//===-- ThreadSanitizer.cpp - race detector -------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer, a race detector. // // The tool is under development, for the details about previous versions see // http://code.google.com/p/data-race-test // // The instrumentation phase is quite simple: // - Insert calls to run-time library before every memory access. // - Optimizations may apply to avoid instrumenting some of the accesses. // - Insert calls at function entry/exit. // The rest is handled by the run-time library. //===----------------------------------------------------------------------===// #define DEBUG_TYPE "tsan" #include "FunctionBlackList.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Intrinsics.h" #include "llvm/Function.h" #include "llvm/Module.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/IRBuilder.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/Instrumentation.h" #include "llvm/Transforms/Utils/ModuleUtils.h" #include "llvm/Type.h" using namespace llvm; static cl::opt ClBlackListFile("tsan-blacklist", cl::desc("Blacklist file"), cl::Hidden); namespace { /// ThreadSanitizer: instrument the code in module to find races. struct ThreadSanitizer : public FunctionPass { ThreadSanitizer(); bool runOnFunction(Function &F); bool doInitialization(Module &M); bool instrumentLoadOrStore(Instruction *I); static char ID; // Pass identification, replacement for typeid. private: TargetData *TD; OwningPtr BL; // Callbacks to run-time library are computed in doInitialization. Value *TsanFuncEntry; Value *TsanFuncExit; // Accesses sizes are powers of two: 1, 2, 4, 8, 16. static const size_t kNumberOfAccessSizes = 5; Value *TsanRead[kNumberOfAccessSizes]; Value *TsanWrite[kNumberOfAccessSizes]; }; } // namespace char ThreadSanitizer::ID = 0; INITIALIZE_PASS(ThreadSanitizer, "tsan", "ThreadSanitizer: detects data races.", false, false) ThreadSanitizer::ThreadSanitizer() : FunctionPass(ID), TD(NULL) { } FunctionPass *llvm::createThreadSanitizerPass() { return new ThreadSanitizer(); } bool ThreadSanitizer::doInitialization(Module &M) { TD = getAnalysisIfAvailable(); if (!TD) return false; BL.reset(new FunctionBlackList(ClBlackListFile)); // Always insert a call to __tsan_init into the module's CTORs. IRBuilder<> IRB(M.getContext()); Value *TsanInit = M.getOrInsertFunction("__tsan_init", IRB.getVoidTy(), NULL); appendToGlobalCtors(M, cast(TsanInit), 0); // Initialize the callbacks. TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL); TsanFuncExit = M.getOrInsertFunction("__tsan_func_exit", IRB.getVoidTy(), NULL); for (size_t i = 0; i < kNumberOfAccessSizes; ++i) { SmallString<32> ReadName("__tsan_read"); ReadName += itostr(1 << i); TsanRead[i] = M.getOrInsertFunction(ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL); SmallString<32> WriteName("__tsan_write"); WriteName += itostr(1 << i); TsanWrite[i] = M.getOrInsertFunction(WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL); } return true; } bool ThreadSanitizer::runOnFunction(Function &F) { if (!TD) return false; if (BL->isIn(F)) return false; SmallVector RetVec; SmallVector LoadsAndStores; bool Res = false; bool HasCalls = false; // Traverse all instructions, collect loads/stores/returns, check for calls. for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { BasicBlock &BB = *FI; for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { if (isa(BI) || isa(BI)) LoadsAndStores.push_back(BI); else if (isa(BI)) RetVec.push_back(BI); else if (isa(BI) || isa(BI)) HasCalls = true; } } // We have collected all loads and stores. // FIXME: many of these accesses do not need to be checked for races // (e.g. variables that do not escape, etc). // Instrument memory accesses. for (size_t i = 0, n = LoadsAndStores.size(); i < n; ++i) { Res |= instrumentLoadOrStore(LoadsAndStores[i]); } // Instrument function entry/exit points if there were instrumented accesses. if (Res || HasCalls) { IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); Value *ReturnAddress = IRB.CreateCall( Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress), IRB.getInt32(0)); IRB.CreateCall(TsanFuncEntry, ReturnAddress); for (size_t i = 0, n = RetVec.size(); i < n; ++i) { IRBuilder<> IRBRet(RetVec[i]); IRBRet.CreateCall(TsanFuncExit); } } return Res; } bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I) { IRBuilder<> IRB(I); bool IsWrite = isa(*I); Value *Addr = IsWrite ? cast(I)->getPointerOperand() : cast(I)->getPointerOperand(); Type *OrigPtrTy = Addr->getType(); Type *OrigTy = cast(OrigPtrTy)->getElementType(); assert(OrigTy->isSized()); uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy); if (TypeSize != 8 && TypeSize != 16 && TypeSize != 32 && TypeSize != 64 && TypeSize != 128) { // Ignore all unusual sizes. return false; } size_t Idx = CountTrailingZeros_32(TypeSize / 8); assert(Idx < kNumberOfAccessSizes); Value *OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx]; IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); return true; }