//===-- llvm/Support/PatternMatch.h - Match on the LLVM IR ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provides a simple and efficient mechanism for performing general // tree-based pattern matches on the LLVM IR. The power of these routines is // that it allows you to write concise patterns that are expressive and easy to // understand. The other major advantage of this is that it allows you to // trivially capture/bind elements in the pattern to variables. For example, // you can do something like this: // // Value *Exp = ... // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2) // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)), // m_And(m_Value(Y), m_ConstantInt(C2))))) { // ... Pattern is matched and variables are bound ... // } // // This is primarily useful to things like the instruction combiner, but can // also be useful for static analysis tools or code generators. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_PATTERNMATCH_H #define LLVM_SUPPORT_PATTERNMATCH_H #include "llvm/IR/Constants.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Operator.h" #include "llvm/Support/CallSite.h" namespace llvm { namespace PatternMatch { template bool match(Val *V, const Pattern &P) { return const_cast(P).match(V); } template struct OneUse_match { SubPattern_t SubPattern; OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {} template bool match(OpTy *V) { return V->hasOneUse() && SubPattern.match(V); } }; template inline OneUse_match m_OneUse(const T &SubPattern) { return SubPattern; } template struct class_match { template bool match(ITy *V) { return isa(V); } }; /// m_Value() - Match an arbitrary value and ignore it. inline class_match m_Value() { return class_match(); } /// m_ConstantInt() - Match an arbitrary ConstantInt and ignore it. inline class_match m_ConstantInt() { return class_match(); } /// m_Undef() - Match an arbitrary undef constant. inline class_match m_Undef() { return class_match(); } inline class_match m_Constant() { return class_match(); } /// Matching combinators template struct match_combine_or { LTy L; RTy R; match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) { } template bool match(ITy *V) { if (L.match(V)) return true; if (R.match(V)) return true; return false; } }; template struct match_combine_and { LTy L; RTy R; match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) { } template bool match(ITy *V) { if (L.match(V)) if (R.match(V)) return true; return false; } }; /// Combine two pattern matchers matching L || R template inline match_combine_or m_CombineOr(const LTy &L, const RTy &R) { return match_combine_or(L, R); } /// Combine two pattern matchers matching L && R template inline match_combine_and m_CombineAnd(const LTy &L, const RTy &R) { return match_combine_and(L, R); } struct match_zero { template bool match(ITy *V) { if (const Constant *C = dyn_cast(V)) return C->isNullValue(); return false; } }; /// m_Zero() - Match an arbitrary zero/null constant. This includes /// zero_initializer for vectors and ConstantPointerNull for pointers. inline match_zero m_Zero() { return match_zero(); } struct match_neg_zero { template bool match(ITy *V) { if (const Constant *C = dyn_cast(V)) return C->isNegativeZeroValue(); return false; } }; /// m_NegZero() - Match an arbitrary zero/null constant. This includes /// zero_initializer for vectors and ConstantPointerNull for pointers. For /// floating point constants, this will match negative zero but not positive /// zero inline match_neg_zero m_NegZero() { return match_neg_zero(); } /// m_AnyZero() - Match an arbitrary zero/null constant. This includes /// zero_initializer for vectors and ConstantPointerNull for pointers. For /// floating point constants, this will match negative zero and positive zero inline match_combine_or m_AnyZero() { return m_CombineOr(m_Zero(), m_NegZero()); } struct apint_match { const APInt *&Res; apint_match(const APInt *&R) : Res(R) {} template bool match(ITy *V) { if (ConstantInt *CI = dyn_cast(V)) { Res = &CI->getValue(); return true; } if (V->getType()->isVectorTy()) if (const Constant *C = dyn_cast(V)) if (ConstantInt *CI = dyn_cast_or_null(C->getSplatValue())) { Res = &CI->getValue(); return