//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveVariable analysis pass. For each machine // instruction in the function, this pass calculates the set of registers that // are immediately dead after the instruction (i.e., the instruction calculates // the value, but it is never used) and the set of registers that are used by // the instruction, but are never used after the instruction (i.e., they are // killed). // // This class computes live variables using are sparse implementation based on // the machine code SSA form. This class computes live variable information for // each virtual and _register allocatable_ physical register in a function. It // uses the dominance properties of SSA form to efficiently compute live // variables for virtual registers, and assumes that physical registers are only // live within a single basic block (allowing it to do a single local analysis // to resolve physical register lifetimes in each basic block). If a physical // register is not register allocatable, it is not tracked. This is useful for // things like the stack pointer and condition codes. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Config/alloca.h" #include using namespace llvm; char LiveVariables::ID = 0; static RegisterPass X("livevars", "Live Variable Analysis"); void LiveVariables::VarInfo::dump() const { cerr << "Register Defined by: "; if (DefInst) cerr << *DefInst; else cerr << "\n"; cerr << " Alive in blocks: "; for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i) if (AliveBlocks[i]) cerr << i << ", "; cerr << "\n Killed by:"; if (Kills.empty()) cerr << " No instructions.\n"; else { for (unsigned i = 0, e = Kills.size(); i != e; ++i) cerr << "\n #" << i << ": " << *Kills[i]; cerr << "\n"; } } LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { assert(MRegisterInfo::isVirtualRegister(RegIdx) && "getVarInfo: not a virtual register!"); RegIdx -= MRegisterInfo::FirstVirtualRegister; if (RegIdx >= VirtRegInfo.size()) { if (RegIdx >= 2*VirtRegInfo.size()) VirtRegInfo.resize(RegIdx*2); else VirtRegInfo.resize(2*VirtRegInfo.size()); } VarInfo &VI = VirtRegInfo[RegIdx]; VI.AliveBlocks.resize(MF->getNumBlockIDs()); return VI; } bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isKill()) { if ((MO.getReg() == Reg) || (MRegisterInfo::isPhysicalRegister(MO.getReg()) && MRegisterInfo::isPhysicalRegister(Reg) && RegInfo->isSubRegister(MO.getReg(), Reg))) return true; } } return false; } bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isDead()) { if ((MO.getReg() == Reg) || (MRegisterInfo::isPhysicalRegister(MO.getReg()) && MRegisterInfo::isPhysicalRegister(Reg) && RegInfo->isSubRegister(MO.getReg(), Reg))) return true; } } return false; } bool LiveVariables::ModifiesRegister(MachineInstr *MI, unsigned Reg) const { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) return true; } return false; } void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, MachineBasicBlock *MBB, std::vector &WorkList) { unsigned BBNum = MBB->getNumber(); // Check to see if this basic block is one of the killing blocks. If so, // remove it... for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) if (VRInfo.Kills[i]->getParent() == MBB) { VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry break; } if (MBB == VRInfo.DefInst->getParent()) return; // Terminate recursion if (VRInfo.AliveBlocks[BBNum]) return; // We already know the block is live // Mark the variable known alive in this bb VRInfo.AliveBlocks[BBNum] = true; for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(), E = MBB->pred_rend(); PI != E; ++PI) WorkList.push_back(*PI); } void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, MachineBasicBlock *MBB) { std::vector WorkList; MarkVirtRegAliveInBlock(VRInfo, MBB, WorkList); while (!WorkList.empty()) { MachineBasicBlock *Pred = WorkList.back(); WorkList.pop_back(); MarkVirtRegAliveInBlock(VRInfo, Pred, WorkList); } } void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, MachineInstr *MI) { assert(VRInfo.DefInst && "Register use before def!"); VRInfo.NumUses++; // Check to see if this basic block is already a kill block... if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { // Yes, this register is killed in this basic block already. Increase the // live range by updating the kill instruction. VRInfo.Kills.back() = MI; return; } #ifndef NDEBUG for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); #endif assert(MBB != VRInfo.DefInst->getParent() && "Should have kill for defblock!"); // Add a new kill entry for this basic block. // If this virtual register is already marked as alive in this basic block, // that means it is alive in at least one of the successor block, it's not // a kill. if (!VRInfo.AliveBlocks[MBB->getNumber()]) VRInfo.Kills.push_back(MI); // Update all dominating blocks to mark them known live. for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), E = MBB->pred_end(); PI != E; ++PI) MarkVirtRegAliveInBlock(VRInfo, *PI); } bool LiveVariables::addRegisterKilled(unsigned IncomingReg, MachineInstr *MI, bool AddIfNotFound) { bool Found = false; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isUse()) { unsigned Reg = MO.getReg(); if (!Reg) continue; if (Reg == IncomingReg) { MO.setIsKill(); Found = true; break; } else if (MRegisterInfo::isPhysicalRegister(Reg) && MRegisterInfo::isPhysicalRegister(IncomingReg) && RegInfo->isSuperRegister(IncomingReg, Reg) && MO.isKill()) // A super-register kill already exists. return true; } } // If not found, this means an alias of one of the operand is killed. Add a // new implicit operand if required. if (!Found && AddIfNotFound) { MI->addRegOperand(IncomingReg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/); return true; } return Found; } bool LiveVariables::addRegisterDead(unsigned IncomingReg, MachineInstr *MI, bool AddIfNotFound) { bool Found = false; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isDef()) { unsigned Reg = MO.getReg(); if (!Reg) continue; if (Reg == IncomingReg) { MO.setIsDead(); Found = true; break; } else if (MRegisterInfo::isPhysicalRegister(Reg) && MRegisterInfo::isPhysicalRegister(IncomingReg) && RegInfo->isSuperRegister(IncomingReg, Reg) && MO.isDead()) // There exists a super-register that's marked dead. return true; } } // If not found, this means an alias of one of the operand is dead. Add a // new implicit operand. if (!Found && AddIfNotFound) { MI->addRegOperand(IncomingReg, true/*IsDef*/,true/*IsImp*/,false/*IsKill*/, true/*IsDead*/); return true; } return Found; } void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { // There is a now a proper use, forget about the last partial use. PhysRegPartUse[Reg] = NULL; // Turn previous partial def's into read/mod/write. for (unsigned i = 0, e = PhysRegPartDef[Reg].size(); i != e; ++i) { MachineInstr *Def = PhysRegPartDef[Reg][i]; // First one is just a def. This means the use is reading some undef bits. if (i != 0) Def->addRegOperand(Reg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/); Def->addRegOperand(Reg, true/*IsDef*/,true/*IsImp*/); } PhysRegPartDef[Reg].clear(); // There was an earlier def of a super-register. Add implicit def to that MI. // A: EAX = ... // B: = AX // Add implicit def to A. if (PhysRegInfo[Reg] && !PhysRegUsed[Reg]) { MachineInstr *Def = PhysRegInfo[Reg]; if (!Def->findRegisterDefOperand(Reg)) Def->addRegOperand(Reg, true/*IsDef*/,true/*IsImp*/); } PhysRegInfo[Reg] = MI; PhysRegUsed[Reg] = true; for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg); unsigned SubReg = *SubRegs; ++SubRegs) { PhysRegInfo[SubReg] = MI; PhysRegUsed[SubReg] = true; } // Remember the partial uses. for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg); unsigned SuperReg = *SuperRegs; ++SuperRegs) PhysRegPartUse[SuperReg] = MI; } bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI, SmallSet &SubKills) { for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg); unsigned SubReg = *SubRegs; ++SubRegs) { MachineInstr *LastRef = PhysRegInfo[SubReg]; if (LastRef != RefMI) SubKills.insert(SubReg); else if (!HandlePhysRegKill(SubReg, RefMI, SubKills)) SubKills.insert(SubReg); } if (*RegInfo->getImmediateSubRegisters(Reg) == 0) { // No sub-registers, just check if reg is killed by RefMI. if (PhysRegInfo[Reg] == RefMI) return true; } else if (SubKills.empty()) // None of the sub-registers are killed elsewhere... return true; return