecTy()); if (II == 0 || !dynamic_cast(II)) error("Bits value must be constants!"); New = new TreePatternNode(dynamic_cast(II)); if (!Dag->getArgName(0).empty()) error("Constant int argument should not have a name!"); } else { Arg->dump(); error("Unknown leaf value for tree pattern!"); return 0; } // Apply the type cast. New->UpdateNodeType(getValueType(Operator), *this); if (New->getNumChildren() == 0) New->setName(Dag->getArgName(0)); return New; } // Verify that this is something that makes sense for an operator. if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") && !Operator->isSubClassOf("Instruction") && !Operator->isSubClassOf("SDNodeXForm") && !Operator->isSubClassOf("Intrinsic") && Operator->getName() != "set" && Operator->getName() != "implicit" && Operator->getName() != "parallel") error("Unrecognized node '" + Operator->getName() + "'!"); // Check to see if this is something that is illegal in an input pattern. if (isInputPattern && (Operator->isSubClassOf("Instruction") || Operator->isSubClassOf("SDNodeXForm"))) error("Cannot use '" + Operator->getName() + "' in an input pattern!"); std::vector Children; for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) { Init *Arg = Dag->getArg(i); if (DagInit *DI = dynamic_cast(Arg)) { Children.push_back(ParseTreePattern(DI)); if (Children.back()->getName().empty()) Children.back()->setName(Dag->getArgName(i)); } else if (DefInit *DefI = dynamic_cast(Arg)) { Record *R = DefI->getDef(); // Direct reference to a leaf DagNode or PatFrag? Turn it into a // TreePatternNode if its own. if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { Dag->setArg(i, new DagInit(DefI, "", std::vector >())); --i; // Revisit this node... } else { TreePatternNode *Node = new TreePatternNode(DefI); Node->setName(Dag->getArgName(i)); Children.push_back(Node); // Input argument? if (R->getName() == "node") { if (Dag->getArgName(i).empty()) error("'node' argument requires a name to match with operand list"); Args.push_back(Dag->getArgName(i)); } } } else if (IntInit *II = dynamic_cast(Arg)) { TreePatternNode *Node = new TreePatternNode(II); if (!Dag->getArgName(i).empty()) error("Constant int argument should not have a name!"); Children.push_back(Node); } else if (BitsInit *BI = dynamic_cast(Arg)) { // Turn this into an IntInit. Init *II = BI->convertInitializerTo(new IntRecTy()); if (II == 0 || !dynamic_cast(II)) error("Bits value must be constants!"); TreePatternNode *Node = new TreePatternNode(dynamic_cast(II)); if (!Dag->getArgName(i).empty()) error("Constant int argument should not have a name!"); Children.push_back(Node); } else { cerr << '"'; Arg->dump(); cerr << "\": "; error("Unknown leaf value for tree pattern!"); } } // If the operator is an intrinsic, then this is just syntactic sugar for for // (intrinsic_* , ..children..). Pick the right intrinsic node, and // convert the intrinsic name to a number. if (Operator->isSubClassOf("Intrinsic")) { const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; // If this intrinsic returns void, it must have side-effects and thus a // chain. if (Int.IS.RetVTs[0] == MVT::isVoid) { Operator = getDAGPatterns().get_intrinsic_void_sdnode(); } else if (Int.ModRef != CodeGenIntrinsic::NoMem) { // Has side-effects, requires chain. Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); } else { // Otherwise, no chain. Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); } TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID)); Children.insert(Children.begin(), IIDNode); } TreePatternNode *Result = new TreePatternNode(Operator, Children); Result->setName(Dag->getName()); return Result; } /// InferAllTypes - Infer/propagate as many types throughout the expression /// patterns as possible. Return true if all types are inferred, false /// otherwise. Throw an exception if a type contradiction is found. bool TreePattern::InferAllTypes() { bool MadeChange = true; while (MadeChange) { MadeChange = false; for (unsigned i = 0, e = Trees.size(); i != e; ++i) MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); } bool HasUnresolvedTypes = false; for (unsigned i = 0, e = Trees.size(); i != e; ++i) HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); return !HasUnresolvedTypes; } void TreePattern::print(std::ostream &OS) const { OS << getRecord()->getName(); if (!Args.empty()) { OS << "(" << Args[0]; for (unsigned i = 1, e = Args.size(); i != e; ++i) OS << ", " << Args[i]; OS << ")"; } OS << ": "; if (Trees.size() > 1) OS << "[\n"; for (unsigned i = 0, e = Trees.size(); i != e; ++i) { OS << "\t"; Trees[i]->print(OS); OS << "\n"; } if (Trees.size() > 1) OS << "]\n"; } void TreePattern::dump() const { print(*cerr.stream()); } //===----------------------------------------------------------------------===// // CodeGenDAGPatterns implementation // // FIXME: REMOVE OSTREAM ARGUMENT CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R) { Intrinsics = LoadIntrinsics(Records, false); TgtIntrinsics = LoadIntrinsics(Records, true); ParseNodeInfo(); ParseNodeTransforms(); ParseComplexPatterns(); ParsePatternFragments(); ParseDefaultOperands(); ParseInstructions(); ParsePatterns(); // Generate variants. For example, commutative patterns can match // multiple ways. Add them to PatternsToMatch as well. GenerateVariants(); // Infer instruction flags. For example, we can detect loads, // stores, and side effects in many cases by examining an // instruction's pattern. InferInstructionFlags(); } CodeGenDAGPatterns::~CodeGenDAGPatterns() { for (std::map::iterator I = PatternFragments.begin(), E = PatternFragments.end(); I != E; ++I) delete I->second; } Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { Record *N = Records.getDef(Name); if (!N || !N->isSubClassOf("SDNode")) { cerr << "Error getting SDNode '" << Name << "'!