//===----------------- LLVMContextImpl.h - Implementation ------*- C++ -*--===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares LLVMContextImpl, the opaque implementation // of LLVMContext. // //===----------------------------------------------------------------------===// #ifndef LLVM_LLVMCONTEXT_IMPL_H #define LLVM_LLVMCONTEXT_IMPL_H #include "llvm/LLVMContext.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/System/Mutex.h" #include "llvm/System/RWMutex.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/StringMap.h" #include #include namespace llvm { template struct ConstantTraits; // The number of operands for each ConstantCreator::create method is // determined by the ConstantTraits template. // ConstantCreator - A class that is used to create constants by // ValueMap*. This class should be partially specialized if there is // something strange that needs to be done to interface to the ctor for the // constant. // template struct VISIBILITY_HIDDEN ConstantTraits< std::vector > { static unsigned uses(const std::vector& v) { return v.size(); } }; template struct VISIBILITY_HIDDEN ConstantCreator { static ConstantClass *create(const TypeClass *Ty, const ValType &V) { return new(ConstantTraits::uses(V)) ConstantClass(Ty, V); } }; template struct VISIBILITY_HIDDEN ConvertConstantType { static void convert(ConstantClass *OldC, const TypeClass *NewTy) { llvm_unreachable("This type cannot be converted!"); } }; // ConstantAggregateZero does not take extra "value" argument... template struct ConstantCreator { static ConstantAggregateZero *create(const Type *Ty, const ValType &V){ return new ConstantAggregateZero(Ty); } }; template<> struct ConvertConstantType { static void convert(ConstantAggregateZero *OldC, const Type *NewTy) { // Make everyone now use a constant of the new type... Constant *New = NewTy->getContext().getConstantAggregateZero(NewTy); assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. } }; template<> struct ConvertConstantType { static void convert(ConstantArray *OldC, const ArrayType *NewTy) { // Make everyone now use a constant of the new type... std::vector C; for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) C.push_back(cast(OldC->getOperand(i))); Constant *New = ConstantArray::get(NewTy, C); assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. } }; template<> struct ConvertConstantType { static void convert(ConstantStruct *OldC, const StructType *NewTy) { // Make everyone now use a constant of the new type... std::vector C; for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) C.push_back(cast(OldC->getOperand(i))); Constant *New = ConstantStruct::get(NewTy, C); assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. } }; template<> struct ConvertConstantType { static void convert(ConstantVector *OldC, const VectorType *NewTy) { // Make everyone now use a constant of the new type... std::vector C; for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) C.push_back(cast(OldC->getOperand(i))); Constant *New = ConstantVector::get(NewTy, C); assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. } }; template class ValueMap : public AbstractTypeUser { public: typedef std::pair MapKey; typedef std::map MapTy; typedef std::map InverseMapTy; typedef std::map AbstractTypeMapTy; private: /// Map - This is the main map from the element descriptor to the Constants. /// This is the primary way we avoid creating two of the same shape /// constant. MapTy Map; /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping /// from the constants to their element in Map. This is important for /// removal of constants from the array, which would otherwise have to scan /// through the map with very large keys. InverseMapTy InverseMap; /// AbstractTypeMap - Map for abstract type constants. /// AbstractTypeMapTy AbstractTypeMap; /// ValueMapLock - Mutex for this map. sys::SmartMutex ValueMapLock; public: // NOTE: This function is not locked. It is the caller's responsibility // to enforce proper synchronization. typename MapTy::iterator map_end() { return Map.end(); } /// InsertOrGetItem - Return an iterator for the specified element. /// If the element exists in the map, the returned iterator points to the /// entry and Exists=true. If not, the iterator points to the newly /// inserted entry and returns Exists=false. Newly inserted entries have /// I->second == 0, and should be