//===-- EmitAssembly.cpp - Emit Sparc Specific .s File ---------------------==// // // This file implements all of the stuff neccesary to output a .s file from // LLVM. The code in this file assumes that the specified module has already // been compiled into the internal data structures of the Module. // // This code largely consists of two LLVM Pass's: a FunctionPass and a Pass. // The FunctionPass is pipelined together with all of the rest of the code // generation stages, and the Pass runs at the end to emit code for global // variables and such. // //===----------------------------------------------------------------------===// #include "SparcInternals.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineCodeForBasicBlock.h" #include "llvm/CodeGen/MachineCodeForMethod.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/SlotCalculator.h" #include "llvm/Pass.h" #include "llvm/Assembly/Writer.h" #include "Support/StringExtras.h" using std::string; namespace { class GlobalIdTable: public Annotation { static AnnotationID AnnotId; friend class AsmPrinter; // give access to AnnotId typedef hash_map ValIdMap; typedef ValIdMap::const_iterator ValIdMapConstIterator; typedef ValIdMap:: iterator ValIdMapIterator; public: SlotCalculator Table; // map anonymous values to unique integer IDs ValIdMap valToIdMap; // used for values not handled by SlotCalculator GlobalIdTable(Module* M) : Annotation(AnnotId), Table(M, true) {} }; AnnotationID GlobalIdTable::AnnotId = AnnotationManager::getID("ASM PRINTER GLOBAL TABLE ANNOT"); //===---------------------------------------------------------------------===// // Code Shared By the two printer passes, as a mixin //===---------------------------------------------------------------------===// class AsmPrinter { GlobalIdTable* idTable; public: std::ostream &toAsm; const TargetMachine &Target; enum Sections { Unknown, Text, ReadOnlyData, InitRWData, ZeroInitRWData, } CurSection; AsmPrinter(std::ostream &os, const TargetMachine &T) : idTable(0), toAsm(os), Target(T), CurSection(Unknown) {} // (start|end)(Module|Function) - Callback methods to be invoked by subclasses void startModule(Module &M) { // Create the global id table if it does not already exist idTable = (GlobalIdTable*)M.getAnnotation(GlobalIdTable::AnnotId); if (idTable == NULL) { idTable = new GlobalIdTable(&M); M.addAnnotation(idTable); } } void startFunction(Function &F) { // Make sure the slot table has information about this function... idTable->Table.incorporateFunction(&F); } void endFunction(Function &) { idTable->Table.purgeFunction(); // Forget all about F } void endModule() { } // Check if a value is external or accessible from external code. bool isExternal(const Value* V) { const GlobalValue *GV = dyn_cast(V); return GV && GV->hasExternalLinkage(); } // enterSection - Use this method to enter a different section of the output // executable. This is used to only output neccesary section transitions. // void enterSection(enum Sections S) { if (S == CurSection) return; // Only switch section if neccesary CurSection = S; toAsm << "\n\t.section "; switch (S) { default: assert(0 && "Bad section name!"); case Text: toAsm << "\".text\""; break; case ReadOnlyData: toAsm << "\".rodata\",#alloc"; break; case InitRWData: toAsm << "\".data\",#alloc,#write"; break; case ZeroInitRWData: toAsm << "\".bss\",#alloc,#write"; break; } toAsm << "\n"; } static string getValidSymbolName(const string &S) { string Result; // Symbol names in Sparc assembly language have these rules: // (a) Must match { letter | _ | . | $ } { letter | _ | . | $ | digit }* // (b) A name beginning in "." is treated as a local name. // if (isdigit(S[0])) Result = "ll"; for (unsigned i = 0; i < S.size(); ++i) { char C = S[i]; if (C == '_' || C == '.' || C == '$' || isalpha(C) || isdigit(C)) Result += C; else { Result += '_'; Result += char('0' + ((unsigned char)C >> 4)); Result += char('0' + (C & 0xF)); } } return Result; } // getID - Return a valid identifier for the specified value. Base it on // the name of the identifier if possible (qualified by the type), and // use a numbered value based on