//===- Win32/Program.cpp - Win32 Program Implementation ------- -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provides the Win32 specific implementation of the Program class. // //===----------------------------------------------------------------------===// #include "Windows.h" #include #include #include #include //===----------------------------------------------------------------------===// //=== WARNING: Implementation here must contain only Win32 specific code //=== and must not be UNIX code //===----------------------------------------------------------------------===// namespace { struct Win32ProcessInfo { HANDLE hProcess; DWORD dwProcessId; }; } namespace llvm { using namespace sys; Program::Program() : Data_(0) {} Program::~Program() { if (Data_) { Win32ProcessInfo* wpi = reinterpret_cast(Data_); CloseHandle(wpi->hProcess); delete wpi; Data_ = 0; } } unsigned Program::GetPid() const { Win32ProcessInfo* wpi = reinterpret_cast(Data_); return wpi->dwProcessId; } // This function just uses the PATH environment variable to find the program. Path Program::FindProgramByName(const std::string& progName) { // Check some degenerate cases if (progName.length() == 0) // no program return Path(); Path temp; if (!temp.set(progName)) // invalid name return Path(); // Return paths with slashes verbatim. if (progName.find('\\') != std::string::npos || progName.find('/') != std::string::npos) return temp; // At this point, the file name is valid and does not contain slashes. // Let Windows search for it. char buffer[MAX_PATH]; char *dummy = NULL; DWORD len = SearchPath(NULL, progName.c_str(), ".exe", MAX_PATH, buffer, &dummy); // See if it wasn't found. if (len == 0) return Path(); // See if we got the entire path. if (len < MAX_PATH) return Path(buffer); // Buffer was too small; grow and retry. while (true) { char *b = reinterpret_cast(_alloca(len+1)); DWORD len2 = SearchPath(NULL, progName.c_str(), ".exe", len+1, b, &dummy); // It is unlikely the search failed, but it's always possible some file // was added or removed since the last search, so be paranoid... if (len2 == 0) return Path(); else if (len2 <= len) return Path(b); len = len2; } } static HANDLE RedirectIO(const Path *path, int fd, std::string* ErrMsg) { HANDLE h; if (path == 0) { DuplicateHandle(GetCurrentProcess(), (HANDLE)_get_osfhandle(fd), GetCurrentProcess(), &h, 0, TRUE, DUPLICATE_SAME_ACCESS); return h; } const char *fname; if (path->isEmpty()) fname = "NUL"; else fname = path->c_str(); SECURITY_ATTRIBUTES sa; sa.nLength = sizeof(sa); sa.lpSecurityDescriptor = 0; sa.bInheritHandle = TRUE; h = CreateFile(fname, fd ? GENERIC_WRITE : GENERIC_READ, FILE_SHARE_READ, &sa, fd == 0 ? OPEN_EXISTING : CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL); if (h == INVALID_HANDLE_VALUE) { MakeErrMsg(ErrMsg, std::string(fname) + ": Can't open file for " + (fd ? "input: " : "output: ")); } return h; } /// ArgNeedsQuotes - Check whether argument needs to be quoted when calling /// CreateProcess. static bool ArgNeedsQuotes(const char *Str) { return Str[0] == '\0' || strpbrk(Str, "\t \"&\'()*<>\\`^|") != 0; } /// ArgLenWithQuotes - Check whether argument needs to be quoted when calling /// CreateProcess and returns length of quoted arg with escaped quotes static unsigned int ArgLenWithQuotes(const char *Str) { unsigned int len = ArgNeedsQuotes(Str) ? 2 : 0; while (*Str != '\0') { if (*Str == '\"') ++len; ++len; ++Str; } return len; } bool Program::Execute(const Path& path, const char** args, const char** envp, const Path** redirects, unsigned memoryLimit, std::string* ErrMsg) { if (Data_) { Win32ProcessInfo* wpi = reinterpret_cast(Data_); CloseHandle(wpi->hProcess); delete wpi; Data_ = 0; } if (!path.canExecute()) { if (ErrMsg) *ErrMsg = "program not executable"; return false; } // Windows wants a command line, not an array of args, to pass to the new // process. We have to concatenate them all, while quoting the args that // have embedded spaces (or are empty). // First, determine the length of the command line. unsigned len = 0; for (unsigned i = 0; args[i]; i++) { len += ArgLenWithQuotes(args[i]) + 1; } // Now build the command line. char *command = reinterpret_cast(_alloca(len+1)); char *p = command; for (unsigned i = 0; args[i]; i++) { const char *arg = args[i]; bool needsQuoting = ArgNeedsQuotes(arg); if (needsQuoting) *p++ = '"'; while (*arg != '\0') { if (*arg == '\"') *p++ = '\\'; *p++ = *arg++; } if (needsQuoting) *p++ = '"'; *p++ = ' '; } *p = 0; // The pointer to the environment block for the new process. char *envblock = 0; if (envp) { // An environment block consists of a null-terminated block of // null-terminated strings. Convert the array of environment variables to // an environment block