\n"; exit(1); } return N; } // Parse all of the SDNode definitions for the target, populating SDNodes. void CodeGenDAGPatterns::ParseNodeInfo() { std::vector Nodes = Records.getAllDerivedDefinitions("SDNode"); while (!Nodes.empty()) { SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); Nodes.pop_back(); } // Get the builtin intrinsic nodes. intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); } /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms /// map, and emit them to the file as functions. void CodeGenDAGPatterns::ParseNodeTransforms() { std::vector Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); while (!Xforms.empty()) { Record *XFormNode = Xforms.back(); Record *SDNode = XFormNode->getValueAsDef("Opcode"); std::string Code = XFormNode->getValueAsCode("XFormFunction"); SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); Xforms.pop_back(); } } void CodeGenDAGPatterns::ParseComplexPatterns() { std::vector AMs = Records.getAllDerivedDefinitions("ComplexPattern"); while (!AMs.empty()) { ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); AMs.pop_back(); } } /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td /// file, building up the PatternFragments map. After we've collected them all, /// inline fragments together as necessary, so that there are no references left /// inside a pattern fragment to a pattern fragment. /// void CodeGenDAGPatterns::ParsePatternFragments() { std::vector Fragments = Records.getAllDerivedDefinitions("PatFrag"); // First step, parse all of the fragments. for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); PatternFragments[Fragments[i]] = P; // Validate the argument list, converting it to set, to discard duplicates. std::vector &Args = P->getArgList(); std::set OperandsSet(Args.begin(), Args.end()); if (OperandsSet.count("")) P->error("Cannot have unnamed 'node' values in pattern fragment!"); // Parse the operands list. DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); DefInit *OpsOp = dynamic_cast(OpsList->getOperator()); // Special cases: ops == outs == ins. Different names are used to // improve readability. if (!OpsOp || (OpsOp->getDef()->getName() != "ops" && OpsOp->getDef()->getName() != "outs" && OpsOp->getDef()->getName() != "ins")) P->error("Operands list should start with '(ops ... '!"); // Copy over the arguments. Args.clear(); for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { if (!dynamic_cast(OpsList->getArg(j)) || static_cast(OpsList->getArg(j))-> getDef()->getName() != "node") P->error("Operands list should all be 'node' values."); if (OpsList->getArgName(j).empty()) P->error("Operands list should have names for each operand!"); if (!OperandsSet.count(OpsList->getArgName(j))) P->error("'" + OpsList->getArgName(j) + "' does not occur in pattern or was multiply specified!"); OperandsSet.erase(OpsList->getArgName(j)); Args.push_back(OpsList->getArgName(j)); } if (!OperandsSet.empty()) P->error("Operands list does not contain an entry for operand '" + *OperandsSet.begin() + "'!"); // If there is a code init for this fragment, keep track of the fact that // this fragment uses it. std::string Code = Fragments[i]->getValueAsCode("Predicate"); if (!Code.empty()) P->getOnlyTree()->addPredicateFn("Predicate_"+Fragments[i]->getName()); // If there is a node transformation corresponding to this, keep track of // it. Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? P->getOnlyTree()->setTransformFn(Transform); } // Now that we've parsed all of the tree fragments, do a closure on them so // that there are not references to PatFrags left inside of them. for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { TreePattern *ThePat = PatternFragments[Fragments[i]]; ThePat->InlinePatternFragments(); // Infer as many types as possible. Don't worry about it if we don't infer // all of them, some may depend on the inputs of the pattern. try { ThePat->InferAllTypes(); } catch (...) { // If this pattern fragment is not supported by this target (no types can // satisfy its constraints), just ignore it. If the bogus pattern is // actually used by instructions, the type consistency error will be // reported there. } // If debugging, print out the pattern fragment result. DEBUG(ThePat->dump()); } } void CodeGenDAGPatterns::ParseDefaultOperands() { std::vector