//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the AsmPrinter class. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/Assembly/Writer.h" #include "llvm/DerivedTypes.h" #include "llvm/Constants.h" #include "llvm/Module.h" #include "llvm/CodeGen/Collector.h" #include "llvm/CodeGen/CollectorMetadata.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Mangler.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Streams.h" #include "llvm/Target/TargetAsmInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/ADT/SmallPtrSet.h" #include using namespace llvm; static cl::opt AsmVerbose("asm-verbose", cl::Hidden, cl::desc("Add comments to directives.")); char AsmPrinter::ID = 0; AsmPrinter::AsmPrinter(std::ostream &o, TargetMachine &tm, const TargetAsmInfo *T) : MachineFunctionPass((intptr_t)&ID), FunctionNumber(0), O(o), TM(tm), TAI(T), TRI(tm.getRegisterInfo()), IsInTextSection(false) {} std::string AsmPrinter::getSectionForFunction(const Function &F) const { return TAI->getTextSection(); } /// SwitchToTextSection - Switch to the specified text section of the executable /// if we are not already in it! /// void AsmPrinter::SwitchToTextSection(const char *NewSection, const GlobalValue *GV) { std::string NS; if (GV && GV->hasSection()) NS = TAI->getSwitchToSectionDirective() + GV->getSection(); else NS = NewSection; // If we're already in this section, we're done. if (CurrentSection == NS) return; // Close the current section, if applicable. if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; CurrentSection = NS; if (!CurrentSection.empty()) O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n'; IsInTextSection = true; } /// SwitchToDataSection - Switch to the specified data section of the executable /// if we are not already in it! /// void AsmPrinter::SwitchToDataSection(const char *NewSection, const GlobalValue *GV) { std::string NS; if (GV && GV->hasSection()) NS = TAI->getSwitchToSectionDirective() + GV->getSection(); else NS = NewSection; // If we're already in this section, we're done. if (CurrentSection == NS) return; // Close the current section, if applicable. if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n'; CurrentSection = NS; if (!CurrentSection.empty()) O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n'; IsInTextSection = false; } void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { MachineFunctionPass::getAnalysisUsage(AU); AU.addRequired(); } bool AsmPrinter::doInitialization(Module &M) { Mang = new Mangler(M, TAI->getGlobalPrefix()); CollectorModuleMetadata *CMM = getAnalysisToUpdate(); assert(CMM && "AsmPrinter didn't require CollectorModuleMetadata?"); for (CollectorModuleMetadata::iterator I = CMM->begin(), E = CMM->end(); I != E; ++I) (*I)->beginAssembly(O, *this, *TAI); if (!M.getModuleInlineAsm().empty()) O << TAI->getCommentString() << " Start of file scope inline assembly\n" << M.getModuleInlineAsm() << '\n' << TAI->getCommentString() << " End of file scope inline assembly\n"; SwitchToDataSection(""); // Reset back to no section. MMI = getAnalysisToUpdate(); if (MMI) MMI->AnalyzeModule(M); return false; } bool AsmPrinter::doFinalization(Module &M) { if (TAI->getWeakRefDirective()) { if (!ExtWeakSymbols.empty()) SwitchToDataSection(""); for (std::set::iterator i = ExtWeakSymbols.begin(), e = ExtWeakSymbols.end(); i != e; ++i) { const GlobalValue *GV = *i; std::string Name = Mang->getValueName(GV); O << TAI->getWeakRefDirective() << Name << '\n'; } } if (TAI->getSetDirective()) { if (!M.alias_empty()) SwitchToTextSection(TAI->getTextSection()); O << '\n'; for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); I!=E; ++I) { std::string Name = Mang->getValueName(I); std::string Target; const GlobalValue *GV = cast(I->getAliasedGlobal()); Target = Mang->getValueName(GV); if (I->hasExternalLinkage() || !TAI->getWeakRefDirective()) O << "\t.globl\t" << Name << '\n'; else if (I->hasWeakLinkage()) O << TAI->getWeakRefDirective() << Name << '\n'; else if (!I->hasInternalLinkage()) assert(0 && "Invalid alias linkage"); if (I->hasHiddenVisibility()) { if (const char *Directive = TAI->getHiddenDirective()) O << Directive << Name << '\n'; } else if (I->hasProtectedVisibility()) { if (const char *Directive = TAI->getProtectedDirective()) O << Directive << Name << '\n'; } O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; // If the aliasee has external weak linkage it can be referenced only by // alias itself. In this case it can be not in ExtWeakSymbols list. Emit // weak reference in such case. if (GV->hasExternalWeakLinkage()) { if (TAI->getWeakRefDirective()) O << TAI->getWeakRefDirective() << Target << '\n'; else O << "\t.globl\t" << Target << '\n'; } } } CollectorModuleMetadata *CMM = getAnalysisToUpdate(); assert(CMM && "AsmPrinter didn't require CollectorModuleMetadata?"); for (CollectorModuleMetadata::iterator I = CMM->end(), E = CMM->begin(); I != E; ) (*--I)->finishAssembly(O, *this, *TAI); // If we don't have any trampolines, then we don't require stack memory // to be executable. Some targets have a directive to declare this. Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) if (TAI->getNonexecutableStackDirective()) O << TAI->getNonexecutableStackDirective() << '\n'; delete Mang; Mang = 0; return false; } std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) { assert(MF && "No machine function?"); std::string Name = MF->getFunction()->getName(); if (Name.empty()) Name = Mang->getValueName(MF->getFunction()); return Mang->makeNameProper(Name + ".eh", TAI->getGlobalPrefix()); } void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { // What's my mangled name? CurrentFnName = Mang->getValueName(MF.getFunction()); IncrementFunctionNumber(); } /// EmitConstantPool - Print to the current output stream assembly /// representations of the constants in the constant pool MCP. This is /// used to print out constants which have been "spilled to memory" by /// the code generator. /// void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { const std::vector &CP = MCP->getConstants(); if (CP.empty()) return; // Some targets require 4-, 8-, and 16- byte constant literals to be placed // in special sections. std::vector > FourByteCPs; std::vector > EightByteCPs; std::vector > SixteenByteCPs; std::vector > OtherCPs; std::vector > TargetCPs; for (unsigned i = 0, e = CP.size(); i != e; ++i) { MachineConstantPoolEntry CPE = CP[i]; const Type *Ty = CPE.getType(); if (TAI->getFourByteConstantSection() && TM.getTargetData()->getABITypeSize(Ty) == 4) FourByteCPs.push_back(std::make_pair(CPE, i)); else if (TAI->getEightByteConstantSection() && TM.getTargetData()->getABITypeSize(Ty) == 8) EightByteCPs.push_back(std::make_pair(CPE, i)); else if (TAI->getSixteenByteConstantSection() && TM.getTargetData()->getABITypeSize(Ty) == 16) SixteenByteCPs.push_back(std::make_pair(CPE, i)); else OtherCPs.push_back(std::make_pair(CPE, i)); } unsigned Alignment = MCP->getConstantPoolAlignment(); EmitConstantPool(Alignment, TAI->getFourByteConstantSection(), FourByteCPs); EmitConstantPool(Alignment, TAI->getEightByteConstantSection(), EightByteCPs); EmitConstantPool(Alignment, TAI->getSixteenByteConstantSection(), SixteenByteCPs); EmitConstantPool(Alignment, TAI->getConstantPoolSection(), OtherCPs); } void AsmPrinter::EmitConstantPool(unsigned Alignment, const char *Section, std::vector > &CP) { if (CP.empty()) return; SwitchToDataSection(Section); EmitAlignment(Alignment); for (unsigned i = 0, e = CP.size(); i != e; ++i) { O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' << CP[i].second << ":\t\t\t\t\t" << TAI->getCommentString() << ' '; WriteTypeSymbolic(O, CP[i].first.getType(), 0) << '\n'; if (CP[i].first.isMachineConstantPoolEntry()) EmitMachineConstantPoolValue(CP[i].first.Val.MachineCPVal); else EmitGlobalConstant(CP[i].first.Val.ConstVal); if (i != e-1) { const Type *Ty = CP[i].first.getType(); unsigned EntSize = TM.getTargetData()->getABITypeSize(Ty); unsigned ValEnd = CP[i].first.getOffset() + EntSize; // Emit inter-object padding for alignment. EmitZeros(CP[i+1].first.getOffset()-ValEnd); } } } /// EmitJumpTableInfo - Print assembly representations of the jump tables used /// by the current function to the current output stream. /// void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, MachineFunction &MF) { const std::vector &JT = MJTI->getJumpTables(); if (JT.empty()) return; bool IsPic = TM.getRelocationModel() == Reloc::PIC_; // Pick the directive to use to print the jump table entries, and switch to // the appropriate section. TargetLowering *LoweringInfo = TM.getTargetLowering(); const char* JumpTableDataSection = TAI->getJumpTableDataSection(); if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) || !JumpTableDataSection) { // In PIC mode, we need to emit the jump table to the same section as the // function body itself, otherwise the label differences won't make sense. // We should also do if the section name is NULL. const Function *F = MF.getFunction(); SwitchToTextSection(getSectionForFunction(*F).c_str(), F); } else { SwitchToDataSection(JumpTableDataSection); } EmitAlignment(Log2_32(MJTI->getAlignment())); for (unsigned i = 0, e = JT.size(); i != e; ++i) { const std::vector &JTBBs = JT[i].MBBs; // If this jump table was deleted, ignore it. if (JTBBs.empty()) continue; // For PIC codegen, if possible we want to use the SetDirective to reduce // the number of relocations the assembler will generate for the jump table. // Set directives are all printed before the jump table itself. SmallPtrSet EmittedSets; if (TAI->getSetDirective() && IsPic) for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) if (EmittedSets.insert(JTBBs[ii])) printPICJumpTableSetLabel(i, JTBBs[ii]); // On some targets (e.g. darwin) we want to emit two consequtive labels // before each jump table. The first label is never referenced, but tells // the assembler and linker the extents of the jump table object. The // second label is actually referenced by the code. if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix()) O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n"; O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << i << ":\n"; for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { printPICJumpTableEntry(MJTI, JTBBs[ii], i); O << '\n'; } } } void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, unsigned uid) const { bool IsPic = TM.getRelocationModel() == Reloc::PIC_; // Use JumpTableDirective otherwise honor the entry size from the jump table // info. const char *JTEntryDirective = TAI->getJumpTableDirective(); bool HadJTEntryDirective = JTEntryDirective != NULL; if (!HadJTEntryDirective) { JTEntryDirective = MJTI->getEntrySize() == 4 ? TAI->getData32bitsDirective() : TAI->getData64bitsDirective(); } O << JTEntryDirective << ' '; // If we have emitted set directives for the jump table entries, print // them rather than the entries themselves. If we're emitting PIC, then // emit the table entries as differences between two text section labels. // If we're emitting non-PIC code, then emit the entries as direct // references to the target basic blocks. if (IsPic) { if (TAI->getSetDirective()) { O << TAI->getPrivateGlobalPrefix() << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber(); } else { printBasicBlockLabel(MBB, false, false, false); // If the arch uses custom Jump Table directives, don't calc relative to // JT if (!HadJTEntryDirective) O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << uid; } } else { printBasicBlockLabel(MBB, false, false, false); } } /// EmitSpecialLLVMGlobal - Check to see if the specified global is a /// special global used by LLVM. If so, emit it and return true, otherwise /// do nothing and return false. bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { if (GV->getName() == "llvm.used") { if (TAI->getUsedDirective() != 0) // No need to emit this at all. EmitLLVMUsedList(GV->getInitializer()); return true; } // Ignore debug and non-emitted data. if (GV->getSection() == "llvm.metadata") return true; if (!GV->hasAppendingLinkage()) return false; assert(GV->hasInitializer() && "Not a special LLVM global!"); const TargetData *TD = TM.getTargetData(); unsigned Align = Log2_32(TD->getPointerPrefAlignment()); if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) { SwitchToDataSection(TAI->getStaticCtorsSection()); EmitAlignment(Align, 0); EmitXXStructorList(GV->getInitializer()); return true; } if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) { SwitchToDataSection(TAI->getStaticDtorsSection()); EmitAlignment(Align, 0); EmitXXStructorList(GV->getInitializer()); return true; } return false; } /// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each /// global in the specified llvm.used list as being used with this directive. void AsmPrinter::EmitLLVMUsedList(Constant *List) { const char *Directive = TAI->getUsedDirective(); // Should be an array of 'sbyte*'. ConstantArray *InitList = dyn_cast(List); if (InitList == 0) return; for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { O << Directive; EmitConstantValueOnly(InitList->getOperand(i)); O << '\n'; } } /// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the /// function pointers, ignoring the init priority. void AsmPrinter::EmitXXStructorList(Constant *List) { // Should be an array of '{ int, void ()* }' structs. The first value is the // init priority, which we ignore. if (!isa(List)) return; ConstantArray *InitList = cast(List); for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) if (ConstantStruct *CS = dyn_cast(InitList->getOperand(i))){ if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. if (CS->getOperand(1)->isNullValue()) return; // Found a null terminator, exit printing. // Emit the function pointer. EmitGlobalConstant(CS->getOperand(1)); } } /// getGlobalLinkName - Returns the asm/link name of of the specified /// global variable. Should be overridden by each target asm printer to /// generate the appropriate value. const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{ std::string LinkName; if (isa(GV)) { LinkName += TAI->getFunctionAddrPrefix(); LinkName += Mang->getValueName(GV); LinkName += TAI->getFunctionAddrSuffix(); } else { LinkName += TAI->getGlobalVarAddrPrefix(); LinkName += Mang->getValueName(GV); LinkName += TAI->getGlobalVarAddrSuffix(); } return LinkName; } /// EmitExternalGlobal - Emit the external reference to a global variable. /// Should be overridden if an indirect reference should be used. void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) { O << getGlobalLinkName(GV); } //===----------------------------------------------------------------------===// /// LEB 128 number encoding. /// PrintULEB128 - Print a series of hexidecimal values (separated by commas) /// representing an unsigned leb128 value. void AsmPrinter::PrintULEB128(unsigned Value) const { do { unsigned Byte = Value & 0x7f; Value >>= 7; if (Value) Byte |= 0x80; O << "0x" << std::hex << Byte << std::dec; if (Value) O << ", "; } while (Value); } /// SizeULEB128 - Compute the number of bytes required for an unsigned leb128 /// value. unsigned AsmPrinter::SizeULEB128(unsigned Value) { unsigned Size = 0; do { Value >>= 7; Size += sizeof(int8_t); } while (Value); return Size; } /// PrintSLEB128 - Print a series of hexidecimal values (separated by commas) /// representing a signed leb128 value. void AsmPrinter::PrintSLEB128(int Value) const { int Sign = Value >> (8 * sizeof(Value) - 1); bool IsMore; do { unsigned Byte = Value & 0x7f; Value >>= 7; IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; if (IsMore) Byte |= 0x80; O << "0x" << std::hex << Byte << std::dec; if (IsMore) O << ", "; } while (IsMore); } /// SizeSLEB128 - Compute the number of bytes required for a signed leb128 /// value. unsigned AsmPrinter::SizeSLEB128(int Value) { unsigned Size = 0; int Sign = Value >> (8 * sizeof(Value) - 1); bool IsMore; do { unsigned Byte = Value & 0x7f; Value >>= 7; IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; Size += sizeof(int8_t); } while (IsMore); return Size; } //===--------------------------------------------------------------------===// // Emission and print routines // /// PrintHex - Print a value as a hexidecimal value. /// void AsmPrinter::PrintHex(int Value) const { O << "0x" << std::hex << Value << std::dec; } /// EOL - Print a newline character to asm stream. If a comment is present /// then it will be printed first. Comments should not contain '\n'. void AsmPrinter::EOL() const { O << '\n'; } void AsmPrinter::EOL(const std::string &Comment) const { if (AsmVerbose && !Comment.empty()) { O << '\t' << TAI->getCommentString() << ' ' << Comment; } O << '\n'; } /// EmitULEB128Bytes - Emit an assembler byte data directive to compose an /// unsigned leb128 value. void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { if (TAI->hasLEB128()) { O << "\t.uleb128\t" << Value; } else { O << TAI->getData8bitsDirective(); PrintULEB128(Value); } } /// EmitSLEB128Bytes - print an assembler byte data directive to compose a /// signed leb128 value. void AsmPrinter::EmitSLEB128Bytes(int Value) const { if (TAI->hasLEB128()) { O << "\t.sleb128\t" << Value; } else { O << TAI->getData8bitsDirective(); PrintSLEB128(Value); } } /// EmitInt8 - Emit a byte directive and value. /// void AsmPrinter::EmitInt8(int Value) const { O << TAI->getData8bitsDirective(); PrintHex(Value & 0xFF); } /// EmitInt16 - Emit a short directive and value. /// void AsmPrinter::EmitInt16(int Value) const { O << TAI->getData16bitsDirective(); PrintHex(Value & 0xFFFF); } /// EmitInt32 - Emit a long directive and value. /// void AsmPrinter::EmitInt32(int Value) const { O << TAI->getData32bitsDirective(); PrintHex(Value); } /// EmitInt64 - Emit a long long directive and value. /// void AsmPrinter::EmitInt64(uint64_t Value) const { if (TAI->getData64bitsDirective()) { O << TAI->getData64bitsDirective(); PrintHex(Value); } else { if (TM.getTargetData()->isBigEndian()) { EmitInt32(unsigned(Value >> 32)); O << '\n'; EmitInt32(unsigned(Value)); } else { EmitInt32(unsigned(Value)); O << '\n'; EmitInt32(unsigned(Value >> 32)); } } } /// toOctal - Convert the low order bits of X into an octal digit. /// static inline char toOctal(int X) { return (X&7)+'0'; } /// printStringChar - Print a char, escaped if necessary. /// static void printStringChar(std::ostream &O, unsigned char C) { if (C == '"') { O << "\\\""; } else if (C == '\\') { O << "\\\\"; } else if (isprint(C)) { O << C; } else { switch(C) { case '\b': O << "\\b"; break; case '\f': O << "\\f"; break; case '\n': O << "\\n"; break; case '\r': O << "\\r"; break; case '\t': O << "\\t"; break; default: O << '\\'; O << toOctal(C >> 6); O << toOctal(C >> 3); O << toOctal(C >> 0); break; } } } /// EmitString - Emit a string with quotes and a null terminator. /// Special characters are emitted properly. /// \literal (Eg. '\t') \endliteral void AsmPrinter::EmitString(const std::string &String) const { const char* AscizDirective = TAI->getAscizDirective(); if (AscizDirective) O << AscizDirective; else O << TAI->getAsciiDirective(); O << '\"'; for (unsigned i = 0, N = String.size(); i < N; ++i) { unsigned char C = String[i]; printStringChar(O, C); } if (AscizDirective) O << '\"'; else O << "\\0\""; } /// EmitFile - Emit a .file directive. void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { O << "\t.file\t" << Number << " \""; for (unsigned i = 0, N = Name.size(); i < N; ++i) { unsigned char C = Name[i]; printStringChar(O, C); } O << '\"'; } //===----------------------------------------------------------------------===// // EmitAlignment - Emit an alignment directive to the specified power of // two boundary. For example, if you pass in 3 here, you will get an 8 // byte alignment. If a global value is specified, and if that global has // an explicit alignment requested, it will unconditionally override the // alignment request. However, if ForcedAlignBits is specified, this value // has final say: the ultimate alignment will be the max of ForcedAlignBits // and the alignment computed with NumBits and the global. // // The algorithm is: // Align = NumBits; // if (GV && GV->hasalignment) Align = GV->getalignment(); // Align = std::max(Align, ForcedAlignBits); // void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, unsigned ForcedAlignBits, bool UseFillExpr) const { if (GV && GV->getAlignment()) NumBits = Log2_32(GV->getAlignment()); NumBits = std::max(NumBits, ForcedAlignBits); if (NumBits == 0) return; // No need to emit alignment. if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits; O << TAI->getAlignDirective() << NumBits; unsigned FillValue = TAI->getTextAlignFillValue(); UseFillExpr &= IsInTextSection && FillValue; if (UseFillExpr) O << ",0x" << std::hex << FillValue << std::dec; O << '\n'; } /// EmitZeros - Emit a block of zeros. /// void AsmPrinter::EmitZeros(uint64_t NumZeros) const { if (NumZeros) { if (TAI->getZeroDirective()) { O << TAI->getZeroDirective() << NumZeros; if (TAI->getZeroDirectiveSuffix()) O << TAI->getZeroDirectiveSuffix(); O << '\n'; } else { for (; NumZeros; --NumZeros) O << TAI->getData8bitsDirective() << "0\n"; } } } // Print out the specified constant, without a storage class. Only the // constants valid in constant expressions can occur here. void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { if (CV->isNullValue() || isa(CV)) O << '0'; else if (const ConstantInt *CI = dyn_cast(CV)) { O << CI->getZExtValue(); } else if (const GlobalValue *GV = dyn_cast(CV)) { // This is a constant address for a global variable or function. Use the // name of the variable or function as the address value, possibly // decorating it with GlobalVarAddrPrefix/Suffix or // FunctionAddrPrefix/Suffix (these all default to "" ) if (isa(GV)) { O << TAI->getFunctionAddrPrefix() << Mang->getValueName(GV) << TAI->getFunctionAddrSuffix(); } else { O << TAI->getGlobalVarAddrPrefix() << Mang->getValueName(GV) << TAI->getGlobalVarAddrSuffix(); } } else if (const ConstantExpr *CE = dyn_cast(CV)) { const TargetData *TD = TM.getTargetData(); unsigned Opcode = CE->getOpcode(); switch (Opcode) { case Instruction::GetElementPtr: { // generate a symbolic expression for the byte address const Constant *ptrVal = CE->getOperand(0); SmallVector idxVec(CE->op_begin()+1, CE->op_end()); if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size())) { if (Offset) O << '('; EmitConstantValueOnly(ptrVal); if (Offset > 0) O << ") + " << Offset; else if (Offset < 0) O << ") - " << -Offset; } else { EmitConstantValueOnly(ptrVal); } break; } case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: assert(0 && "FIXME: Don't yet support this kind of constant cast expr"); break; case Instruction::BitCast: return EmitConstantValueOnly(CE->getOperand(0)); case Instruction::IntToPtr: { // Handle casts to pointers by changing them into casts to the appropriate // integer type. This promotes constant folding and simplifies this code. Constant *Op = CE->getOperand(0); Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/); return EmitConstantValueOnly(Op); } case Instruction::PtrToInt: { // Support only foldable casts to/from pointers that can be eliminated by // changing the pointer to the appropriately sized integer type. Constant *Op = CE->getOperand(0); const Type *Ty = CE->getType(); // We can emit the pointer value into this slot if the slot is an // integer slot greater or equal to the size of the pointer. if (Ty->isInteger() && TD->getABITypeSize(Ty) >= TD->getABITypeSize(Op->getType())) return EmitConstantValueOnly(Op); assert(0 && "FIXME: Don't yet support this kind of constant cast expr"); EmitConstantValueOnly(Op); break; } case Instruction::Add: case Instruction::Sub: case Instruction::And: case Instruction::Or: case Instruction::Xor: O << '('; EmitConstantValueOnly(CE->getOperand(0)); O << ')'; switch (Opcode) { case Instruction::Add: O << " + "; break; case Instruction::Sub: O << " - "; break; case Instruction::And: O << " & "; break; case Instruction::Or: O << " | "; break; case Instruction::Xor: O << " ^ "; break; default: break; } O << '('; EmitConstantValueOnly(CE->getOperand(1)); O << ')'; break; default: assert(0 && "Unsupported operator!"); } } else { assert(0 && "Unknown constant value!"); } } /// printAsCString - Print the specified array as a C compatible string, only if /// the predicate isString is true. /// static void printAsCString(std::ostream &O, const ConstantArray *CVA, unsigned LastElt) { assert(CVA->isString() && "Array is not string compatible!"); O << '\"'; for (unsigned i = 0; i != LastElt; ++i) { unsigned char C = (unsigned char)cast(CVA->getOperand(i))->getZExtValue(); printStringChar(O, C); } O << '\"'; } /// EmitString - Emit a zero-byte-terminated string constant. /// void AsmPrinter::EmitString(const ConstantArray *CVA) const { unsigned NumElts = CVA->getNumOperands(); if (TAI->getAscizDirective() && NumElts && cast(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { O << TAI->getAscizDirective(); printAsCString(O, CVA, NumElts-1); } else { O << TAI->getAsciiDirective(); printAsCString(O, CVA, NumElts); } O << '\n'; } /// EmitGlobalConstant - Print a general LLVM constant to the .s file. void AsmPrinter::EmitGlobalConstant(const Constant *CV) { const TargetData *TD = TM.getTargetData(); unsigned Size = TD->getABITypeSize(CV->getType()); if (CV->isNullValue() || isa(CV)) { EmitZeros(Size); return; } else if (const ConstantArray *CVA = dyn_cast(CV)) { if (CVA->isString()) { EmitString(CVA); } else { // Not a string. Print the values in successive locations for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) EmitGlobalConstant(CVA->getOperand(i)); } return; } else if (const ConstantStruct *CVS = dyn_cast(CV)) { // Print the fields in successive locations. Pad to align if needed! const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); uint64_t sizeSoFar = 0; for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { const Constant* field = CVS->getOperand(i); // Check if padding is needed and insert one or more 0s. uint64_t fieldSize = TD->getABITypeSize(field->getType()); uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) - cvsLayout->getElementOffset(i)) - fieldSize; sizeSoFar += fieldSize + padSize; // Now print the actual field value. EmitGlobalConstant(field); // Insert padding - this may include padding to increase the size of the // current field up to the ABI size (if the struct is not packed) as well // as padding to ensure that the next field starts at the right offset. EmitZeros(padSize); } assert(sizeSoFar == cvsLayout->getSizeInBytes() && "Layout of constant struct may be incorrect!"); return; } else if (const ConstantFP *CFP = dyn_cast(CV)) { // FP Constants are printed as integer constants to avoid losing // precision... if (CFP->getType() == Type::DoubleTy) { double Val = CFP->getValueAPF().convertToDouble(); // for comment only uint64_t i = CFP->getValueAPF().convertToAPInt().getZExtValue(); if (TAI->getData64bitsDirective()) O << TAI->getData64bitsDirective() << i << '\t' << TAI->getCommentString() << " double value: " << Val << '\n'; else if (TD->isBigEndian()) { O << TAI->getData32bitsDirective() << unsigned(i >> 32) << '\t' << TAI->getCommentString() << " double most significant word " << Val << '\n'; O << TAI->getData32bitsDirective() << unsigned(i) << '\t' << TAI->getCommentString() << " double least significant word " << Val << '\n'; } else { O << TAI->getData32bitsDirective() << unsigned(i) << '\t' << TAI->getCommentString() << " double least significant word " << Val << '\n'; O << TAI->getData32bitsDirective() << unsigned(i >> 32) << '\t' << TAI->getCommentString() << " double most significant word " << Val << '\n'; } return; } else if (CFP->getType() == Type::FloatTy) { float Val = CFP->getValueAPF().convertToFloat(); // for comment only O << TAI->getData32bitsDirective() << CFP->getValueAPF().convertToAPInt().getZExtValue() << '\t' << TAI->getCommentString() << " float " << Val << '\n'; return; } else if (CFP->getType() == Type::X86_FP80Ty) { // all long double variants are printed as hex // api needed to prevent premature destruction APInt api = CFP->getValueAPF().convertToAPInt(); const uint64_t *p = api.getRawData(); APFloat DoubleVal = CFP->getValueAPF(); DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven); if (TD->isBigEndian()) { O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48) << '\t' << TAI->getCommentString() << " long double most significant halfword of ~" << DoubleVal.convertToDouble() << '\n'; O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32) << '\t' << TAI->getCommentString() << " long double next halfword\n"; O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16) << '\t' << TAI->getCommentString() << " long double next halfword\n"; O << TAI->getData16bitsDirective() << uint16_t(p[0]) << '\t' << TAI->getCommentString() << " long double next halfword\n"; O << TAI->getData16bitsDirective() << uint16_t(p[1]) << '\t' << TAI->getCommentString() << " long double least significant halfword\n"; } else { O << TAI->getData16bitsDirective() << uint16_t(p[1]) << '\t' << TAI->getCommentString() << " long double least significant halfword of ~" << DoubleVal.convertToDouble() << '\n'; O << TAI->getData16bitsDirective() << uint16_t(p[0]) << '\t' << TAI->getCommentString() << " long double next halfword\n"; O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16) << '\t' << TAI->getCommentString() << " long double next halfword\n"; O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32) << '\t' << TAI->getCommentString() << " long double next halfword\n"; O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48) << '\t' << TAI->getCommentString() << " long double most significant halfword\n"; } EmitZeros(Size - TD->getTypeStoreSize(Type::X86_FP80Ty)); return; } else if (CFP->getType() == Type::PPC_FP128Ty) { // all long double variants are printed as hex // api needed to prevent premature destruction APInt api = CFP->getValueAPF().convertToAPInt(); const uint64_t *p = api.getRawData(); if (TD->isBigEndian()) { O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32) << '\t' << TAI->getCommentString() << " long double most significant word\n"; O << TAI->getData32bitsDirective() << uint32_t(p[0]) << '\t' << TAI->getCommentString() << " long double next word\n"; O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32) << '\t' << TAI->getCommentString() << " long double next word\n"; O << TAI->getData32bitsDirective() << uint32_t(p[1]) << '\t' << TAI->getCommentString() << " long double least significant word\n"; } else { O << TAI->getData32bitsDirective() << uint32_t(p[1]) << '\t' << TAI->getCommentString() << " long double least significant word\n"; O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32) << '\t' << TAI->getCommentString() << " long double next word\n"; O << TAI->getData32bitsDirective() << uint32_t(p[0]) << '\t' << TAI->getCommentString() << " long double next word\n"; O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32) << '\t' << TAI->getCommentString() << " long double most significant word\n"; } return; } else assert(0 && "Floating point constant type not handled"); } else if (CV->getType() == Type::Int64Ty) { if (const ConstantInt *CI = dyn_cast(CV)) { uint64_t Val = CI->getZExtValue(); if (TAI->getData64bitsDirective()) O << TAI->getData64bitsDirective() << Val << '\n'; else if (TD->isBigEndian()) { O << TAI->getData32bitsDirective() << unsigned(Val >> 32) << '\t' << TAI->getCommentString() << " Double-word most significant word " << Val << '\n'; O << TAI->getData32bitsDirective() << unsigned(Val) << '\t' << TAI->getCommentString() << " Double-word least significant word " << Val << '\n'; } else { O << TAI->getData32bitsDirective() << unsigned(Val) << '\t' << TAI->getCommentString() << " Double-word least significant word " << Val << '\n'; O << TAI->getData32bitsDirective() << unsigned(Val >> 32) << '\t' << TAI->getCommentString() << " Double-word most significant word " << Val << '\n'; } return; } } else