prefix otherwise. // FPrefix is always prepended to the output identifier. // string getID(const Value *V, const char *Prefix, const char *FPrefix = 0) { string Result = FPrefix ? FPrefix : ""; // "Forced prefix" Result += V->hasName() ? V->getName() : string(Prefix); // Qualify all internal names with a unique id. if (!isExternal(V)) { int valId = idTable->Table.getValSlot(V); if (valId == -1) { GlobalIdTable::ValIdMapConstIterator I = idTable->valToIdMap.find(V); if (I == idTable->valToIdMap.end()) valId = idTable->valToIdMap[V] = idTable->valToIdMap.size(); else valId = I->second; } Result = Result + "_" + itostr(valId); } return getValidSymbolName(Result); } // getID Wrappers - Ensure consistent usage... string getID(const Function *F) { return getID(F, "LLVMFunction_"); } string getID(const BasicBlock *BB) { return getID(BB, "LL", (".L_"+getID(BB->getParent())+"_").c_str()); } string getID(const GlobalVariable *GV) { return getID(GV, "LLVMGlobal_"); } string getID(const Constant *CV) { return getID(CV, "LLVMConst_", ".C_"); } string getID(const GlobalValue *GV) { if (const GlobalVariable *V = dyn_cast(GV)) return getID(V); else if (const Function *F = dyn_cast(GV)) return getID(F); assert(0 && "Unexpected type of GlobalValue!"); return ""; } // ConstantExprToString() - Convert a ConstantExpr to an asm expression // and return this as a string. string ConstantExprToString(const ConstantExpr* CE, const TargetMachine& target) { string S; switch(CE->getOpcode()) { case Instruction::GetElementPtr: { // generate a symbolic expression for the byte address const Value* ptrVal = CE->getOperand(0); std::vector idxVec(CE->op_begin()+1, CE->op_end()); S += "(" + valToExprString(ptrVal, target) + ") + (" + utostr(target.DataLayout.getIndexedOffset(ptrVal->getType(),idxVec)) + ")"; break; } case Instruction::Cast: // Support only non-converting casts for now, i.e., a no-op. // This assertion is not a complete check. assert(target.DataLayout.getTypeSize(CE->getType()) == target.DataLayout.getTypeSize(CE->getOperand(0)->getType())); S += "(" + valToExprString(CE->getOperand(0), target) + ")"; break; case Instruction::Add: S += "(" + valToExprString(CE->getOperand(0), target) + ") + (" + valToExprString(CE->getOperand(1), target) + ")"; break; default: assert(0 && "Unsupported operator in ConstantExprToString()"); break; } return S; } // valToExprString - Helper function for ConstantExprToString(). // Appends result to argument string S. // string valToExprString(const Value* V, const TargetMachine& target) { string S; bool failed = false; if (const Constant* CV = dyn_cast(V)) { // symbolic or known if (const ConstantBool *CB = dyn_cast(CV)) S += string(CB == ConstantBool::True ? "1" : "0"); else if (const ConstantSInt *CI = dyn_cast(CV)) S += itostr(CI->getValue()); else if (const ConstantUInt *CI = dyn_cast(CV)) S += utostr(CI->getValue()); else if (const ConstantFP *CFP = dyn_cast(CV)) S += ftostr(CFP->getValue()); else if (isa(CV)) S += "0"; else if (const ConstantPointerRef *CPR = dyn_cast(CV)) S += valToExprString(CPR->getValue(), target); else if (const ConstantExpr *CE = dyn_cast(CV)) S += ConstantExprToString(CE, target); else failed = true; } else if (const GlobalValue* GV = dyn_cast(V)) { S += getID(GV); } else failed = true; if (failed) { assert(0 && "Cannot convert value to string"); S += ""; } return S; } }; //===----------------------------------------------------------------------===// // SparcFunctionAsmPrinter Code //===----------------------------------------------------------------------===// struct SparcFunctionAsmPrinter : public FunctionPass, public AsmPrinter { inline SparcFunctionAsmPrinter(std::ostream &os, const TargetMachine &t) : AsmPrinter(os, t) {} const char *getPassName() const { return "Output Sparc Assembly for Functions"; } virtual bool doInitialization(Module &M) { startModule(M); return false; } virtual bool runOnFunction(Function &F) { startFunction(F); emitFunction(F); endFunction(F); return false; } virtual bool doFinalization(Module &M) { endModule(); return false; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); } void