DefaultOps[2]; DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand"); DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand"); // Find some SDNode. assert(!SDNodes.empty() && "No SDNodes parsed?"); Init *SomeSDNode = new DefInit(SDNodes.begin()->first); for (unsigned iter = 0; iter != 2; ++iter) { for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) { DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps"); // Clone the DefaultInfo dag node, changing the operator from 'ops' to // SomeSDnode so that we can parse this. std::vector > Ops; for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) Ops.push_back(std::make_pair(DefaultInfo->getArg(op), DefaultInfo->getArgName(op))); DagInit *DI = new DagInit(SomeSDNode, "", Ops); // Create a TreePattern to parse this. TreePattern P(DefaultOps[iter][i], DI, false, *this); assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); // Copy the operands over into a DAGDefaultOperand. DAGDefaultOperand DefaultOpInfo; TreePatternNode *T = P.getTree(0); for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { TreePatternNode *TPN = T->getChild(op); while (TPN->ApplyTypeConstraints(P, false)) /* Resolve all types */; if (TPN->ContainsUnresolvedType()) { if (iter == 0) throw "Value #" + utostr(i) + " of PredicateOperand '" + DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!"; else throw "Value #" + utostr(i) + " of OptionalDefOperand '" + DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!"; } DefaultOpInfo.DefaultOps.push_back(TPN); } // Insert it into the DefaultOperands map so we can find it later. DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo; } } } /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an /// instruction input. Return true if this is a real use. static bool HandleUse(TreePattern *I, TreePatternNode *Pat, std::map &InstInputs, std::vector &InstImpInputs) { // No name -> not interesting. if (Pat->getName().empty()) { if (Pat->isLeaf()) { DefInit *DI = dynamic_cast(Pat->getLeafValue()); if (DI && DI->getDef()->isSubClassOf("RegisterClass")) I->error("Input " + DI->getDef()->getName() + " must be named!"); else if (DI && DI->getDef()->isSubClassOf("Register")) InstImpInputs.push_back(DI->getDef()); } return false; } Record *Rec; if (Pat->isLeaf()) { DefInit *DI = dynamic_cast(Pat->getLeafValue()); if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); Rec = DI->getDef(); } else { Rec = Pat->getOperator(); } // SRCVALUE nodes are ignored. if (Rec->getName() == "srcvalue") return false; TreePatternNode *&Slot = InstInputs[Pat->getName()]; if (!Slot) { Slot = Pat; } else { Record *SlotRec; if (Slot->isLeaf()) { SlotRec = dynamic_cast(Slot->getLeafValue())->getDef(); } else { assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); SlotRec = Slot->getOperator(); } // Ensure that the inputs agree if we've already seen this input. if (Rec != SlotRec) I->error("All $" + Pat->getName() + " inputs must agree with each other"); if (Slot->getExtTypes() != Pat->getExtTypes()) I->error("All $" + Pat->getName() + " inputs must agree with each other"); } return true; } /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is /// part of "I", the instruction), computing the set of inputs and outputs of /// the pattern. Report errors if we see anything naughty. void CodeGenDAGPatterns:: FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, std::map &InstInputs, std::map&InstResults, std::vector &InstImpInputs, std::vector &InstImpResults) { if (Pat->isLeaf()) { bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); if (!isUse && Pat->getTransformFn()) I->error("Cannot specify a transform function for a non-input value!"); return; } else if (Pat->getOperator()->getName() == "implicit") { for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { TreePatternNode *Dest = Pat->getChild(i); if (!Dest->isLeaf()) I->error("implicitly defined value should be a register!"); DefInit *Val = dynamic_cast(Dest->getLeafValue()); if (!Val || !Val->getDef()->isSubClassOf("Register")) I->error("implicitly defined value should be a register!"); InstImpResults.push_back(Val->getDef()); } return; } else if (Pat->getOperator()->getName() != "set") { // If this is not a set, verify that the children nodes are not void typed, // and recurse. for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid) I->error("Cannot have void nodes inside of patterns!"); FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, InstImpInputs, InstImpResults); } // If this is a non-leaf node with no children, treat it basically as if // it were a leaf. This handles nodes like (imm). bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); if (!isUse && Pat->getTransformFn()) I->error("Cannot specify a transform function for a non-input value!"); return; } // Otherwise, this is a set, validate and collect instruction results. if (Pat->getNumChildren() == 0) I->error("set requires operands!"); if (Pat->getTransformFn()) I->error("Cannot specify a transform function on a set node!"); // Check the set destinations. unsigned