true; } return false; } }; /// m_APInt - Match a ConstantInt or splatted ConstantVector, binding the /// specified pointer to the contained APInt. inline apint_match m_APInt(const APInt *&Res) { return Res; } template struct constantint_match { template bool match(ITy *V) { if (const ConstantInt *CI = dyn_cast(V)) { const APInt &CIV = CI->getValue(); if (Val >= 0) return CIV == static_cast(Val); // If Val is negative, and CI is shorter than it, truncate to the right // number of bits. If it is larger, then we have to sign extend. Just // compare their negated values. return -CIV == -Val; } return false; } }; /// m_ConstantInt - Match a ConstantInt with a specific value. template inline constantint_match m_ConstantInt() { return constantint_match(); } /// cst_pred_ty - This helper class is used to match scalar and vector constants /// that satisfy a specified predicate. template struct cst_pred_ty : public Predicate { template bool match(ITy *V) { if (const ConstantInt *CI = dyn_cast(V)) return this->isValue(CI->getValue()); if (V->getType()->isVectorTy()) if (const Constant *C = dyn_cast(V)) if (const ConstantInt *CI = dyn_cast_or_null(C->getSplatValue())) return this->isValue(CI->getValue()); return false; } }; /// api_pred_ty - This helper class is used to match scalar and vector constants /// that satisfy a specified predicate, and bind them to an APInt. template struct api_pred_ty : public Predicate { const APInt *&Res; api_pred_ty(const APInt *&R) : Res(R) {} template bool match(ITy *V) { if (const ConstantInt *CI = dyn_cast(V)) if (this->isValue(CI->getValue())) { Res = &CI->getValue(); return true; } if (V->getType()->isVectorTy()) if (const Constant *C = dyn_cast(V)) if (ConstantInt *CI = dyn_cast_or_null(C->getSplatValue())) if (this->isValue(CI->getValue())) { Res = &CI->getValue(); return true; } return false; } }; struct is_one { bool isValue(const APInt &C) { return C == 1; } }; /// m_One() - Match an integer 1 or a vector with all elements equal to 1. inline cst_pred_ty m_One() { return cst_pred_ty(); } inline api_pred_ty m_One(const APInt *&V) { return V; } struct is_all_ones { bool isValue(const APInt &C) { return C.isAllOnesValue(); } }; /// m_AllOnes() - Match an integer or vector with all bits set to true. inline cst_pred_ty m_AllOnes() {return cst_pred_ty();} inline api_pred_ty m_AllOnes(const APInt *&V) { return V; } struct is_sign_bit { bool isValue(const APInt &C) { return C.isSignBit(); } }; /// m_SignBit() - Match an integer or vector with only the sign bit(s) set. inline cst_pred_ty m_SignBit() {return cst_pred_ty();} inline api_pred_ty m_SignBit(const APInt *&V) { return V; } struct is_power2 { bool isValue(const APInt &C) { return C.isPowerOf2(); } }; /// m_Power2() - Match an integer or vector power of 2. inline cst_pred_ty m_Power2() { return cst_pred_ty(); } inline api_pred_ty m_Power2(const APInt *&V) { return V; } template struct bind_ty { Class *&VR; bind_ty(Class *&V) : VR(V) {} template bool match(ITy *V) { if (Class *CV = dyn_cast(V)) { VR = CV; return true; } return false; } }; /// m_Value - Match a value, capturing it if we match. inline bind_ty m_Value(Value *&V) { return V; } /// m_ConstantInt - Match a ConstantInt, capturing the value if we match. inline bind_ty m_ConstantInt(ConstantInt *&CI) { return CI; } /// m_Constant - Match a Constant, capturing the value if we match. inline bind_ty m_Constant(Constant *&C) { return C; } /// m_ConstantFP - Match a ConstantFP, capturing the value if we match. inline bind_ty m_ConstantFP(ConstantFP *&C) { return C; } /// specificval_ty - Match a specified Value*. struct specificval_ty { const Value *Val; specificval_ty(const Value *V) : Val(V) {} template bool match(ITy *V) { return V == Val; } }; /// m_Specific - Match if we have a specific specified value. inline specificval_ty m_Specific(const Value *V) { return V; } /// Match a specified floating point value or vector of all elements of that /// value. struct specific_fpval { double Val; specific_fpval(double V) : Val(V) {} template bool match(ITy *V) { if (const ConstantFP *CFP = dyn_cast(V)) return CFP->isExactlyValue(Val); if (V->getType()->isVectorTy()) if (const Constant *C = dyn_cast(V)) if (ConstantFP *CFP = dyn_cast_or_null(C->getSplatValue())) return CFP->isExactlyValue(Val); return false; } }; /// Match a specific floating point value or vector with all elements equal to /// the value. inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); } /// Match a float 1.0 or vector with all elements equal to 1.0. inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); } struct bind_const_intval_ty { uint64_t &VR; bind_const_intval_ty(uint64_t &V) : VR(V) {} template bool match(ITy *V) { if (ConstantInt *CV = dyn_cast(V)) if (CV->getBitWidth() <= 64) { VR = CV->getZExtValue(); return true; } return false; } }; /// m_ConstantInt - Match a ConstantInt and bind to its value. This does not /// match ConstantInts wider than 64-bits. inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; } //===----------------------------------------------------------------------===// // Matchers for specific binary operators. // template struct BinaryOp_match { LHS_t L; RHS_t R; BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} template bool match(OpTy *V) { if (V->getValueID() == Value::InstructionVal + Opcode) { BinaryOperator *I = cast(V); return L.match(I->getOperand(0)) && R.match(I->getOperand(1)); } if (ConstantExpr *CE = dyn_cast(V)) return CE->getOpcode() == Opcode && L.match(CE->getOperand(0)) && R.match(CE->getOperand(1)); return false; } }; template inline BinaryOp_match m_Add(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_FAdd(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_Sub(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_FSub(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_Mul(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_FMul(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_UDiv(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_SDiv(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_FDiv(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_URem(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_SRem(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_FRem(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_And(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_Or(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_Xor(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_Shl(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_LShr(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_AShr(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } //===----------------------------------------------------------------------===// // Class that matches two different binary ops. // template struct BinOp2_match { LHS_t L; RHS_t R; BinOp2_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} template bool match(OpTy *V) { if (V->getValueID() == Value::InstructionVal + Opc1 || V->getValueID() == Value::InstructionVal + Opc2) { BinaryOperator *I = cast(V); return L.match(I->getOperand(0)) && R.match(I->getOperand(1)); } if (ConstantExpr *CE = dyn_cast(V)) return (CE->getOpcode() == Opc1 || CE->getOpcode() == Opc2) && L.match(CE->getOperand(0)) && R.match(CE->getOperand(1)); return false; } }; /// m_Shr - Matches LShr or AShr. template inline BinOp2_match m_Shr(const LHS &L, const RHS &R) { return BinOp2_match(L, R); } /// m_LogicalShift - Matches LShr or Shl. template inline BinOp2_match m_LogicalShift(const LHS &L, const RHS &R) { return BinOp2_match(L, R); } /// m_IDiv - Matches UDiv and SDiv. template inline BinOp2_match m_IDiv(const LHS &L, const RHS &R) { return BinOp2_match(L, R); } //===----------------------------------------------------------------------===// // Class that matches exact binary ops. // template struct Exact_match { SubPattern_t SubPattern; Exact_match(const SubPattern_t &SP) : SubPattern(SP) {} template bool match(OpTy *V) { if (PossiblyExactOperator *PEO = dyn_cast(V)) return PEO->isExact() && SubPattern.match(V); return false; } }; template inline Exact_match m_Exact(const T &SubPattern) { return SubPattern; } //===----------------------------------------------------------------------===// // Matchers for CmpInst classes // template struct CmpClass_match { PredicateTy &Predicate; LHS_t L; RHS_t R; CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS) : Predicate(Pred), L(LHS), R(RHS) {} template bool match(OpTy *V) { if (Class *I = dyn_cast(V)) if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) { Predicate = I->getPredicate(); return true; } return false; } }; template inline CmpClass_match m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { return CmpClass_match(Pred, L, R); } template inline CmpClass_match m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) { return CmpClass_match(Pred, L, R); } //===----------------------------------------------------------------------===// // Matchers for SelectInst classes // template struct SelectClass_match { Cond_t C; LHS_t L; RHS_t R; SelectClass_match(const Cond_t &Cond, const LHS_t &LHS, const RHS_t &RHS) : C(Cond), L(LHS), R(RHS) {} template bool match(OpTy *V) { if (SelectInst *I = dyn_cast(V)) return C.match(I->getOperand(0)) && L.match(I->getOperand(1)) && R.match(I->getOperand(2)); return false; } }; template inline SelectClass_match m_Select(const Cond &C, const LHS &L, const RHS &R) { return SelectClass_match(C, L, R); } /// m_SelectCst - This matches a select of two constants, e.g.: /// m_SelectCst<-1, 0>(m_Value(V)) template inline SelectClass_match, constantint_match > m_SelectCst(const Cond &C) { return m_Select(C, m_ConstantInt(), m_ConstantInt()); } //===----------------------------------------------------------------------===// // Matchers for CastInst classes // template struct CastClass_match { Op_t Op; CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {} template bool match(OpTy *V) { if (Operator *O = dyn_cast(V)) return O->getOpcode() == Opcode && Op.match(O->getOperand(0)); return false; } }; /// m_BitCast template inline CastClass_match m_BitCast(const OpTy &Op) { return CastClass_match(Op); } /// m_PtrToInt template inline CastClass_match m_PtrToInt(const OpTy &Op) { return CastClass_match(Op); } /// m_Trunc template inline CastClass_match m_Trunc(const OpTy &Op) { return CastClass_match(Op); } /// m_SExt template inline CastClass_match m_SExt(const OpTy &Op) { return CastClass_match(Op); } /// m_ZExt template inline CastClass_match m_ZExt(const OpTy &Op) { return CastClass_match(Op); } /// m_UIToFP template inline CastClass_match m_UIToFP(const OpTy &Op) { return CastClass_match(Op); } /// m_SIToFP template inline CastClass_match m_SIToFP(const OpTy &Op) { return CastClass_match(Op); } //===----------------------------------------------------------------------===// // Matchers for unary operators // template struct not_match { LHS_t L; not_match(const LHS_t &LHS) : L(LHS) {} template bool match(OpTy *V) { if (Operator *O = dyn_cast(V)) if (O->getOpcode() == Instruction::Xor) return matchIfNot(O->getOperand(0), O->getOperand(1)); return false; } private: bool matchIfNot(Value *LHS, Value *RHS) { return (isa(RHS) || isa(RHS) || // FIXME: Remove CV. isa(RHS)) && cast(RHS)->isAllOnesValue() && L.match(LHS); } }; template inline not_match m_Not(const LHS &L) { return L; } template struct neg_match { LHS_t L; neg_match(const LHS_t &LHS) : L(LHS) {} template bool match(OpTy *V) { if (Operator *O = dyn_cast(V)) if (O->getOpcode() == Instruction::Sub) return matchIfNeg(O->getOperand(0), O->getOperand(1)); return false; } private: bool matchIfNeg(Value *LHS, Value *RHS) { return ((isa(LHS) && cast(LHS)->isZero()) || isa(LHS)) && L.match(RHS); } }; /// m_Neg - Match an integer negate. template inline neg_match m_Neg(const LHS &L) { return L; } template struct fneg_match { LHS_t L; fneg_match(const LHS_t &LHS) : L(LHS) {} template bool match(OpTy *V) { if (Operator *O = dyn_cast(V)) if (O->getOpcode() == Instruction::FSub) return matchIfFNeg(O->getOperand(0), O->getOperand(1)); return false; } private: bool matchIfFNeg(Value *LHS, Value *RHS) { if (ConstantFP *C = dyn_cast(LHS)) return C->isNegativeZeroValue() && L.match(RHS); return false; } }; /// m_FNeg - Match a floating point negate. template inline fneg_match m_FNeg(const LHS &L) { return L; } //===----------------------------------------------------------------------===// // Matchers for control flow. // struct br_match { BasicBlock *&Succ; br_match(BasicBlock *&Succ) : Succ(Succ) { } template bool match(OpTy *V) { if (BranchInst *BI = dyn_cast(V)) if (BI->isUnconditional()) { Succ = BI->getSuccessor(0); return true; } return false; } }; inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); } template struct brc_match { Cond_t Cond; BasicBlock *&T, *&F; brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f) : Cond(C), T(t), F(f) { } template bool match(OpTy *V) { if (BranchInst *BI = dyn_cast(V)) if (BI->isConditional() && Cond.match(BI->getCondition())) { T = BI->getSuccessor(0); F = BI->getSuccessor(1); return true; } return false; } }; template inline brc_match m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) { return brc_match(C, T, F); } //===----------------------------------------------------------------------===// // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y). // template struct MaxMin_match { LHS_t L; RHS_t R; MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} template bool match(OpTy *V) { // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x". SelectInst *SI = dyn_cast(V); if (!SI) return false; CmpInst_t *Cmp = dyn_cast(SI->getCondition()); if (!Cmp) return false; // At this point we have a select conditioned on a comparison. Check that // it is the values returned by the select that are being compared. Value *TrueVal = SI->getTrueValue(); Value *FalseVal = SI->getFalseValue(); Value *LHS = Cmp->getOperand(0); Value *RHS = Cmp->getOperand(1); if ((TrueVal != LHS || FalseVal != RHS) && (TrueVal != RHS || FalseVal != LHS)) return false; typename CmpInst_t::Predicate Pred = LHS == TrueVal ? Cmp->getPredicate() : Cmp->getSwappedPredicate(); // Does "(x pred y) ? x : y" represent the desired max/min operation? if (!Pred_t::match(Pred)) return false; // It does! Bind the operands. return L.match(LHS) && R.match(RHS); } }; /// smax_pred_ty - Helper class for identifying signed max predicates. struct smax_pred_ty { static bool match(ICmpInst::Predicate Pred) { return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; } }; /// smin_pred_ty - Helper class for identifying signed min predicates. struct smin_pred_ty { static bool match(ICmpInst::Predicate Pred) { return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE; } }; /// umax_pred_ty - Helper class for identifying unsigned max predicates. struct umax_pred_ty { static bool match(ICmpInst::Predicate Pred) { return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE; } }; /// umin_pred_ty - Helper class for identifying unsigned min predicates. struct umin_pred_ty { static bool match(ICmpInst::Predicate Pred) { return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE; } }; /// ofmax_pred_ty - Helper class for identifying ordered max predicates. struct ofmax_pred_ty { static bool match(FCmpInst::Predicate Pred) { return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE; } }; /// ofmin_pred_ty - Helper class for identifying ordered min predicates. struct ofmin_pred_ty { static bool match(FCmpInst::Predicate Pred) { return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE; } }; /// ufmax_pred_ty - Helper class for identifying unordered max predicates. struct ufmax_pred_ty { static bool match(FCmpInst::Predicate Pred) { return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE; } }; /// ufmin_pred_ty - Helper class for identifying unordered min predicates. struct ufmin_pred_ty { static bool match(FCmpInst::Predicate Pred) { return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE; } }; template inline MaxMin_match m_SMax(const LHS &L, const RHS &R) { return MaxMin_match(L, R); } template inline MaxMin_match m_SMin(const LHS &L, const RHS &R) { return MaxMin_match(L, R); } template inline MaxMin_match m_UMax(const LHS &L, const RHS &R) { return MaxMin_match(L, R); } template inline MaxMin_match m_UMin(const LHS &L, const RHS &R) { return MaxMin_match(L, R); } /// \brief Match an 'ordered' floating point maximum function. /// Floating point has one special value 'NaN'. Therefore, there is no total /// order. However, if we can ignore the 'NaN' value (for example, because of a /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' /// semantics. In the presence of 'NaN' we have to preserve the original /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate. /// /// max(L, R) iff L and R are not NaN /// m_OrdFMax(L, R) = R iff L or R are NaN template inline MaxMin_match m_OrdFMax(const LHS &L, const RHS &R) { return MaxMin_match(L, R); } /// \brief Match an 'ordered' floating point minimum function. /// Floating point has one special value 'NaN'. Therefore, there is no total /// order. However, if we can ignore the 'NaN' value (for example, because of a /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' /// semantics. In the presence of 'NaN' we have to preserve the original /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate. /// /// max(L, R) iff L and R are not NaN /// m_OrdFMin(L, R) = R iff L or R are NaN template inline MaxMin_match m_OrdFMin(const LHS &L, const RHS &R) { return MaxMin_match(L, R); } /// \brief Match an 'unordered' floating point maximum function. /// Floating point has one special value 'NaN'. Therefore, there is no total /// order. However, if we can ignore the 'NaN' value (for example, because of a /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' /// semantics. In the presence of 'NaN' we have to preserve the original /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate. /// /// max(L, R) iff L and R are not NaN /// m_UnordFMin(L, R) = L iff L or R are NaN template inline MaxMin_match m_UnordFMax(const LHS &L, const RHS &R) { return MaxMin_match(L, R); } /// \brief Match an 'unordered' floating point minimum function. /// Floating point has one special value 'NaN'. Therefore, there is no total /// order. However, if we can ignore the 'NaN' value (for example, because of a /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' /// semantics. In the presence of 'NaN' we have to preserve the original /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate. /// /// max(L, R) iff L and R are not NaN /// m_UnordFMin(L, R) = L iff L or R are NaN template inline MaxMin_match m_UnordFMin(const LHS &L, const RHS &R) { return MaxMin_match(L, R); } template struct Argument_match { unsigned OpI; Opnd_t Val; Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) { } template bool match(OpTy *V) { CallSite CS(V); return CS.isCall() && Val.match(CS.getArgument(OpI)); } }; /// Match an argument template inline Argument_match m_Argument(const Opnd_t &Op) { return Argument_match(OpI, Op); } /// Intrinsic matchers. struct IntrinsicID_match { unsigned ID; IntrinsicID_match(unsigned IntrID) : ID(IntrID) { } template bool match(OpTy *V) { IntrinsicInst *II = dyn_cast(V); return II && II->getIntrinsicID() == ID; } }; /// Intrinsic matches are combinations of ID matchers, and argument /// matchers. Higher arity matcher are defined recursively in terms of and-ing /// them with lower arity matchers. Here's some convenient typedefs for up to /// several arguments, and more can be added as needed template struct m_Intrinsic_Ty; template struct m_Intrinsic_Ty { typedef match_combine_and > Ty; }; template struct m_Intrinsic_Ty { typedef match_combine_and::Ty, Argument_match > Ty; }; template struct m_Intrinsic_Ty { typedef match_combine_and::Ty, Argument_match > Ty; }; template struct m_Intrinsic_Ty { typedef match_combine_and::Ty, Argument_match > Ty; }; /// Match intrinsic calls like this: /// m_Intrinsic(m_Value(X)) template inline IntrinsicID_match m_Intrinsic() { return IntrinsicID_match(IntrID); } template inline typename m_Intrinsic_Ty::Ty m_Intrinsic(const T0 &Op0) { return m_CombineAnd(m_Intrinsic(), m_Argument<0>(Op0)); } template inline typename m_Intrinsic_Ty::Ty m_Intrinsic(const T0 &Op0, const T1 &Op1) { return m_CombineAnd(m_Intrinsic(Op0), m_Argument<1>(Op1)); } template inline typename m_Intrinsic_Ty::Ty m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) { return m_CombineAnd(m_Intrinsic(Op0, Op1), m_Argument<2>(Op2)); } template inline typename m_Intrinsic_Ty::Ty m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) { return m_CombineAnd(m_Intrinsic(Op0, Op1, Op2), m_Argument<3>(Op3)); } // Helper intrinsic matching specializations template inline typename m_Intrinsic_Ty::Ty m_BSwap(const Opnd0 &Op0) { return m_Intrinsic(Op0); } } // end namespace PatternMatch } // end namespace llvm #endif