//===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements Loop Rotation Pass. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "loop-rotate" #include "llvm/Transforms/Scalar.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/SmallVector.h" using namespace llvm; #define MAX_HEADER_SIZE 16 STATISTIC(NumRotated, "Number of loops rotated"); namespace { class VISIBILITY_HIDDEN RenameData { public: RenameData(Instruction *O, Value *P, Instruction *H) : Original(O), PreHeader(P), Header(H) { } public: Instruction *Original; // Original instruction Value *PreHeader; // Original pre-header replacement Instruction *Header; // New header replacement }; class VISIBILITY_HIDDEN LoopRotate : public LoopPass { public: static char ID; // Pass ID, replacement for typeid LoopRotate() : LoopPass((intptr_t)&ID) {} // Rotate Loop L as many times as possible. Return true if // loop is rotated at least once. bool runOnLoop(Loop *L, LPPassManager &LPM); // LCSSA form makes instruction renaming easier. virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(LoopSimplifyID); AU.addPreservedID(LoopSimplifyID); AU.addRequiredID(LCSSAID); AU.addPreservedID(LCSSAID); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); } // Helper functions /// Do actual work bool rotateLoop(Loop *L, LPPassManager &LPM); /// Initialize local data void initialize(); /// Make sure all Exit block PHINodes have required incoming values. /// If incoming value is constant or defined outside the loop then /// PHINode may not have an entry for original pre-header. void updateExitBlock(); /// Return true if this instruction is used outside original header. bool usedOutsideOriginalHeader(Instruction *In); /// Find Replacement information for instruction. Return NULL if it is /// not available. const RenameData *findReplacementData(Instruction *I); /// After loop rotation, loop pre-header has multiple sucessors. /// Insert one forwarding basic block to ensure that loop pre-header /// has only one successor. void preserveCanonicalLoopForm(LPPassManager &LPM); private: Loop *L; BasicBlock *OrigHeader; BasicBlock *OrigPreHeader; BasicBlock *OrigLatch; BasicBlock *NewHeader; BasicBlock *Exit; LPPassManager *LPM_Ptr; SmallVector LoopHeaderInfo; }; } char LoopRotate::ID = 0; static RegisterPass X("loop-rotate", "Rotate Loops"); LoopPass *llvm::createLoopRotatePass() { return new LoopRotate(); } /// Rotate Loop L as many times as possible. Return true if /// loop is rotated at least once. bool LoopRotate::runOnLoop(Loop *Lp, LPPassManager &LPM) { bool RotatedOneLoop = false; initialize(); LPM_Ptr = &LPM; // One loop can be rotated multiple times. while (rotateLoop(Lp,LPM)) { RotatedOneLoop = true; initialize(); } return RotatedOneLoop; } /// Rotate loop LP. Return true if the loop is rotated. bool LoopRotate::rotateLoop(Loop *Lp, LPPassManager &LPM) { L = Lp; OrigHeader = L->getHeader(); OrigPreHeader = L->getLoopPreheader(); OrigLatch = L->getLoopLatch(); // If loop has only one block then there is not much to rotate. if (L->getBlocks().size() == 1) return false; assert (OrigHeader && OrigLatch && OrigPreHeader && "Loop is not in canonical form"); // If loop header is not one of the loop exit block then // either this loop is already rotated or it is not // suitable for loop rotation transformations. if (!L->isLoopExit(OrigHeader)) return false; BranchInst *BI = dyn_cast(OrigHeader->getTerminator()); if (!BI) return false; assert (BI->isConditional() && "Branch Instruction is not conditional"); // Updating PHInodes in loops with multiple exits adds complexity. // Keep it simple, and restrict loop rotation to loops with one exit only. // In future, lift this restriction and support for multiple exits if // required. SmallVector ExitBlocks; L->getExitBlocks(ExitBlocks); if (ExitBlocks.size() > 1) return false; // Check size of original header and reject // loop if it is very big. if (OrigHeader->getInstList().size() > MAX_HEADER_SIZE) return false; // Now, this loop is suitable for rotation. // Find new Loop header. NewHeader is a Header's one and only successor // that is inside loop. Header's other successor is out side the // loop. Otherwise loop is not suitable for rotation. Exit = BI->getSuccessor(0); NewHeader = BI->getSuccessor(1); if (L->contains(Exit)) std::swap(Exit, NewHeader); assert (NewHeader && "Unable to determine new loop header"); assert(L->contains(NewHeader) && !L->contains(Exit) && "Unable to determine loop header and exit blocks"); // Copy