by concatenating them. // First, determine the length of the environment block. len = 0; for (unsigned i = 0; envp[i]; i++) len += strlen(envp[i]) + 1; // Now build the environment block. envblock = reinterpret_cast(_alloca(len+1)); p = envblock; for (unsigned i = 0; envp[i]; i++) { const char *ev = envp[i]; size_t len = strlen(ev) + 1; memcpy(p, ev, len); p += len; } *p = 0; } // Create a child process. STARTUPINFO si; memset(&si, 0, sizeof(si)); si.cb = sizeof(si); si.hStdInput = INVALID_HANDLE_VALUE; si.hStdOutput = INVALID_HANDLE_VALUE; si.hStdError = INVALID_HANDLE_VALUE; if (redirects) { si.dwFlags = STARTF_USESTDHANDLES; si.hStdInput = RedirectIO(redirects[0], 0, ErrMsg); if (si.hStdInput == INVALID_HANDLE_VALUE) { MakeErrMsg(ErrMsg, "can't redirect stdin"); return false; } si.hStdOutput = RedirectIO(redirects[1], 1, ErrMsg); if (si.hStdOutput == INVALID_HANDLE_VALUE) { CloseHandle(si.hStdInput); MakeErrMsg(ErrMsg, "can't redirect stdout"); return false; } if (redirects[1] && redirects[2] && *(redirects[1]) == *(redirects[2])) { // If stdout and stderr should go to the same place, redirect stderr // to the handle already open for stdout. DuplicateHandle(GetCurrentProcess(), si.hStdOutput, GetCurrentProcess(), &si.hStdError, 0, TRUE, DUPLICATE_SAME_ACCESS); } else { // Just redirect stderr si.hStdError = RedirectIO(redirects[2], 2, ErrMsg); if (si.hStdError == INVALID_HANDLE_VALUE) { CloseHandle(si.hStdInput); CloseHandle(si.hStdOutput); MakeErrMsg(ErrMsg, "can't redirect stderr"); return false; } } } PROCESS_INFORMATION pi; memset(&pi, 0, sizeof(pi)); fflush(stdout); fflush(stderr); BOOL rc = CreateProcess(path.c_str(), command, NULL, NULL, TRUE, 0, envblock, NULL, &si, &pi); DWORD err = GetLastError(); // Regardless of whether the process got created or not, we are done with // the handles we created for it to inherit. CloseHandle(si.hStdInput); CloseHandle(si.hStdOutput); CloseHandle(si.hStdError); // Now return an error if the process didn't get created. if (!rc) { SetLastError(err); MakeErrMsg(ErrMsg, std::string("Couldn't execute program '") + path.str() + "'"); return false; } Win32ProcessInfo* wpi = new Win32ProcessInfo; wpi->hProcess = pi.hProcess; wpi->dwProcessId = pi.dwProcessId; Data_ = wpi; // Make sure these get closed no matter what. AutoHandle hThread(pi.hThread); // Assign the process to a job if a memory limit is defined. AutoHandle hJob(0); if (memoryLimit != 0) { hJob = CreateJobObject(0, 0); bool success = false; if (hJob != 0) { JOBOBJECT_EXTENDED_LIMIT_INFORMATION jeli; memset(&jeli, 0, sizeof(jeli)); jeli.BasicLimitInformation.LimitFlags = JOB_OBJECT_LIMIT_PROCESS_MEMORY; jeli.ProcessMemoryLimit = uintptr_t(memoryLimit) * 1048576; if (SetInformationJobObject(hJob, JobObjectExtendedLimitInformation, &jeli, sizeof(jeli))) { if (AssignProcessToJobObject(hJob, pi.hProcess)) success = true; } } if (!success) { SetLastError(GetLastError()); MakeErrMsg(ErrMsg, std::string("Unable to set memory limit")); TerminateProcess(pi.hProcess, 1); WaitForSingleObject(pi.hProcess, INFINITE); return false; } } return true; } int Program::Wait(const Path &path, unsigned secondsToWait, std::string* ErrMsg) { if (Data_ == 0) { MakeErrMsg(ErrMsg, "Process not started!"); return -1; } Win32ProcessInfo* wpi = reinterpret_cast(Data_); HANDLE hProcess = wpi->hProcess; // Wait for the process to terminate. DWORD millisecondsToWait = INFINITE; if (secondsToWait > 0) millisecondsToWait = secondsToWait * 1000; if (WaitForSingleObject(hProcess, millisecondsToWait) == WAIT_TIMEOUT) { if (!TerminateProcess(hProcess, 1)) { MakeErrMsg(ErrMsg, "Failed to terminate timed-out program."); // -2 indicates a crash or timeout as opposed to failure to execute. return -2; } WaitForSingleObject(hProcess, INFINITE); } // Get its exit status. DWORD status; BOOL rc = GetExitCodeProcess(hProcess, &status); DWORD err = GetLastError(); if (!rc) { SetLastError(err); MakeErrMsg(ErrMsg, "Failed getting status for program."); // -2 indicates a crash or timeout as opposed to failure to execute. return -2; } return status & 0377; } bool Program::Kill(std::string* ErrMsg) { if (Data_ == 0) { MakeErrMsg(ErrMsg, "Process not started!"); return true; } Win32ProcessInfo* wpi = reinterpret_cast(Data_); HANDLE hProcess = wpi->hProcess; if (TerminateProcess(hProcess, 1) == 0) { MakeErrMsg(ErrMsg, "The process couldn't be killed!"); return true; } return false; } bool Program::ChangeStdinToBinary(){ int result = _setmode( _fileno(stdin), _O_BINARY ); return result == -1; } bool Program::ChangeStdoutToBinary(){ int result = _setmode( _fileno(stdout), _O_BINARY ); return result == -1; } bool Program::ChangeStderrToBinary(){ int result = _setmode( _fileno(stderr), _O_BINARY ); return result == -1; } }