emitFunction(const Function &F); private : void emitBasicBlock(const BasicBlock *BB); void emitMachineInst(const MachineInstr *MI); unsigned int printOperands(const MachineInstr *MI, unsigned int opNum); void printOneOperand(const MachineOperand &Op); bool OpIsBranchTargetLabel(const MachineInstr *MI, unsigned int opNum); bool OpIsMemoryAddressBase(const MachineInstr *MI, unsigned int opNum); unsigned getOperandMask(unsigned Opcode) { switch (Opcode) { case SUBcc: return 1 << 3; // Remove CC argument //case BA: return 1 << 0; // Remove Arg #0, which is always null or xcc default: return 0; // By default, don't hack operands... } } }; inline bool SparcFunctionAsmPrinter::OpIsBranchTargetLabel(const MachineInstr *MI, unsigned int opNum) { switch (MI->getOpCode()) { case JMPLCALL: case JMPLRET: return (opNum == 0); default: return false; } } inline bool SparcFunctionAsmPrinter::OpIsMemoryAddressBase(const MachineInstr *MI, unsigned int opNum) { if (Target.getInstrInfo().isLoad(MI->getOpCode())) return (opNum == 0); else if (Target.getInstrInfo().isStore(MI->getOpCode())) return (opNum == 1); else return false; } #define PrintOp1PlusOp2(mop1, mop2) \ printOneOperand(mop1); \ toAsm << "+"; \ printOneOperand(mop2); unsigned int SparcFunctionAsmPrinter::printOperands(const MachineInstr *MI, unsigned int opNum) { const MachineOperand& mop = MI->getOperand(opNum); if (OpIsBranchTargetLabel(MI, opNum)) { PrintOp1PlusOp2(mop, MI->getOperand(opNum+1)); return 2; } else if (OpIsMemoryAddressBase(MI, opNum)) { toAsm << "["; PrintOp1PlusOp2(mop, MI->getOperand(opNum+1)); toAsm << "]"; return 2; } else { printOneOperand(mop); return 1; } } void SparcFunctionAsmPrinter::printOneOperand(const MachineOperand &mop) { bool needBitsFlag = true; if (mop.opHiBits32()) toAsm << "%lm("; else if (mop.opLoBits32()) toAsm << "%lo("; else if (mop.opHiBits64()) toAsm << "%hh("; else if (mop.opLoBits64()) toAsm << "%hm("; else needBitsFlag = false; switch (mop.getOperandType()) { case MachineOperand::MO_VirtualRegister: case MachineOperand::MO_CCRegister: case MachineOperand::MO_MachineRegister: { int RegNum = (int)mop.getAllocatedRegNum(); // better to print code with NULL registers than to die if (RegNum == Target.getRegInfo().getInvalidRegNum()) { toAsm << ""; } else { toAsm << "%" << Target.getRegInfo().getUnifiedRegName(RegNum); } break; } case MachineOperand::MO_PCRelativeDisp: { const Value *Val = mop.getVRegValue(); assert(Val && "\tNULL Value in SparcFunctionAsmPrinter"); if (const BasicBlock *BB = dyn_cast(Val)) toAsm << getID(BB); else if (const Function *M = dyn_cast(Val)) toAsm << getID(M); else if (const GlobalVariable *GV = dyn_cast(Val)) toAsm << getID(GV); else if (const Constant *CV = dyn_cast(Val)) toAsm << getID(CV); else assert(0 && "Unrecognized value in SparcFunctionAsmPrinter"); break; } case MachineOperand::MO_SignExtendedImmed: toAsm << mop.getImmedValue(); break; case MachineOperand::MO_UnextendedImmed: toAsm << (uint64_t) mop.getImmedValue(); break; default: toAsm << mop; // use dump field break; } if (needBitsFlag) toAsm << ")"; } void SparcFunctionAsmPrinter::emitMachineInst(const MachineInstr *MI) { unsigned Opcode = MI->getOpCode(); if (TargetInstrDescriptors[Opcode].iclass & M_DUMMY_PHI_FLAG) return; // IGNORE PHI NODES toAsm << "\t" << TargetInstrDescriptors[Opcode].opCodeString << "\t"; unsigned Mask = getOperandMask(Opcode); bool NeedComma = false; unsigned N = 1; for (unsigned OpNum = 0; OpNum < MI->getNumOperands(); OpNum += N) if (! ((1 << OpNum) & Mask)) { // Ignore this operand? if (NeedComma) toAsm << ", "; // Handle comma outputing NeedComma = true; N = printOperands(MI, OpNum); } else N = 1; toAsm << "\n"; } void SparcFunctionAsmPrinter::emitBasicBlock(const BasicBlock *BB) { // Emit a label for the basic block toAsm << getID(BB) << ":\n"; // Get the vector of machine instructions corresponding to this bb. const MachineCodeForBasicBlock &MIs = MachineCodeForBasicBlock::get(BB); MachineCodeForBasicBlock::const_iterator MII = MIs.begin(), MIE = MIs.end(); // Loop over all of the instructions in the basic block... for (; MII != MIE; ++MII) emitMachineInst(*MII); toAsm << "\n"; // Seperate BB's with newlines } void SparcFunctionAsmPrinter::emitFunction(const Function &F) { string methName = getID(&F); toAsm << "!