if (const ConstantVector *CP = dyn_cast(CV)) { const VectorType *PTy = CP->getType(); for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) EmitGlobalConstant(CP->getOperand(I)); return; } const Type *type = CV->getType(); printDataDirective(type); EmitConstantValueOnly(CV); if (const ConstantInt *CI = dyn_cast(CV)) { O << "\t\t\t" << TAI->getCommentString() << " 0x" << CI->getValue().toStringUnsigned(16); } O << '\n'; } void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { // Target doesn't support this yet! abort(); } /// PrintSpecial - Print information related to the specified machine instr /// that is independent of the operand, and may be independent of the instr /// itself. This can be useful for portably encoding the comment character /// or other bits of target-specific knowledge into the asmstrings. The /// syntax used is ${:comment}. Targets can override this to add support /// for their own strange codes. void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) { if (!strcmp(Code, "private")) { O << TAI->getPrivateGlobalPrefix(); } else if (!strcmp(Code, "comment")) { O << TAI->getCommentString(); } else if (!strcmp(Code, "uid")) { // Assign a unique ID to this machine instruction. static const MachineInstr *LastMI = 0; static const Function *F = 0; static unsigned Counter = 0U-1; // Comparing the address of MI isn't sufficient, because machineinstrs may // be allocated to the same address across functions. const Function *ThisF = MI->getParent()->getParent()->getFunction(); // If this is a new machine instruction, bump the counter. if (LastMI != MI || F != ThisF) { ++Counter; LastMI = MI; F = ThisF; } O << Counter; } else { cerr << "Unknown special formatter '" << Code << "' for machine instr: " << *MI; exit(1); } } /// printInlineAsm - This method formats and prints the specified machine /// instruction that is an inline asm. void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { unsigned NumOperands = MI->getNumOperands(); // Count the number of register definitions. unsigned NumDefs = 0; for (; MI->getOperand(NumDefs).isRegister() && MI->getOperand(NumDefs).isDef(); ++NumDefs) assert(NumDefs != NumOperands-1 && "No asm string?"); assert(MI->getOperand(NumDefs).isExternalSymbol() && "No asm string?"); // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); // If this asmstr is empty, just print the #APP/#NOAPP markers. // These are useful to see where empty asm's wound up. if (AsmStr[0] == 0) { O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n'; return; } O << TAI->getInlineAsmStart() << "\n\t"; // The variant of the current asmprinter. int AsmPrinterVariant = TAI->getAssemblerDialect(); int CurVariant = -1; // The number of the {.|.|.} region we are in. const char *LastEmitted = AsmStr; // One past the last character emitted. while (*LastEmitted) { switch (*LastEmitted) { default: { // Not a special case, emit the string section literally. const char *LiteralEnd = LastEmitted+1; while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') ++LiteralEnd; if (CurVariant == -1 || CurVariant == AsmPrinterVariant) O.write(LastEmitted, LiteralEnd-LastEmitted); LastEmitted = LiteralEnd; break; } case '\n': ++LastEmitted; // Consume newline character. O << '\n'; // Indent code with newline. break; case '$': { ++LastEmitted; // Consume '$' character. bool Done = true; // Handle escapes. switch (*LastEmitted) { default: Done = false; break; case '$': // $$ -> $ if (CurVariant == -1 || CurVariant == AsmPrinterVariant) O << '$'; ++LastEmitted; // Consume second '$' character. break; case '(': // $( -> same as GCC's { character. ++LastEmitted; // Consume '(' character. if (CurVariant != -1) { cerr << "Nested variants found in inline asm string: '" << AsmStr << "'\n"; exit(1); } CurVariant = 0; // We're in the first variant now. break; case '|': ++LastEmitted; // consume '|' character. if (CurVariant == -1) { cerr << "Found '|' character outside of variant in inline asm " << "string: '" << AsmStr << "'\n"; exit(1); } ++CurVariant; // We're in the next variant. break; case ')': // $) -> same as GCC's } char. ++LastEmitted; // consume ')' character. if (CurVariant == -1) { cerr << "Found '}' character outside of variant in inline asm " << "string: '" << AsmStr << "'\n"; exit(1); } CurVariant = -1; break; } if (Done) break; bool HasCurlyBraces = false; if (*LastEmitted == '{') { // ${variable} ++LastEmitted; // Consume '{' character. HasCurlyBraces = true; } const char *IDStart = LastEmitted; char *IDEnd; errno = 0; long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { cerr << "Bad $ operand number in inline asm string: '" << AsmStr << "'\n"; exit(1); } LastEmitted = IDEnd; char Modifier[2] = { 0, 0 }; if (HasCurlyBraces) { // If we have curly braces, check for a modifier character. This // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. if (*LastEmitted == ':') { ++LastEmitted; // Consume ':' character. if (*LastEmitted == 0) { cerr << "Bad ${:} expression in inline asm string: '" << AsmStr << "'\n"; exit(1); } Modifier[0] = *LastEmitted; ++LastEmitted; // Consume modifier character. } if (*LastEmitted != '}') { cerr << "Bad ${} expression in inline asm string: '" << AsmStr << "'\n"; exit(1); } ++LastEmitted; // Consume '}' character. } if ((unsigned)Val >= NumOperands-1) { cerr << "Invalid $ operand