NumDests = Pat->getNumChildren()-1; for (unsigned i = 0; i != NumDests; ++i) { TreePatternNode *Dest = Pat->getChild(i); if (!Dest->isLeaf()) I->error("set destination should be a register!"); DefInit *Val = dynamic_cast(Dest->getLeafValue()); if (!Val) I->error("set destination should be a register!"); if (Val->getDef()->isSubClassOf("RegisterClass") || Val->getDef()->getName() == "ptr_rc") { if (Dest->getName().empty()) I->error("set destination must have a name!"); if (InstResults.count(Dest->getName())) I->error("cannot set '" + Dest->getName() +"' multiple times"); InstResults[Dest->getName()] = Dest; } else if (Val->getDef()->isSubClassOf("Register")) { InstImpResults.push_back(Val->getDef()); } else { I->error("set destination should be a register!"); } } // Verify and collect info from the computation. FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), InstInputs, InstResults, InstImpInputs, InstImpResults); } //===----------------------------------------------------------------------===// // Instruction Analysis //===----------------------------------------------------------------------===// class InstAnalyzer { const CodeGenDAGPatterns &CDP; bool &mayStore; bool &mayLoad; bool &HasSideEffects; public: InstAnalyzer(const CodeGenDAGPatterns &cdp, bool &maystore, bool &mayload, bool &hse) : CDP(cdp), mayStore(maystore), mayLoad(mayload), HasSideEffects(hse){ } /// Analyze - Analyze the specified instruction, returning true if the /// instruction had a pattern. bool Analyze(Record *InstRecord) { const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern(); if (Pattern == 0) { HasSideEffects = 1; return false; // No pattern. } // FIXME: Assume only the first tree is the pattern. The others are clobber // nodes. AnalyzeNode(Pattern->getTree(0)); return true; } private: void AnalyzeNode(const TreePatternNode *N) { if (N->isLeaf()) { if (DefInit *DI = dynamic_cast(N->getLeafValue())) { Record *LeafRec = DI->getDef(); // Handle ComplexPattern leaves. if (LeafRec->isSubClassOf("ComplexPattern")) { const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); if (CP.hasProperty(SDNPMayStore)) mayStore = true; if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true; } } return; } // Analyze children. for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) AnalyzeNode(N->getChild(i)); // Ignore set nodes, which are not SDNodes. if (N->getOperator()->getName() == "set") return; // Get information about the SDNode for the operator. const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); // Notice properties of the node. if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true; if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true; if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true; if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { // If this is an intrinsic, analyze it. if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) mayLoad = true;// These may load memory. if (IntInfo->ModRef >= CodeGenIntrinsic::WriteArgMem) mayStore = true;// Intrinsics that can write to memory are 'mayStore'. if (IntInfo->ModRef >= CodeGenIntrinsic::WriteMem) // WriteMem intrinsics can have other strange effects. HasSideEffects = true; } } }; static void InferFromPattern(const CodeGenInstruction &Inst, bool &MayStore, bool &MayLoad, bool &HasSideEffects, const CodeGenDAGPatterns &CDP) { MayStore = MayLoad = HasSideEffects = false; bool HadPattern = InstAnalyzer(CDP, MayStore, MayLoad, HasSideEffects).Analyze(Inst.TheDef); // InstAnalyzer only correctly analyzes mayStore/mayLoad so far. if (Inst.mayStore) { // If the .td file explicitly sets mayStore, use it. // If we decided that this is a store from the pattern, then the .td file // entry is redundant. if (MayStore) fprintf(stderr, "Warning: mayStore flag explicitly set on instruction '%s'" " but flag already inferred from pattern.\n", Inst.TheDef->getName().c_str()); MayStore = true; } if (Inst.mayLoad) { // If the .td file explicitly sets mayLoad, use it. // If we decided that this is a load from the pattern, then the .td file // entry is redundant. if (MayLoad) fprintf(stderr, "Warning: mayLoad flag explicitly set on instruction '%s'" " but flag already inferred from pattern.\n", Inst.TheDef->getName().c_str()); MayLoad = true; } if (Inst.neverHasSideEffects) { if (HadPattern) fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' " "which already has a pattern\n", Inst.TheDef->getName().c_str()); HasSideEffects = false; } if (Inst.hasSideEffects) { if (HasSideEffects) fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' " "which already inferred this.