****** Outputing Function: " << methName << " ******\n"; enterSection(AsmPrinter::Text); toAsm << "\t.align\t4\n\t.global\t" << methName << "\n"; //toAsm << "\t.type\t" << methName << ",#function\n"; toAsm << "\t.type\t" << methName << ", 2\n"; toAsm << methName << ":\n"; // Output code for all of the basic blocks in the function... for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) emitBasicBlock(I); // Output a .size directive so the debugger knows the extents of the function toAsm << ".EndOf_" << methName << ":\n\t.size " << methName << ", .EndOf_" << methName << "-" << methName << "\n"; // Put some spaces between the functions toAsm << "\n\n"; } } // End anonymous namespace Pass *UltraSparc::getFunctionAsmPrinterPass(std::ostream &Out) { return new SparcFunctionAsmPrinter(Out, *this); } //===----------------------------------------------------------------------===// // SparcFunctionAsmPrinter Code //===----------------------------------------------------------------------===// namespace { class SparcModuleAsmPrinter : public Pass, public AsmPrinter { public: SparcModuleAsmPrinter(std::ostream &os, TargetMachine &t) : AsmPrinter(os, t) {} const char *getPassName() const { return "Output Sparc Assembly for Module"; } virtual bool run(Module &M) { startModule(M); emitGlobalsAndConstants(M); endModule(); return false; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); } private: void emitGlobalsAndConstants (const Module &M); void printGlobalVariable (const GlobalVariable *GV); void PrintZeroBytesToPad (int numBytes); void printSingleConstantValue (const Constant* CV); void printConstantValueOnly (const Constant* CV, int numPadBytes = 0); void printConstant (const Constant* CV, string valID = ""); static void FoldConstants (const Module &M, hash_set &moduleConstants); }; // Can we treat the specified array as a string? Only if it is an array of // ubytes or non-negative sbytes. // static bool isStringCompatible(const ConstantArray *CVA) { const Type *ETy = cast(CVA->getType())->getElementType(); if (ETy == Type::UByteTy) return true; if (ETy != Type::SByteTy) return false; for (unsigned i = 0; i < CVA->getNumOperands(); ++i) if (cast(CVA->getOperand(i))->getValue() < 0) return false; return true; } // toOctal - Convert the low order bits of X into an octal letter static inline char toOctal(int X) { return (X&7)+'0'; } // getAsCString - Return the specified array as a C compatible string, only if // the predicate isStringCompatible is true. // static string getAsCString(const ConstantArray *CVA) { assert(isStringCompatible(CVA) && "Array is not string compatible!"); string Result; const Type *ETy = cast(CVA->getType())->getElementType(); Result = "\""; for (unsigned i = 0; i < CVA->getNumOperands(); ++i) { unsigned char C = (ETy == Type::SByteTy) ? (unsigned char)cast(CVA->getOperand(i))->getValue() : (unsigned char)cast(CVA->getOperand(i))->getValue(); if (C == '"') { Result += "\\\""; } else if (C == '\\') { Result += "\\\\"; } else if (isprint(C)) { Result += C; } else { switch(C) { case '\a': Result += "\\a"; break; case '\b': Result += "\\b"; break; case '\f': Result += "\\f"; break; case '\n': Result += "\\n"; break; case '\r': Result += "\\r"; break; case '\t': Result += "\\t"; break; case '\v': Result += "\\v"; break; default: Result += '\\'; Result += toOctal(C >> 6); Result += toOctal(C >> 3); Result += toOctal(C >> 0); break; } } } Result += "\""; return Result; } inline bool ArrayTypeIsString(const ArrayType* arrayType) { return (arrayType->getElementType() == Type::UByteTy || arrayType->getElementType() == Type::SByteTy); } inline const string TypeToDataDirective(const Type* type) { switch(type->getPrimitiveID()) { case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: return ".byte"; case Type::UShortTyID: case Type::ShortTyID: return ".half"; case Type::UIntTyID: case Type::IntTyID: return ".word"; case Type::ULongTyID: case Type::LongTyID: case Type::PointerTyID: return ".xword"; case Type::FloatTyID: return ".word"; case Type::DoubleTyID: return ".xword"; case Type::ArrayTyID: if (ArrayTypeIsString((ArrayType*) type)) return ".ascii"; else return ""; default: return ""; } } // Get the size of the type // inline unsigned int TypeToSize(const Type* type, const TargetMachine& target) { return target.findOptimalStorageSize(type); } // Get the size of the constant for the given target. // If this is an unsized array, return 0. // inline unsigned int ConstantToSize(const Constant* CV, const TargetMachine& target) { if (const ConstantArray* CVA = dyn_cast(CV)) { const ArrayType *aty = cast(CVA->getType()); if (ArrayTypeIsString(aty)) return 1 + CVA->getNumOperands(); } return TypeToSize(CV->getType(), target); } // Align data larger than one L1 cache line on L1 cache line boundaries. // Align all smaller data on the next higher 2^x boundary (4, 8, ...). // inline unsigned int SizeToAlignment(unsigned int size, const TargetMachine& target) { unsigned short cacheLineSize = target.getCacheInfo().getCacheLineSize(1); if (size > (unsigned) cacheLineSize / 2) return cacheLineSize; else for (unsigned sz=1; /*no condition*/; sz *= 2) if (sz >= size) return sz; } // Get the size of the type and then use SizeToAlignment. // inline unsigned int TypeToAlignment(const Type* type, const TargetMachine& target) { return SizeToAlignment(TypeToSize(type, target), target); } // Get the size of the constant and then use SizeToAlignment. // Handles strings as a special case; inline unsigned int ConstantToAlignment(const Constant* CV, const TargetMachine& target) { if (const ConstantArray* CVA = dyn_cast(CV)) if (ArrayTypeIsString(cast(CVA->getType()))) return SizeToAlignment(1 + CVA->getNumOperands(), target); return TypeToAlignment(CV->getType(), target); } // Print a single constant value. void SparcModuleAsmPrinter::printSingleConstantValue(const Constant* CV) { assert(CV->getType() != Type::VoidTy && CV->getType() != Type::TypeTy && CV->getType() != Type::LabelTy && "Unexpected type for Constant"); assert((!isa(CV) && ! isa(CV)) && "Aggregate types should be handled outside this function"); toAsm << "\t" << TypeToDataDirective(CV->getType()) << "\t"; if (CV->getType()->isPrimitiveType()) { if (CV->getType()->isFloatingPoint()) { // FP Constants are printed as integer constants to avoid losing // precision... double Val = cast(CV)->getValue(); if (CV->getType() == Type::FloatTy) { float FVal = (float)Val; char *ProxyPtr = (char*)&FVal; // Abide by C TBAA rules toAsm << *(unsigned int*)ProxyPtr; } else if (CV->getType() == Type::DoubleTy) { char *ProxyPtr = (char*)&Val; // Abide by C TBAA rules toAsm << *(uint64_t*)ProxyPtr; } else { assert(0 && "Unknown floating point type!"); } toAsm << "\t! " << CV->getType()->getDescription() << " value: " << Val << "\n"; } else { WriteAsOperand(toAsm, CV, false, false) << "\n"; } } else if (const ConstantPointerRef* CPR = dyn_cast(CV)) { // This is a constant address for a global variable or method. // Use the name of the variable or method as the address value. toAsm << getID(CPR->getValue()) << "\n"; } else if (isa(CV)) { // Null pointer value toAsm << "0\n"; } else if (const ConstantExpr* CE = dyn_cast(CV)) { // Constant expression built from operators, constants, and symbolic addrs toAsm << ConstantExprToString(CE, Target) << "\n"; } else { assert(0 && "Unknown elementary type for constant"); } } void SparcModuleAsmPrinter::PrintZeroBytesToPad(int numBytes) { for ( ; numBytes >= 8; numBytes -= 8) printSingleConstantValue(Constant::getNullValue(Type::ULongTy)); if (numBytes >= 4) { printSingleConstantValue(Constant::getNullValue(Type::UIntTy)); numBytes -= 4; } while (numBytes--) printSingleConstantValue(Constant::getNullValue(Type::UByteTy)); } // Print a constant value or values (it may be an aggregate). // Uses printSingleConstantValue() to print each individual value. void SparcModuleAsmPrinter::printConstantValueOnly(const Constant* CV, int numPadBytes /* = 0*/) { const ConstantArray *CVA = dyn_cast(CV); if (numPadBytes) PrintZeroBytesToPad(numPadBytes); if (CVA && isStringCompatible(CVA)) { // print