number in inline asm string: '" << AsmStr << "'\n"; exit(1); } // Okay, we finally have a value number. Ask the target to print this // operand! if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { unsigned OpNo = 1; bool Error = false; // Scan to find the machine operand number for the operand. for (; Val; --Val) { if (OpNo >= MI->getNumOperands()) break; unsigned OpFlags = MI->getOperand(OpNo).getImm(); OpNo += (OpFlags >> 3) + 1; } if (OpNo >= MI->getNumOperands()) { Error = true; } else { unsigned OpFlags = MI->getOperand(OpNo).getImm(); ++OpNo; // Skip over the ID number. if (Modifier[0]=='l') // labels are target independent printBasicBlockLabel(MI->getOperand(OpNo).getMBB(), false, false, false); else { AsmPrinter *AP = const_cast(this); if ((OpFlags & 7) == 4 /*ADDR MODE*/) { Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, Modifier[0] ? Modifier : 0); } else { Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, Modifier[0] ? Modifier : 0); } } } if (Error) { cerr << "Invalid operand found in inline asm: '" << AsmStr << "'\n"; MI->dump(); exit(1); } } break; } } } O << "\n\t" << TAI->getInlineAsmEnd() << '\n'; } /// printImplicitDef - This method prints the specified machine instruction /// that is an implicit def. void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { O << '\t' << TAI->getCommentString() << " implicit-def: " << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n'; } /// printLabel - This method prints a local label used by debug and /// exception handling tables. void AsmPrinter::printLabel(const MachineInstr *MI) const { O << TAI->getPrivateGlobalPrefix() << "label" << MI->getOperand(0).getImm() << ":\n"; } void AsmPrinter::printLabel(unsigned Id) const { O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n"; } /// printDeclare - This method prints a local variable declaration used by /// debug tables. /// FIXME: It doesn't really print anything rather it inserts a DebugVariable /// entry into dwarf table. void AsmPrinter::printDeclare(const MachineInstr *MI) const { int FI = MI->getOperand(0).getIndex(); GlobalValue *GV = MI->getOperand(1).getGlobal(); MMI->RecordVariable(GV, FI); } /// PrintAsmOperand - Print the specified operand of MI, an INLINEASM /// instruction, using the specified assembler variant. Targets should /// overried this to format as appropriate. bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode) { // Target doesn't support this yet! return true; } bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode) { // Target doesn't support this yet! return true; } /// printBasicBlockLabel - This method prints the label for the specified /// MachineBasicBlock void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB, bool printAlign, bool printColon, bool printComment) const { if (printAlign) { unsigned Align = MBB->getAlignment(); if (Align) EmitAlignment(Log2_32(Align)); } O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_' << MBB->getNumber(); if (printColon) O << ':'; if (printComment && MBB->getBasicBlock()) O << '\t' << TAI->getCommentString() << ' ' << MBB->getBasicBlock()->getName(); } /// printPICJumpTableSetLabel - This method prints a set label for the /// specified MachineBasicBlock for a jumptable entry. void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, const MachineBasicBlock *MBB) const { if (!TAI->getSetDirective()) return; O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; printBasicBlockLabel(MBB, false, false, false); O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << uid << '\n'; } void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, const MachineBasicBlock *MBB) const { if (!TAI->getSetDirective()) return; O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() << getFunctionNumber() << '_' << uid << '_' << uid2 << "_set_" << MBB->getNumber() << ','; printBasicBlockLabel(MBB, false, false, false); O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << uid << '_' << uid2 << '\n'; } /// printDataDirective - This method prints the asm directive for the /// specified type. void AsmPrinter::printDataDirective(const Type *type) { const TargetData *TD = TM.getTargetData(); switch (type->getTypeID()) { case Type::IntegerTyID: { unsigned BitWidth = cast(type)->getBitWidth(); if (BitWidth <= 8) O << TAI->getData8bitsDirective(); else if (BitWidth <= 16) O << TAI->getData16bitsDirective(); else if (BitWidth <= 32) O << TAI->getData32bitsDirective(); else if (BitWidth <= 64) { assert(TAI->getData64bitsDirective() && "Target cannot handle 64-bit constant exprs!"); O << TAI->getData64bitsDirective(); } break; } case Type::PointerTyID: if (TD->getPointerSize() == 8) { assert(TAI->getData64bitsDirective() && "Target cannot handle 64-bit pointer exprs!"); O << TAI->getData64bitsDirective(); } else { O << TAI->getData32bitsDirective(); } break; case Type::FloatTyID: case Type::DoubleTyID: case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: assert (0 && "Should have already output floating point constant."); default: assert (0 && "Can't handle printing this type of thing"); break; } } void AsmPrinter::printSuffixedName(std::string &Name, const char* Suffix) { if (Name[0]=='\"') O << '\"' << TAI->getPrivateGlobalPrefix() << Name.substr(1, Name.length()-2) << Suffix << '\"'; else O << TAI->getPrivateGlobalPrefix() << Name << Suffix; }