\n", Inst.TheDef->getName().c_str()); HasSideEffects = true; } } /// ParseInstructions - Parse all of the instructions, inlining and resolving /// any fragments involved. This populates the Instructions list with fully /// resolved instructions. void CodeGenDAGPatterns::ParseInstructions() { std::vector Instrs = Records.getAllDerivedDefinitions("Instruction"); for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { ListInit *LI = 0; if (dynamic_cast(Instrs[i]->getValueInit("Pattern"))) LI = Instrs[i]->getValueAsListInit("Pattern"); // If there is no pattern, only collect minimal information about the // instruction for its operand list. We have to assume that there is one // result, as we have no detailed info. if (!LI || LI->getSize() == 0) { std::vector Results; std::vector Operands; CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName()); if (InstInfo.OperandList.size() != 0) { if (InstInfo.NumDefs == 0) { // These produce no results for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j) Operands.push_back(InstInfo.OperandList[j].Rec); } else { // Assume the first operand is the result. Results.push_back(InstInfo.OperandList[0].Rec); // The rest are inputs. for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j) Operands.push_back(InstInfo.OperandList[j].Rec); } } // Create and insert the instruction. std::vector ImpResults; std::vector ImpOperands; Instructions.insert(std::make_pair(Instrs[i], DAGInstruction(0, Results, Operands, ImpResults, ImpOperands))); continue; // no pattern. } // Parse the instruction. TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); // Inline pattern fragments into it. I->InlinePatternFragments(); // Infer as many types as possible. If we cannot infer all of them, we can // never do anything with this instruction pattern: report it to the user. if (!I->InferAllTypes()) I->error("Could not infer all types in pattern!"); // InstInputs - Keep track of all of the inputs of the instruction, along // with the record they are declared as. std::map InstInputs; // InstResults - Keep track of all the virtual registers that are 'set' // in the instruction, including what reg class they are. std::map InstResults; std::vector InstImpInputs; std::vector InstImpResults; // Verify that the top-level forms in the instruction are of void type, and // fill in the InstResults map. for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { TreePatternNode *Pat = I->getTree(j); if (Pat->getExtTypeNum(0) != MVT::isVoid) I->error("Top-level forms in instruction pattern should have" " void types"); // Find inputs and outputs, and verify the structure of the uses/defs. FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, InstImpInputs, InstImpResults); } // Now that we have inputs and outputs of the pattern, inspect the operands // list for the instruction. This determines the order that operands are // added to the machine instruction the node corresponds to. unsigned NumResults = InstResults.size(); // Parse the operands list from the (ops) list, validating it. assert(I->getArgList().empty() && "Args list should still be empty here!"); CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName()); // Check that all of the results occur first in the list. std::vector Results; TreePatternNode *Res0Node = NULL; for (unsigned i = 0; i != NumResults; ++i) { if (i == CGI.OperandList.size()) I->error("'" + InstResults.begin()->first + "' set but does not appear in operand list!"); const std::string &OpName = CGI.OperandList[i].Name; // Check that it exists in InstResults. TreePatternNode *RNode = InstResults[OpName]; if (RNode == 0) I->error("Operand $" + OpName + " does not exist in operand list!"); if (i == 0) Res0Node = RNode; Record *R = dynamic_cast(RNode->getLeafValue())->getDef(); if (R == 0) I->error("Operand $" + OpName + " should be a set destination: all " "outputs must occur before inputs in operand list!"); if (CGI.OperandList[i].Rec != R) I->error("Operand $" + OpName + " class mismatch!"); // Remember the return type. Results.push_back(CGI.OperandList[i].Rec); // Okay, this one checks out. InstResults.erase(OpName); } // Loop over the inputs next. Make a copy of InstInputs so we can destroy // the copy while we're checking the inputs. std::map InstInputsCheck(InstInputs); std::vector ResultNodeOperands; std::vector Operands; for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) { CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i]; const std::string &OpName = Op.Name; if (OpName.empty()) I->error("Operand #" + utostr(i) + " in operands list has no name!"); if (!InstInputsCheck.count(OpName)) { // If this is an predicate operand or optional def operand with an // DefaultOps set filled in, we can ignore this. When we codegen it, // we will do so as always executed. if (Op.Rec->isSubClassOf("PredicateOperand") || Op.Rec->isSubClassOf("OptionalDefOperand")) { // Does it have a non-empty DefaultOps field? If so, ignore this // operand. if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) continue; } I->error("Operand $" + OpName + " does not appear in the instruction pattern"); } TreePatternNode *InVal = InstInputsCheck[OpName]; InstInputsCheck.erase(OpName); // It occurred, remove from map. if (InVal->isLeaf() && dynamic_cast(InVal->getLeafValue())) { Record *InRec = static_cast(InVal->getLeafValue())->getDef(); if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) I->error("Operand $" + OpName + "'s register class disagrees" " between the