filled in. /// NOTE: This function is not locked. It is the caller's responsibility // to enforce proper synchronization. typename MapTy::iterator InsertOrGetItem(std::pair &InsertVal, bool &Exists) { std::pair IP = Map.insert(InsertVal); Exists = !IP.second; return IP.first; } private: typename MapTy::iterator FindExistingElement(ConstantClass *CP) { if (HasLargeKey) { typename InverseMapTy::iterator IMI = InverseMap.find(CP); assert(IMI != InverseMap.end() && IMI->second != Map.end() && IMI->second->second == CP && "InverseMap corrupt!"); return IMI->second; } typename MapTy::iterator I = Map.find(MapKey(static_cast(CP->getRawType()), getValType(CP))); if (I == Map.end() || I->second != CP) { // FIXME: This should not use a linear scan. If this gets to be a // performance problem, someone should look at this. for (I = Map.begin(); I != Map.end() && I->second != CP; ++I) /* empty */; } return I; } ConstantClass* Create(const TypeClass *Ty, const ValType &V, typename MapTy::iterator I) { ConstantClass* Result = ConstantCreator::create(Ty, V); assert(Result->getType() == Ty && "Type specified is not correct!"); I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result)); if (HasLargeKey) // Remember the reverse mapping if needed. InverseMap.insert(std::make_pair(Result, I)); // If the type of the constant is abstract, make sure that an entry // exists for it in the AbstractTypeMap. if (Ty->isAbstract()) { typename AbstractTypeMapTy::iterator TI = AbstractTypeMap.find(Ty); if (TI == AbstractTypeMap.end()) { // Add ourselves to the ATU list of the type. cast(Ty)->addAbstractTypeUser(this); AbstractTypeMap.insert(TI, std::make_pair(Ty, I)); } } return Result; } public: /// getOrCreate - Return the specified constant from the map, creating it if /// necessary. ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) { sys::SmartScopedLock Lock(ValueMapLock); MapKey Lookup(Ty, V); ConstantClass* Result = 0; typename MapTy::iterator I = Map.find(Lookup); // Is it in the map? if (I != Map.end()) Result = static_cast(I->second); if (!Result) { // If no preexisting value, create one now... Result = Create(Ty, V, I); } return Result; } void remove(ConstantClass *CP) { sys::SmartScopedLock Lock(ValueMapLock); typename MapTy::iterator I = FindExistingElement(CP); assert(I != Map.end() && "Constant not found in constant table!"); assert(I->second == CP && "Didn't find correct element?"); if (HasLargeKey) // Remember the reverse mapping if needed. InverseMap.erase(CP); // Now that we found the entry, make sure this isn't the entry that // the AbstractTypeMap points to. const TypeClass *Ty = static_cast(I->first.first); if (Ty->isAbstract()) { assert(AbstractTypeMap.count(Ty) && "Abstract type not in AbstractTypeMap?"); typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty]; if (ATMEntryIt == I) { // Yes, we are removing the representative entry for this type. // See if there are any other entries of the same type. typename MapTy::iterator TmpIt = ATMEntryIt; // First check the entry before this one... if (TmpIt != Map.begin()) { --TmpIt; if (TmpIt->first.first != Ty) // Not the same type, move back... ++TmpIt; } // If we didn't find the same type, try to move forward... if (TmpIt == ATMEntryIt) { ++TmpIt; if (TmpIt == Map.end() || TmpIt->first.first != Ty) --TmpIt; // No entry afterwards with the same type } // If there is another entry in the map of the same abstract type, // update the AbstractTypeMap entry now. if (TmpIt != ATMEntryIt) { ATMEntryIt = TmpIt; } else { // Otherwise, we are removing the last instance of this type // from the table. Remove from the ATM, and from user list. cast(Ty)->removeAbstractTypeUser(this); AbstractTypeMap.erase(Ty); } } } Map.erase(I); } /// MoveConstantToNewSlot - If we are about to change C to be the element /// specified by I, update our internal data structures to reflect this /// fact. /// NOTE: This function is not locked. It is the responsibility of the /// caller to enforce proper synchronization if using this method. void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) { // First, remove the old location of the specified constant in the map. typename MapTy::iterator OldI = FindExistingElement(C); assert(OldI != Map.end() && "Constant not found in constant table!"); assert(OldI->second == C && "Didn't find correct element?"); // If this constant is the representative element