PHI nodes and other instructions from original header // into original pre-header. Unlike original header, original pre-header is // not a member of loop. // // New loop header is one and only successor of original header that // is inside the loop. All other original header successors are outside // the loop. Copy PHI Nodes from original header into new loop header. // Add second incoming value, from original loop pre-header into these phi // nodes. If a value defined in original header is used outside original // header then new loop header will need new phi nodes with two incoming // values, one definition from original header and second definition is // from original loop pre-header. // Remove terminator from Original pre-header. Original pre-header will // receive a clone of original header terminator as a new terminator. OrigPreHeader->getInstList().pop_back(); BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); PHINode *PN = NULL; for (; (PN = dyn_cast(I)); ++I) { Instruction *In = I; // PHI nodes are not copied into original pre-header. Instead their values // are directly propagated. Value * NPV = PN->getIncomingValueForBlock(OrigPreHeader); // Create new PHI node with two incoming values for NewHeader. // One incoming value is from OrigLatch (through OrigHeader) and // second incoming value is from original pre-header. PHINode *NH = PHINode::Create(In->getType(), In->getName()); NH->addIncoming(PN->getIncomingValueForBlock(OrigLatch), OrigHeader); NH->addIncoming(NPV, OrigPreHeader); NewHeader->getInstList().push_front(NH); // "In" can be replaced by NH at various places. LoopHeaderInfo.push_back(RenameData(In, NPV, NH)); } // Now, handle non-phi instructions. for (; I != E; ++I) { Instruction *In = I; assert (!isa(In) && "PHINode is not expected here"); // This is not a PHI instruction. Insert its clone into original pre-header. // If this instruction is using a value from same basic block then // update it to use value from cloned instruction. Instruction *C = In->clone(); C->setName(In->getName()); OrigPreHeader->getInstList().push_back(C); for (unsigned opi = 0, e = In->getNumOperands(); opi != e; ++opi) { if (Instruction *OpPhi = dyn_cast(In->getOperand(opi))) { if (const RenameData *D = findReplacementData(OpPhi)) { // This is using values from original header PHI node. // Here, directly used incoming value from original pre-header. C->setOperand(opi, D->PreHeader); } } else if (Instruction *OpInsn = dyn_cast(In->getOperand(opi))) { if (const RenameData *D = findReplacementData(OpInsn)) C->setOperand(opi, D->PreHeader); } } // If this instruction is used outside this basic block then // create new PHINode for this instruction. Instruction *NewHeaderReplacement = NULL; if (usedOutsideOriginalHeader(In)) { // FIXME: remove this when we have first-class aggregates. if (isa(In->getType())) { // Can't create PHI nodes for this type. If there are any getResults // not defined in this block, move them back to this block. PHI // nodes will be created for all getResults later. BasicBlock::iterator InsertPoint; if (InvokeInst *II = dyn_cast(In)) { InsertPoint = II->getNormalDest()->begin(); while (isa(InsertPoint)) ++InsertPoint; } else { InsertPoint = I; // call ++InsertPoint; } for (Value::use_iterator UI = In->use_begin(), UE = In->use_end(); UI != UE; ++UI) { GetResultInst *InGR = cast(UI); if (InGR->getParent() != OrigHeader) { // Move InGR to immediately after the call or in the normal dest of // the invoke. It will be picked up, cloned and PHI'd on the next // iteration. InGR->moveBefore(InsertPoint); } } } else { PHINode *PN = PHINode::Create(In->getType(), In->getName()); PN->addIncoming(In, OrigHeader); PN->addIncoming(C, OrigPreHeader); NewHeader->getInstList().push_front(PN); NewHeaderReplacement = PN; } } LoopHeaderInfo.push_back(RenameData(In, C, NewHeaderReplacement)); } // Rename uses of original header instructions to reflect their new // definitions (either from original pre-header node or from newly created // new header PHINodes. // // Original header instructions are used in // 1) Original header: // // If instruction is used in non-phi instructions then it is using // defintion from original heder iteself. Do not replace this use // with definition from new header or original pre-header. // // If instruction is used in phi node then it is an incoming // value. Rename its use to reflect new definition from new-preheader // or new header. // // 2) Inside loop but not in original