//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Peephole optimize the CFG. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/Local.h" #include "llvm/Constant.h" #include "llvm/Intrinsics.h" #include "llvm/iPHINode.h" #include "llvm/iTerminators.h" #include "llvm/iOther.h" #include "llvm/Support/CFG.h" #include #include // PropagatePredecessors - This gets "Succ" ready to have the predecessors from // "BB". This is a little tricky because "Succ" has PHI nodes, which need to // have extra slots added to them to hold the merge edges from BB's // predecessors, and BB itself might have had PHI nodes in it. This function // returns true (failure) if the Succ BB already has a predecessor that is a // predecessor of BB and incoming PHI arguments would not be discernible. // // Assumption: Succ is the single successor for BB. // static bool PropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); if (!isa(Succ->front())) return false; // We can make the transformation, no problem. // If there is more than one predecessor, and there are PHI nodes in // the successor, then we need to add incoming edges for the PHI nodes // const std::vector BBPreds(pred_begin(BB), pred_end(BB)); // Check to see if one of the predecessors of BB is already a predecessor of // Succ. If so, we cannot do the transformation if there are any PHI nodes // with incompatible values coming in from the two edges! // for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); PI != PE; ++PI) if (find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) { // Loop over all of the PHI nodes checking to see if there are // incompatible values coming in. for (BasicBlock::iterator I = Succ->begin(); PHINode *PN = dyn_cast(I); ++I) { // Loop up the entries in the PHI node for BB and for *PI if the values // coming in are non-equal, we cannot merge these two blocks (instead we // should insert a conditional move or something, then merge the // blocks). int Idx1 = PN->getBasicBlockIndex(BB); int Idx2 = PN->getBasicBlockIndex(*PI); assert(Idx1 != -1 && Idx2 != -1 && "Didn't have entries for my predecessors??"); if (PN->getIncomingValue(Idx1) != PN->getIncomingValue(Idx2)) return true; // Values are not equal... } } // Loop over all of the PHI nodes in the successor BB for (BasicBlock::iterator I = Succ->begin(); PHINode *PN = dyn_cast(I); ++I) { Value *OldVal = PN->removeIncomingValue(BB, false); assert(OldVal && "No entry in PHI for Pred BB!"); // If this incoming value is one of the PHI nodes in BB... if (isa(OldVal) && cast(OldVal)->getParent() == BB) { PHINode *OldValPN = cast(OldVal); for (std::vector::const_iterator PredI = BBPreds.begin(), End = BBPreds.end(); PredI != End; ++PredI) { PN->addIncoming(OldValPN->getIncomingValueForBlock(*PredI), *PredI); } } else { for (std::vector::const_iterator PredI = BBPreds.begin(), End = BBPreds.end(); PredI != End; ++PredI) { // Add an incoming value for each of the new incoming values... PN->addIncoming(OldVal, *PredI); } } } return false; } // SimplifyCFG - This function is used to do simplification of a CFG. For // example, it adjusts branches to branches to eliminate the extra hop, it // eliminates unreachable basic blocks, and does other "peephole" optimization // of the CFG. It returns true if a modification was made. // // WARNING: The entry node of a function may not be simplified. // bool SimplifyCFG(BasicBlock *BB) { bool Changed = false; Function *M = BB->getParent(); assert(BB && BB->getParent() && "Block not embedded in function!"); assert(BB->getTerminator() && "Degenerate basic block encountered!"); assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!"); // Check to see if the first instruction in this block is just an // 'llvm.unwind'. If so, replace any invoke instructions which use this as an // exception destination with call instructions. // if (UnwindInst *UI = dyn_cast(BB->getTerminator())) if (BB->begin() == BasicBlock::iterator(UI)) { // Empty block? std::vector Preds(pred_begin(BB), pred_end(BB)); while (!Preds.empty()) { BasicBlock *Pred = Preds.back(); if (InvokeInst *II = dyn_cast(Pred->getTerminator())) if (II->getExceptionalDest() == BB) { // Insert a new branch instruction before the invoke, because this // is now a fall through... BranchInst *BI = new BranchInst(II->getNormalDest(), II); Pred->getInstList().remove(II); // Take out of symbol table // Insert the call now... std::vector Args(II->op_begin()+3, II->op_end()); CallInst *CI = new CallInst(II->getCalledValue(), Args, II->getName(), BI); // If the invoke produced a value, the Call now does instead II->replaceAllUsesWith(CI); delete II; Changed = true; } Preds.pop_back(); } } // Remove basic blocks that have no predecessors... which are unreachable. if (pred_begin(BB) == pred_end(BB) && !BB->hasConstantReferences()) { //cerr << "Removing BB: \n" << BB; // Loop through all of our successors and make sure they know that one // of their predecessors is going away. for_each(succ_begin(BB), succ_end(BB), std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB)); while (!BB->empty()) { Instruction &I = BB->back(); // If this instruction is used, replace uses with an arbitrary // constant value. Because control flow can't get here, we don't care // what we replace the value with. Note that since this block is // unreachable, and all values contained within it must dominate their // uses, that all uses will eventually be removed. if (!I.use_empty()) // Make all users of this instruction reference the constant instead I.replaceAllUsesWith(Constant::getNullValue(I.getType())); // Remove the instruction from the basic block BB->getInstList().pop_back(); } M->getBasicBlockList().erase(BB); return true; } // Check to see if we can constant propagate this terminator instruction // away... Changed |= ConstantFoldTerminator(BB); // Check to see if this block has no non-phi instructions and only a single // successor. If so, replace references to this basic block with references // to the successor. succ_iterator SI(succ_begin(BB)); if (SI != succ_end(BB) && ++SI == succ_end(BB)) { // One succ? BasicBlock::iterator BBI = BB->begin(); // Skip over phi nodes... while (isa(*BBI)) ++BBI; if (BBI->isTerminator()) { // Terminator is the only non-phi instruction! BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor if (Succ != BB) { // Arg, don't hurt infinite loops! // If our successor has PHI nodes, then we need to update them to // include entries for BB's predecessors, not for BB itself. // Be careful though, if this transformation fails (returns true) then // we cannot do this transformation! // if (!PropagatePredecessorsForPHIs(BB, Succ)) { //cerr << "Killing Trivial BB: \n" << BB; std::string OldName = BB->getName(); std::vector OldSuccPreds(pred_begin(Succ), pred_end(Succ)); // Move all PHI nodes in BB to Succ if they are alive, otherwise // delete them. while (PHINode *PN = dyn_cast(&BB->front())) if (PN->use_empty()) BB->getInstList().erase(BB->begin()); // Nuke instruction... else { // The instruction is alive, so this means that Succ must have // *ONLY* had BB as a predecessor, and the PHI node is still valid // now. Simply move it into Succ, because we know that BB // strictly dominated Succ. BB->getInstList().remove(BB->begin()); Succ->getInstList().push_front(PN); // We need to add new entries for the PHI node to account for // predecessors of Succ that the PHI node does not take into // account. At this point, since we know that BB dominated succ, // this means that we should any newly added incoming edges should // use the PHI node as the value for these edges, because they are // loop back edges. for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i) if (OldSuccPreds[i] != BB) PN->addIncoming(PN, OldSuccPreds[i]); } // Everything that jumped to BB now goes to Succ... BB->replaceAllUsesWith(Succ); // Delete the old basic block... M->getBasicBlockList().erase(BB); if (!OldName.empty() && !Succ->hasName()) // Transfer name if we can Succ->setName(OldName); //cerr << "Function after removal: \n" << M; return true; } } } } // Merge basic blocks into their predecessor if there is only one distinct // pred, and if there is only one distinct successor of the predecessor, and // if there are no PHI nodes. // if (!BB->hasConstantReferences()) { pred_iterator PI(pred_begin(BB)), PE(pred_end(BB)); BasicBlock *OnlyPred = *PI++; for (; PI != PE; ++PI) // Search all predecessors, see if they are all same if (*PI != OnlyPred) { OnlyPred = 0; // There are multiple different predecessors... break; } BasicBlock *OnlySucc = 0; if (OnlyPred && OnlyPred != BB && // Don't break self loops OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) { // Check to see if there is only one distinct successor... succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred)); OnlySucc = BB; for (; SI != SE; ++SI) if (*SI != OnlySucc) { OnlySucc = 0; // There are multiple distinct successors! break; } } if (OnlySucc) { //cerr << "Merging: " << BB << "into: " << OnlyPred; TerminatorInst *Term = OnlyPred->getTerminator(); // Resolve any PHI nodes at the start of the block. They are all // guaranteed to have exactly one entry if they exist, unless there are // multiple duplicate (but guaranteed to be equal) entries for the // incoming edges. This occurs when there are multiple edges from // OnlyPred to OnlySucc. // while (PHINode *PN = dyn_cast(&BB->front())) { PN->replaceAllUsesWith(PN->getIncomingValue(0)); BB->getInstList().pop_front(); // Delete the phi node... } // Delete the unconditional branch from the predecessor... OnlyPred->getInstList().pop_back(); // Move all definitions in the successor to the predecessor... OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); // Make all PHI nodes that referred to BB now refer to Pred as their // source... BB->replaceAllUsesWith(OnlyPred); std::string OldName = BB->getName(); // Erase basic block from the function... M->getBasicBlockList().erase(BB); // Inherit predecessors name if it exists... if (!OldName.empty() && !OnlyPred->hasName()) OnlyPred->setName(OldName); return true; } } return Changed; }