the string alone and return toAsm << "\t" << ".ascii" << "\t" << getAsCString(CVA) << "\n"; } else if (CVA) { // Not a string. Print the values in successive locations const std::vector &constValues = CVA->getValues(); for (unsigned i=0; i < constValues.size(); i++) printConstantValueOnly(cast(constValues[i].get())); } else if (const ConstantStruct *CVS = dyn_cast(CV)) { // Print the fields in successive locations. Pad to align if needed! const StructLayout *cvsLayout = Target.DataLayout.getStructLayout(CVS->getType()); const std::vector& constValues = CVS->getValues(); unsigned sizeSoFar = 0; for (unsigned i=0, N = constValues.size(); i < N; i++) { const Constant* field = cast(constValues[i].get()); // Check if padding is needed and insert one or more 0s. unsigned fieldSize = Target.DataLayout.getTypeSize(field->getType()); int padSize = ((i == N-1? cvsLayout->StructSize : cvsLayout->MemberOffsets[i+1]) - cvsLayout->MemberOffsets[i]) - fieldSize; sizeSoFar += (fieldSize + padSize); // Now print the actual field value printConstantValueOnly(field, padSize); } assert(sizeSoFar == cvsLayout->StructSize && "Layout of constant struct may be incorrect!"); } else printSingleConstantValue(CV); } // Print a constant (which may be an aggregate) prefixed by all the // appropriate directives. Uses printConstantValueOnly() to print the // value or values. void SparcModuleAsmPrinter::printConstant(const Constant* CV, string valID) { if (valID.length() == 0) valID = getID(CV); toAsm << "\t.align\t" << ConstantToAlignment(CV, Target) << "\n"; // Print .size and .type only if it is not a string. const ConstantArray *CVA = dyn_cast(CV); if (CVA && isStringCompatible(CVA)) { // print it as a string and return toAsm << valID << ":\n"; toAsm << "\t" << ".ascii" << "\t" << getAsCString(CVA) << "\n"; return; } toAsm << "\t.type" << "\t" << valID << ",#object\n"; unsigned int constSize = ConstantToSize(CV, Target); if (constSize) toAsm << "\t.size" << "\t" << valID << "," << constSize << "\n"; toAsm << valID << ":\n"; printConstantValueOnly(CV); } void SparcModuleAsmPrinter::FoldConstants(const Module &M, hash_set &MC) { for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isExternal()) { const hash_set &pool = MachineCodeForMethod::get(I).getConstantPoolValues(); MC.insert(pool.begin(), pool.end()); } } void SparcModuleAsmPrinter::printGlobalVariable(const GlobalVariable* GV) { if (GV->hasExternalLinkage()) toAsm << "\t.global\t" << getID(GV) << "\n"; if (GV->hasInitializer() && ! GV->getInitializer()->isNullValue()) printConstant(GV->getInitializer(), getID(GV)); else { toAsm << "\t.align\t" << TypeToAlignment(GV->getType()->getElementType(), Target) << "\n"; toAsm << "\t.type\t" << getID(GV) << ",#object\n"; toAsm << "\t.reserve\t" << getID(GV) << "," << TypeToSize(GV->getType()->getElementType(), Target) << "\n"; } } void SparcModuleAsmPrinter::emitGlobalsAndConstants(const Module &M) { // First, get the constants there were marked by the code generator for // inclusion in the assembly code data area and fold them all into a // single constant pool since there may be lots of duplicates. Also, // lets force these constants into the slot table so that we can get // unique names for unnamed constants also. // hash_set moduleConstants; FoldConstants(M, moduleConstants); // Output constants spilled to memory enterSection(AsmPrinter::ReadOnlyData); for (hash_set::const_iterator I = moduleConstants.begin(), E = moduleConstants.end(); I != E; ++I) printConstant(*I); // Output global variables... for (Module::const_giterator GI = M.gbegin(), GE = M.gend(); GI != GE; ++GI) if (! GI->isExternal()) { assert(GI->hasInitializer()); if (GI->isConstant()) enterSection(AsmPrinter::ReadOnlyData); // read-only, initialized data else if (GI->getInitializer()->isNullValue()) enterSection(AsmPrinter::ZeroInitRWData); // read-write zero data else enterSection(AsmPrinter::InitRWData); // read-write non-zero data printGlobalVariable(GI); } toAsm << "\n"; } } // End anonymous namespace Pass *UltraSparc::getModuleAsmPrinterPass(std::ostream &Out) { return new SparcModuleAsmPrinter(Out, *this); }