header // // Replace this use to reflect definition from new header. for(unsigned LHI = 0, LHI_E = LoopHeaderInfo.size(); LHI != LHI_E; ++LHI) { const RenameData &ILoopHeaderInfo = LoopHeaderInfo[LHI]; if (!ILoopHeaderInfo.Header) continue; Instruction *OldPhi = ILoopHeaderInfo.Original; Instruction *NewPhi = ILoopHeaderInfo.Header; // Before replacing uses, collect them first, so that iterator is // not invalidated. SmallVector AllUses; for (Value::use_iterator UI = OldPhi->use_begin(), UE = OldPhi->use_end(); UI != UE; ++UI) { Instruction *U = cast(UI); AllUses.push_back(U); } for (SmallVector::iterator UI = AllUses.begin(), UE = AllUses.end(); UI != UE; ++UI) { Instruction *U = *UI; BasicBlock *Parent = U->getParent(); // Used inside original header if (Parent == OrigHeader) { // Do not rename uses inside original header non-phi instructions. PHINode *PU = dyn_cast(U); if (!PU) continue; // Do not rename uses inside original header phi nodes, if the // incoming value is for new header. if (PU->getBasicBlockIndex(NewHeader) != -1 && PU->getIncomingValueForBlock(NewHeader) == U) continue; U->replaceUsesOfWith(OldPhi, NewPhi); continue; } // Used inside loop, but not in original header. if (L->contains(U->getParent())) { if (U != NewPhi) U->replaceUsesOfWith(OldPhi, NewPhi); continue; } // Used inside Exit Block. Since we are in LCSSA form, U must be PHINode. if (U->getParent() == Exit) { assert (isa(U) && "Use in Exit Block that is not PHINode"); PHINode *UPhi = cast(U); // UPhi already has one incoming argument from original header. // Add second incoming argument from new Pre header. UPhi->addIncoming(ILoopHeaderInfo.PreHeader, OrigPreHeader); } else { // Used outside Exit block. Create a new PHI node from exit block // to receive value from ne new header ane pre header. PHINode *PN = PHINode::Create(U->getType(), U->getName()); PN->addIncoming(ILoopHeaderInfo.PreHeader, OrigPreHeader); PN->addIncoming(OldPhi, OrigHeader); Exit->getInstList().push_front(PN); U->replaceUsesOfWith(OldPhi, PN); } } } /// Make sure all Exit block PHINodes have required incoming values. updateExitBlock(); // Update CFG // Removing incoming branch from loop preheader to original header. // Now original header is inside the loop. for (BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); I != E; ++I) { Instruction *In = I; PHINode *PN = dyn_cast(In); if (!PN) break; PN->removeIncomingValue(OrigPreHeader); } // Make NewHeader as the new header for the loop. L->moveToHeader(NewHeader); preserveCanonicalLoopForm(LPM); NumRotated++; return true; } /// Make sure all Exit block PHINodes have required incoming values. /// If incoming value is constant or defined outside the loop then /// PHINode may not have an entry for original pre-header. void LoopRotate::updateExitBlock() { for (BasicBlock::iterator I = Exit->begin(), E = Exit->end(); I != E; ++I) { PHINode *PN = dyn_cast(I); if (!PN) break; // There is already one incoming value from original pre-header block. if (PN->getBasicBlockIndex(OrigPreHeader) != -1) continue; const RenameData *ILoopHeaderInfo; Value *V = PN->getIncomingValueForBlock(OrigHeader); if (isa(V) && (ILoopHeaderInfo = findReplacementData(cast(V)))) { assert(ILoopHeaderInfo->PreHeader && "Missing New Preheader Instruction"); PN->addIncoming(ILoopHeaderInfo->PreHeader, OrigPreHeader); } else { PN->addIncoming(V, OrigPreHeader); } } } /// Initialize local data void LoopRotate::initialize() { L = NULL; OrigHeader = NULL; OrigPreHeader = NULL; NewHeader = NULL; Exit = NULL; LoopHeaderInfo.clear(); } /// Return true if this instruction is used by any instructions in the loop that /// aren't in original header. bool LoopRotate::usedOutsideOriginalHeader(Instruction *In) { for (Value::use_iterator UI = In->use_begin(), UE = In->use_end(); UI != UE; ++UI) { Instruction *U = cast(UI); if (U->getParent() != OrigHeader) { if (L->contains(U->getParent())) return true; } } return false; } /// Find Replacement information for instruction. Return NULL if it is /// not available. const RenameData *LoopRotate::findReplacementData(Instruction *In) { // Since LoopHeaderInfo is small, linear walk is OK. for(unsigned LHI = 0, LHI_E = LoopHeaderInfo.size(); LHI != LHI_E; ++LHI) { const RenameData &ILoopHeaderInfo = LoopHeaderInfo[LHI]; if (ILoopHeaderInfo.Original == In) return &ILoopHeaderInfo; } return NULL; } /// After loop rotation, loop pre-header has multiple sucessors. /// Insert one forwarding basic block to ensure that loop pre-header /// has only one successor. void LoopRotate::preserveCanonicalLoopForm(LPPassManager &LPM) { // Right now original pre-header has two successors, new header and // exit block. Insert new block between original pre-header and // new header such that loop's new pre-header has only one successor. BasicBlock *NewPreHeader = BasicBlock::Create("bb.nph", OrigHeader->getParent(), NewHeader); LoopInfo &LI = LPM.getAnalysis(); if (Loop *PL = LI.getLoopFor(OrigPreHeader)) PL->addBasicBlockToLoop(NewPreHeader, LI.getBase()); BranchInst::Create(NewHeader, NewPreHeader); BranchInst *OrigPH_BI = cast(OrigPreHeader->getTerminator()); if (OrigPH_BI->getSuccessor(0) == NewHeader) OrigPH_BI->setSuccessor(0, NewPreHeader); else { assert (OrigPH_BI->getSuccessor(1) == NewHeader && "Unexpected original pre-header terminator"); OrigPH_BI->setSuccessor(1, NewPreHeader); } for (BasicBlock::iterator I = NewHeader->begin(), E = NewHeader->end(); I != E; ++I) { Instruction *In = I; PHINode *PN = dyn_cast(In); if (!PN) break; int index = PN->getBasicBlockIndex(OrigPreHeader); assert (index != -1 && "Expected incoming value from Original PreHeader"); PN->setIncomingBlock(index, NewPreHeader); assert (PN->getBasicBlockIndex(OrigPreHeader) == -1 && "Expected only one incoming value from Original PreHeader"); } if (DominatorTree *DT = getAnalysisToUpdate()) { DT->addNewBlock(NewPreHeader, OrigPreHeader); DT->changeImmediateDominator(L->getHeader(), NewPreHeader); DT->changeImmediateDominator(Exit, OrigPreHeader); for (Loop::block_iterator BI = L->block_begin(), BE = L->block_end(); BI != BE; ++BI) { BasicBlock *B = *BI; if (L->getHeader() != B) { DomTreeNode *Node = DT->getNode(B); if (Node && Node->getBlock() == OrigHeader) DT->changeImmediateDominator(*BI, L->getHeader()); } } DT->changeImmediateDominator(OrigHeader, OrigLatch); } if(DominanceFrontier *DF = getAnalysisToUpdate()) { // New Preheader's dominance frontier is Exit block. DominanceFrontier::DomSetType NewPHSet; NewPHSet.insert(Exit); DF->addBasicBlock(NewPreHeader, NewPHSet); // New Header's dominance frontier now includes itself and Exit block DominanceFrontier::iterator HeadI = DF->find(L->getHeader()); if (HeadI != DF->end()) { DominanceFrontier::DomSetType & HeaderSet = HeadI->second; HeaderSet.clear(); HeaderSet.insert(L->getHeader()); HeaderSet.insert(Exit); } else { DominanceFrontier::DomSetType HeaderSet; HeaderSet.insert(L->getHeader()); HeaderSet.insert(Exit); DF->addBasicBlock(L->getHeader(), HeaderSet); } // Original header (new Loop Latch)'s dominance frontier is Exit. DominanceFrontier::iterator LatchI = DF->find(L->getLoopLatch()); if (LatchI != DF->end()) { DominanceFrontier::DomSetType &LatchSet = LatchI->second; LatchSet = LatchI->second; LatchSet.clear(); LatchSet.insert(Exit); } else { DominanceFrontier::DomSetType LatchSet; LatchSet.insert(Exit); DF->addBasicBlock(L->getHeader(), LatchSet); } // If a loop block dominates new loop latch then its frontier is // new header and Exit. BasicBlock *NewLatch = L->getLoopLatch(); DominatorTree *DT = getAnalysisToUpdate(); for (Loop::block_iterator BI = L->block_begin(), BE = L->block_end(); BI != BE; ++BI) { BasicBlock *B = *BI; if (DT->dominates(B, NewLatch)) { DominanceFrontier::iterator BDFI = DF->find(B); if (BDFI != DF->end()) { DominanceFrontier::DomSetType &BSet = BDFI->second; BSet = BDFI->second; BSet.clear(); BSet.insert(L->getHeader()); BSet.insert(Exit); } else { DominanceFrontier::DomSetType BSet; BSet.insert(L->getHeader()); BSet.insert(Exit); DF->addBasicBlock(B, BSet); } } } } // Preserve canonical loop form, which means Exit block should // have only one predecessor. BasicBlock *NExit = SplitEdge(L->getLoopLatch(), Exit, this); // Preserve LCSSA. BasicBlock::iterator I = Exit->begin(), E = Exit->end(); PHINode *PN = NULL; for (; (PN = dyn_cast(I)); ++I) { PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()); unsigned N = PN->getNumIncomingValues(); for (unsigned index = 0; index < N; ++index) if (PN->getIncomingBlock(index) == NExit) { NewPN->addIncoming(PN->getIncomingValue(index), L->getLoopLatch()); PN->setIncomingValue(index, NewPN); PN->setIncomingBlock(index, NExit); NExit->getInstList().push_front(NewPN); } } assert (NewHeader && L->getHeader() == NewHeader && "Invalid loop header after loop rotation"); assert (NewPreHeader && L->getLoopPreheader() == NewPreHeader && "Invalid loop preheader after loop rotation"); assert (L->getLoopLatch() && "Invalid loop latch after loop rotation"); }