for its abstract type, // update the AbstractTypeMap so that the representative element is I. if (C->getType()->isAbstract()) { typename AbstractTypeMapTy::iterator ATI = AbstractTypeMap.find(C->getType()); assert(ATI != AbstractTypeMap.end() && "Abstract type not in AbstractTypeMap?"); if (ATI->second == OldI) ATI->second = I; } // Remove the old entry from the map. Map.erase(OldI); // Update the inverse map so that we know that this constant is now // located at descriptor I. if (HasLargeKey) { assert(I->second == C && "Bad inversemap entry!"); InverseMap[C] = I; } } void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { sys::SmartScopedLock Lock(ValueMapLock); typename AbstractTypeMapTy::iterator I = AbstractTypeMap.find(cast(OldTy)); assert(I != AbstractTypeMap.end() && "Abstract type not in AbstractTypeMap?"); // Convert a constant at a time until the last one is gone. The last one // leaving will remove() itself, causing the AbstractTypeMapEntry to be // eliminated eventually. do { ConvertConstantType::convert( static_cast(I->second->second), cast(NewTy)); I = AbstractTypeMap.find(cast(OldTy)); } while (I != AbstractTypeMap.end()); } // If the type became concrete without being refined to any other existing // type, we just remove ourselves from the ATU list. void typeBecameConcrete(const DerivedType *AbsTy) { AbsTy->removeAbstractTypeUser(this); } void dump() const { DOUT << "Constant.cpp: ValueMap\n"; } }; class ConstantInt; class ConstantFP; class MDString; class MDNode; class LLVMContext; class Type; class Value; struct DenseMapAPIntKeyInfo { struct KeyTy { APInt val; const Type* type; KeyTy(const APInt& V, const Type* Ty) : val(V), type(Ty) {} KeyTy(const KeyTy& that) : val(that.val), type(that.type) {} bool operator==(const KeyTy& that) const { return type == that.type && this->val == that.val; } bool operator!=(const KeyTy& that) const { return !this->operator==(that); } }; static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); } static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); } static unsigned getHashValue(const KeyTy &Key) { return DenseMapInfo::getHashValue(Key.type) ^ Key.val.getHashValue(); } static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) { return LHS == RHS; } static bool isPod() { return false; } }; struct DenseMapAPFloatKeyInfo { struct KeyTy { APFloat val; KeyTy(const APFloat& V) : val(V){} KeyTy(const KeyTy& that) : val(that.val) {} bool operator==(const KeyTy& that) const { return this->val.bitwiseIsEqual(that.val); } bool operator!=(const KeyTy& that) const { return !this->operator==(that); } }; static inline KeyTy getEmptyKey() { return KeyTy(APFloat(APFloat::Bogus,1)); } static inline KeyTy getTombstoneKey() { return KeyTy(APFloat(APFloat::Bogus,2)); } static unsigned getHashValue(const KeyTy &Key) { return Key.val.getHashValue(); } static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) { return LHS == RHS; } static bool isPod() { return false; } }; class LLVMContextImpl { sys::SmartRWMutex ConstantsLock; typedef DenseMap IntMapTy; IntMapTy IntConstants; typedef DenseMap FPMapTy; FPMapTy FPConstants; StringMap MDStringCache; FoldingSet MDNodeSet; ValueMap AggZeroConstants; typedef ValueMap, ArrayType, ConstantArray, true /*largekey*/> ArrayConstantsTy; ArrayConstantsTy ArrayConstants; typedef ValueMap, StructType, ConstantStruct, true /*largekey*/> StructConstantsTy; StructConstantsTy StructConstants; typedef ValueMap, VectorType, ConstantVector> VectorConstantsTy; VectorConstantsTy VectorConstants; LLVMContext &Context; ConstantInt *TheTrueVal; ConstantInt *TheFalseVal; LLVMContextImpl(); LLVMContextImpl(const LLVMContextImpl&); friend class ConstantInt; friend class ConstantFP; friend class ConstantStruct; friend class ConstantArray; friend class ConstantVector; public: LLVMContextImpl(LLVMContext &C); MDString *getMDString(const char *StrBegin, unsigned StrLength); MDNode *getMDNode(Value*const* Vals, unsigned NumVals); ConstantAggregateZero *getConstantAggregateZero(const Type *Ty); ConstantInt *getTrue() { if (TheTrueVal) return TheTrueVal; else return (TheTrueVal = ConstantInt::get(IntegerType::get(1), 1)); } ConstantInt *getFalse() { if (TheFalseVal) return TheFalseVal; else return (TheFalseVal = ConstantInt::get(IntegerType::get(1), 0)); } void erase(MDString *M); void erase(MDNode *M); void erase(ConstantAggregateZero *Z); }; } #endif