//===- llvm/Analysis/InductionVariable.h - Induction variable ----*- C++ -*--=// // // This interface is used to identify and classify induction variables that // exist in the program. Induction variables must contain a PHI node that // exists in a loop header. Because of this, they are identified an managed by // this PHI node. // // Induction variables are classified into a type. Knowing that an induction // variable is of a specific type can constrain the values of the start and // step. For example, a SimpleLinear induction variable must have a start and // step values that are constants. // // Induction variables can be created with or without loop information. If no // loop information is available, induction variables cannot be recognized to be // more than SimpleLinear variables. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/InductionVariable.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/Expressions.h" #include "llvm/iPHINode.h" #include "llvm/InstrTypes.h" #include "llvm/Type.h" #include "llvm/Constants.h" #include "llvm/Assembly/Writer.h" static bool isLoopInvariant(const Value *V, const Loop *L) { if (isa(V) || isa(V) || isa(V)) return true; const Instruction *I = cast(V); const BasicBlock *BB = I->getParent(); return !L->contains(BB); } enum InductionVariable::iType InductionVariable::Classify(const Value *Start, const Value *Step, const Loop *L) { // Check for cannonical and simple linear expressions now... if (const ConstantInt *CStart = dyn_cast(Start)) if (const ConstantInt *CStep = dyn_cast(Step)) { if (CStart->equalsInt(0) && CStep->equalsInt(1)) return Cannonical; else return SimpleLinear; } // Without loop information, we cannot do any better, so bail now... if (L == 0) return Unknown; if (isLoopInvariant(Start, L) && isLoopInvariant(Step, L)) return Linear; return Unknown; } // Create an induction variable for the specified value. If it is a PHI, and // if it's recognizable, classify it and fill in instance variables. // InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo) { InductionType = Unknown; // Assume the worst Phi = P; // If the PHI node has more than two predecessors, we don't know how to // handle it. // if (Phi->getNumIncomingValues() != 2) return; // FIXME: Handle FP induction variables. if (Phi->getType() == Type::FloatTy || Phi->getType() == Type::DoubleTy) return; // If we have loop information, make sure that this PHI node is in the header // of a loop... // const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0; if (L && L->getHeader() != Phi->getParent()) return; Value *V1 = Phi->getIncomingValue(0); Value *V2 = Phi->getIncomingValue(1); if (L == 0) { // No loop information? Base everything on expression analysis ExprType E1 = ClassifyExpression(V1); ExprType E2 = ClassifyExpression(V2); if (E1.ExprTy > E2.ExprTy) // Make E1 be the simpler expression std::swap(E1, E2); // E1 must be a constant incoming value, and E2 must be a linear expression // with respect to the PHI node. // if (E1.ExprTy > ExprType::Constant || E2.ExprTy != ExprType::Linear || E2.Var != Phi) return; // Okay, we have found an induction variable. Save the start and step values const Type *ETy = Phi->getType(); if (isa(ETy)) ETy = Type::ULongTy; Start = (Value*)(E1.Offset ? E1.Offset : ConstantInt::get(ETy, 0)); Step = (Value*)(E2.Offset ? E2.Offset : ConstantInt::get(ETy, 0)); } else { // Okay, at this point, we know that we have loop information... // Make sure that V1 is the incoming value, and V2 is from the backedge of // the loop. if (L->contains(Phi->getIncomingBlock(0))) // Wrong order. Swap now. std::swap(V1, V2); Start = V1; // We know that Start has to be loop invariant... Step = 0; if (V2 == Phi) { // referencing the PHI directly? Must have zero step Step = Constant::getNullValue(Phi->getType()); } else if (BinaryOperator *I = dyn_cast(V2)) { // TODO: This could be much better... if (I->getOpcode() == Instruction::Add) { if (I->getOperand(0) == Phi) Step = I->getOperand(1); else if (I->getOperand(1) == Phi) Step = I->getOperand(0); } } if (Step == 0) { // Unrecognized step value... ExprType StepE = ClassifyExpression(V2); if (StepE.ExprTy != ExprType::Linear || StepE.Var != Phi) return; const Type *ETy = Phi->getType(); if (isa(ETy)) ETy = Type::ULongTy; Step = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy, 0)); } else { // We were able to get a step value, simplify with expr analysis ExprType StepE = ClassifyExpression(Step); if (StepE.ExprTy == ExprType::Linear && StepE.Offset == 0) { // No offset from variable? Grab the variable Step = StepE.Var; } else if (StepE.ExprTy == ExprType::Constant) { if (StepE.Offset) Step = (Value*)StepE.Offset; else Step = Constant::getNullValue(Step->getType()); const Type *ETy = Phi->getType(); if (isa(ETy)) ETy = Type::ULongTy; Step = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy,0)); } } } // Classify the induction variable type now... InductionType = InductionVariable::Classify(Start, Step, L); } void InductionVariable::print(std::ostream &o) const { switch (InductionType) { case InductionVariable::Cannonical: o << "Cannonical "; break; case InductionVariable::SimpleLinear: o << "SimpleLinear "; break; case InductionVariable::Linear: o << "Linear "; break; case InductionVariable::Unknown: o << "Unrecognized "; break; } o << "Induction Variable"; if (Phi) { WriteAsOperand(o, Phi); o << ":\n" << Phi; } else { o << "\n"; } if (InductionType == InductionVariable::Unknown) return; o << " Start ="; WriteAsOperand(o, Start); o << " Step =" ; WriteAsOperand(o, Step); o << "\n"; }