operand and pattern"); } Operands.push_back(Op.Rec); // Construct the result for the dest-pattern operand list. TreePatternNode *OpNode = InVal->clone(); // No predicate is useful on the result. OpNode->clearPredicateFns(); // Promote the xform function to be an explicit node if set. if (Record *Xform = OpNode->getTransformFn()) { OpNode->setTransformFn(0); std::vector Children; Children.push_back(OpNode); OpNode = new TreePatternNode(Xform, Children); } ResultNodeOperands.push_back(OpNode); } if (!InstInputsCheck.empty()) I->error("Input operand $" + InstInputsCheck.begin()->first + " occurs in pattern but not in operands list!"); TreePatternNode *ResultPattern = new TreePatternNode(I->getRecord(), ResultNodeOperands); // Copy fully inferred output node type to instruction result pattern. if (NumResults > 0) ResultPattern->setTypes(Res0Node->getExtTypes()); // Create and insert the instruction. // FIXME: InstImpResults and InstImpInputs should not be part of // DAGInstruction. DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs); Instructions.insert(std::make_pair(I->getRecord(), TheInst)); // Use a temporary tree pattern to infer all types and make sure that the // constructed result is correct. This depends on the instruction already // being inserted into the Instructions map. TreePattern Temp(I->getRecord(), ResultPattern, false, *this); Temp.InferAllTypes(); DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; TheInsertedInst.setResultPattern(Temp.getOnlyTree()); DEBUG(I->dump()); } // If we can, convert the instructions to be patterns that are matched! for (std::map::iterator II = Instructions.begin(), E = Instructions.end(); II != E; ++II) { DAGInstruction &TheInst = II->second; const TreePattern *I = TheInst.getPattern(); if (I == 0) continue; // No pattern. // FIXME: Assume only the first tree is the pattern. The others are clobber // nodes. TreePatternNode *Pattern = I->getTree(0); TreePatternNode *SrcPattern; if (Pattern->getOperator()->getName() == "set") { SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); } else{ // Not a set (store or something?) SrcPattern = Pattern; } std::string Reason; if (!SrcPattern->canPatternMatch(Reason, *this)) I->error("Instruction can never match: " + Reason); Record *Instr = II->first; TreePatternNode *DstPattern = TheInst.getResultPattern(); PatternsToMatch. push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"), SrcPattern, DstPattern, TheInst.getImpResults(), Instr->getValueAsInt("AddedComplexity"))); } } void CodeGenDAGPatterns::InferInstructionFlags() { std::map &InstrDescs = Target.getInstructions(); for (std::map::iterator II = InstrDescs.begin(), E = InstrDescs.end(); II != E; ++II) { CodeGenInstruction &InstInfo = II->second; // Determine properties of the instruction from its pattern. bool MayStore, MayLoad, HasSideEffects; InferFromPattern(InstInfo, MayStore, MayLoad, HasSideEffects, *this); InstInfo.mayStore = MayStore; InstInfo.mayLoad = MayLoad; InstInfo.hasSideEffects = HasSideEffects; } } void CodeGenDAGPatterns::ParsePatterns() { std::vector Patterns = Records.getAllDerivedDefinitions("Pattern"); for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch"); DefInit *OpDef = dynamic_cast(Tree->getOperator()); Record *Operator = OpDef->getDef(); TreePattern *Pattern; if (Operator->getName() != "parallel") Pattern = new TreePattern(Patterns[i], Tree, true, *this); else { std::vector Values; for (unsigned j = 0, ee = Tree->getNumArgs(); j != ee; ++j) Values.push_back(Tree->getArg(j)); ListInit *LI = new ListInit(Values); Pattern = new TreePattern(Patterns[i], LI, true, *this); } // Inline pattern fragments into it. Pattern->InlinePatternFragments(); ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs"); if (LI->getSize() == 0) continue; // no pattern. // Parse the instruction. TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this); // Inline pattern fragments into it. Result->InlinePatternFragments(); if (Result->getNumTrees() != 1) Result->error("Cannot handle instructions producing instructions " "with temporaries yet!"); bool IterateInference; bool InferredAllPatternTypes, InferredAllResultTypes; do { // Infer as many types as possible. If we cannot infer all of them, we // can never do anything with this pattern: report it to the user. InferredAllPatternTypes = Pattern->InferAllTypes(); // Infer as many types as possible. If we cannot infer all of them, we // can never do anything with this pattern: report it to the user. InferredAllResultTypes = Result->InferAllTypes(); // Apply the type of the result to the source pattern. This helps us // resolve cases where the input type is known to be a pointer type (which // is considered resolved), but the result knows it needs to be 32- or // 64-bits. Infer the other way for good measure. IterateInference = Pattern->getTree(0)-> UpdateNodeType(Result->getTree(0)->getExtTypes(), *Result); IterateInference |= Result->getTree(0)-> UpdateNodeType(Pattern->getTree(0)->getExtTypes(), *Result); } while (IterateInference); // Verify that we inferred enough types that we can do something with the // pattern and result. If these fire the user has to add type casts. if (!InferredAllPatternTypes) Pattern->error("Could not infer all types in pattern!"); if (!InferredAllResultTypes) Result->error("Could not infer all types in pattern result!"); // Validate that the input pattern is correct. std::map InstInputs; std::map InstResults; std::vector InstImpInputs; std::vector InstImpResults; for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), InstInputs, InstResults, InstImpInputs, InstImpResults); // Promote the xform function to be an explicit node if set. TreePatternNode *DstPattern = Result->getOnlyTree(); std::vector ResultNodeOperands; for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { TreePatternNode *OpNode = DstPattern->getChild(ii); if (Record *Xform = OpNode->getTransformFn()) { OpNode->setTransformFn(0); std::vector Children; Children.push_back(OpNode); OpNode = new TreePatternNode(Xform, Children); } ResultNodeOperands.push_back(OpNode); } DstPattern = Result->getOnlyTree(); if (!DstPattern->isLeaf()) DstPattern = new TreePatternNode(DstPattern->getOperator(), ResultNodeOperands); DstPattern->setTypes(Result->getOnlyTree()->getExtTypes()); TreePattern Temp(Result->getRecord(), DstPattern, false, *this); Temp.InferAllTypes(); std::string Reason; if (!Pattern->getTree(0)->canPatternMatch(Reason, *this)) Pattern->error("Pattern can never match: " + Reason); PatternsToMatch. push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"), Pattern->getTree(0), Temp.getOnlyTree(), InstImpResults, Patterns[i]->getValueAsInt("AddedComplexity"))); } } /// CombineChildVariants - Given a bunch of permutations of each child of the /// 'operator' node, put them together in all possible ways. static void CombineChildVariants(TreePatternNode *Orig, const std::vector > &ChildVariants, std::vector &OutVariants, CodeGenDAGPatterns &CDP, const MultipleUseVarSet &DepVars) { // Make sure that each operand has at least one variant to choose from. for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) if (ChildVariants[i].empty()) return; // The end result is an all-pairs construction of the resultant pattern. std::vector Idxs; Idxs.resize(ChildVariants.size()); bool NotDone; do { #ifndef NDEBUG if (DebugFlag && !Idxs.empty()) { cerr << Orig->getOperator()->getName() << ": Idxs = [ "; for (unsigned i = 0; i < Idxs.size(); ++i) { cerr << Idxs[i] << " "; } cerr << "]\n"; } #endif // Create the variant and add it to the output list. std::vector NewChildren; for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) NewChildren.push_back(ChildVariants[i][Idxs[i]]); TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren); // Copy over properties. R->setName(Orig->getName()); R->setPredicateFns(Orig->getPredicateFns()); R->setTransformFn(Orig->getTransformFn()); R->setTypes(Orig->getExtTypes()); // If this pattern cannot match, do not include it as a variant. std::string ErrString; if (!R->canPatternMatch(ErrString, CDP)) { delete R; } else { bool AlreadyExists = false; // Scan to see if this pattern has already been emitted. We can get // duplication due to things like commuting: // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) // which are the same pattern. Ignore the dups. for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) if (R->isIsomorphicTo(OutVariants[i], DepVars)) { AlreadyExists = true; break; } if (AlreadyExists) delete R; else OutVariants.push_back(R); } // Increment indices to the next permutation by incrementing the // indicies from last index backward, e.g., generate the sequence // [0, 0], [0, 1], [1, 0], [1, 1]. int IdxsIdx; for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) Idxs[IdxsIdx] = 0; else break; } NotDone = (IdxsIdx >= 0); } while (NotDone); } /// CombineChildVariants - A helper function for binary operators. /// static void CombineChildVariants(TreePatternNode *Orig, const std::vector &LHS, const std::vector &RHS, std::vector &OutVariants, CodeGenDAGPatterns &CDP, const MultipleUseVarSet &DepVars) { std::vector > ChildVariants; ChildVariants.push_back(LHS); ChildVariants.push_back(RHS); CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); } static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, std::vector &Children) { assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); Record *Operator = N->getOperator(); // Only permit raw nodes. if (!N->getName().empty() || !N->getPredicateFns().empty() || N->getTransformFn()) { Children.push_back(N); return; } if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) Children.push_back(N->getChild(0)); else GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) Children.push_back(N->getChild(1)); else GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); } /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of /// the (potentially recursive) pattern by using algebraic laws. /// static void GenerateVariantsOf(TreePatternNode *N, std::vector &OutVariants, CodeGenDAGPatterns &CDP, const MultipleUseVarSet &DepVars) { // We cannot permute leaves. if (N->isLeaf()) { OutVariants.push_back(N); return; } // Look up interesting info about the node. const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); // If this node is associative, re-associate. if (NodeInfo.hasProperty(SDNPAssociative)) { // Re-associate by pulling together all of the linked operators std::vector MaximalChildren; GatherChildrenOfAssociativeOpcode(N, MaximalChildren); // Only handle child sizes of 3. Otherwise we'll end up trying too many // permutations. if (MaximalChildren.size() == 3) { // Find the variants of all of our maximal children. std::vector AVariants, BVariants, CVariants; GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); // There are only two ways we can permute the tree: // (A op B) op C and A op (B op C) // Within these forms, we can also permute A/B/C. // Generate legal pair permutations of A/B/C. std::vector ABVariants; std::vector BAVariants; std::vector ACVariants; std::vector CAVariants; std::vector BCVariants; std::vector CBVariants; CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); // Combine those into the result: (x op x) op x CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); // Combine those into the result: x op (x op x) CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); return; } } // Compute permutations of all children. std::vector > ChildVariants; ChildVariants.resize(N->getNumChildren()); for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); // Build all permutations based on how the children were formed. CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); // If this node is commutative, consider the commuted order. bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { assert((N->getNumChildren()==2 || isCommIntrinsic) && "Commutative but doesn't have 2 children!"); // Don't count children which are actually register references. unsigned NC = 0; for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { TreePatternNode *Child = N->getChild(i); if (Child->isLeaf()) if (DefInit *DI = dynamic_cast(Child->getLeafValue())) { Record *RR = DI->getDef(); if (RR->isSubClassOf("Register")) continue; } NC++; } // Consider the commuted order. if (isCommIntrinsic) { // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd // operands are the commutative operands, and there might be more operands // after those. assert(NC >= 3 && "Commutative intrinsic should have at least 3 childrean!"); std::vector > Variants; Variants.push_back(ChildVariants[0]); // Intrinsic id. Variants.push_back(ChildVariants[2]); Variants.push_back(ChildVariants[1]); for (unsigned i = 3; i != NC; ++i) Variants.push_back(ChildVariants[i]); CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); } else if (NC == 2) CombineChildVariants(N, ChildVariants[1], ChildVariants[0], OutVariants, CDP, DepVars); } } // GenerateVariants - Generate variants. For example, commutative patterns can // match multiple ways. Add them to PatternsToMatch as well. void CodeGenDAGPatterns::GenerateVariants() { DOUT << "Generating instruction variants.\n"; // Loop over all of the patterns we've collected, checking to see if we can // generate variants of the instruction, through the exploitation of // identities. This permits the target to provide aggressive matching without // the .td file having to contain tons of variants of instructions. // // Note that this loop adds new patterns to the PatternsToMatch list, but we // intentionally do not reconsider these. Any variants of added patterns have // already been added. // for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { MultipleUseVarSet DepVars; std::vector Variants; FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); DOUT << "Dependent/multiply used variables: "; DEBUG(DumpDepVars(DepVars)); DOUT << "\n"; GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, DepVars); assert(!Variants.empty() && "Must create at least original variant!"); Variants.erase(Variants.begin()); // Remove the original pattern. if (Variants.empty()) // No variants for this pattern. continue; DOUT << "FOUND VARIANTS OF: "; DEBUG(PatternsToMatch[i].getSrcPattern()->dump()); DOUT << "\n"; for (unsigned v = 0, e = Variants.size(); v != e; ++v) { TreePatternNode *Variant = Variants[v]; DOUT << " VAR#" << v << ": "; DEBUG(Variant->dump()); DOUT << "\n"; // Scan to see if an instruction or explicit pattern already matches this. bool AlreadyExists = false; for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { // Check to see if this variant already exists. if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), DepVars)) { DOUT << " *** ALREADY EXISTS, ignoring variant.\n"; AlreadyExists = true; break; } } // If we already have it, ignore the variant. if (AlreadyExists) continue; // Otherwise, add it to the list of patterns we have. PatternsToMatch. push_back(PatternToMatch(PatternsToMatch[i].getPredicates(), Variant, PatternsToMatch[i].getDstPattern(), PatternsToMatch[i].getDstRegs(), PatternsToMatch[i].getAddedComplexity())); } DOUT << "\n"; } }