false; } void LiveVariables::addRegisterKills(unsigned Reg, MachineInstr *MI, SmallSet &SubKills) { if (SubKills.count(Reg) == 0) addRegisterKilled(Reg, MI, true); else { for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg); unsigned SubReg = *SubRegs; ++SubRegs) addRegisterKills(SubReg, MI, SubKills); } } bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI) { SmallSet SubKills; if (HandlePhysRegKill(Reg, RefMI, SubKills)) { addRegisterKilled(Reg, RefMI); return true; } else { // Some sub-registers are killed by another MI. for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg); unsigned SubReg = *SubRegs; ++SubRegs) addRegisterKills(SubReg, RefMI, SubKills); return false; } } void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { // Does this kill a previous version of this register? if (MachineInstr *LastRef = PhysRegInfo[Reg]) { if (PhysRegUsed[Reg]) { if (!HandlePhysRegKill(Reg, LastRef)) { if (PhysRegPartUse[Reg]) addRegisterKilled(Reg, PhysRegPartUse[Reg], true); } } else if (PhysRegPartUse[Reg]) // Add implicit use / kill to last use of a sub-register. addRegisterKilled(Reg, PhysRegPartUse[Reg], true); else addRegisterDead(Reg, LastRef); } for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg); unsigned SubReg = *SubRegs; ++SubRegs) { if (MachineInstr *LastRef = PhysRegInfo[SubReg]) { if (PhysRegUsed[SubReg]) { if (!HandlePhysRegKill(SubReg, LastRef)) { if (PhysRegPartUse[SubReg]) addRegisterKilled(SubReg, PhysRegPartUse[SubReg], true); } //addRegisterKilled(SubReg, LastRef); } else if (PhysRegPartUse[SubReg]) // Add implicit use / kill to last use of a sub-register. addRegisterKilled(SubReg, PhysRegPartUse[SubReg], true); else addRegisterDead(SubReg, LastRef); } } if (MI) { for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg); unsigned SuperReg = *SuperRegs; ++SuperRegs) { if (PhysRegInfo[SuperReg]) { // The larger register is previously defined. Now a smaller part is // being re-defined. Treat it as read/mod/write. // EAX = // AX = EAX, EAX MI->addRegOperand(SuperReg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/); MI->addRegOperand(SuperReg, true/*IsDef*/,true/*IsImp*/); PhysRegInfo[SuperReg] = MI; PhysRegUsed[SuperReg] = false; PhysRegPartUse[SuperReg] = NULL; } else { // Remember this partial def. PhysRegPartDef[SuperReg].push_back(MI); } } PhysRegInfo[Reg] = MI; PhysRegUsed[Reg] = false; PhysRegPartUse[Reg] = NULL; for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg); unsigned SubReg = *SubRegs; ++SubRegs) { PhysRegInfo[SubReg] = MI; PhysRegUsed[SubReg] = false; PhysRegPartUse[SubReg] = NULL; } } } bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { MF = &mf; const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo(); RegInfo = MF->getTarget().getRegisterInfo(); assert(RegInfo && "Target doesn't have register information?"); ReservedRegisters = RegInfo->getReservedRegs(mf); unsigned NumRegs = RegInfo->getNumRegs(); PhysRegInfo = new MachineInstr*[NumRegs]; PhysRegUsed = new bool[NumRegs]; PhysRegPartUse = new MachineInstr*[NumRegs]; PhysRegPartDef = new SmallVector[NumRegs]; PHIVarInfo = new SmallVector[MF->getNumBlockIDs()]; std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0); std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false); std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0); /// Get some space for a respectable number of registers... VirtRegInfo.resize(64); analyzePHINodes(mf); // Calculate live variable information in depth first order on the CFG of the // function. This guarantees that we will see the definition of a virtual // register before its uses due to dominance properties of SSA (except for PHI // nodes, which are treated as a special case). // MachineBasicBlock *Entry = MF->begin(); SmallPtrSet Visited; for (df_ext_iterator > DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); DFI != E; ++DFI) { MachineBasicBlock *MBB = *DFI; // Mark live-in registers as live-in. for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(), EE = MBB->livein_end(); II != EE; ++II) { assert(MRegisterInfo::isPhysicalRegister(*II) && "Cannot have a live-in virtual register!"); HandlePhysRegDef(*II, 0); } // Loop over all of the instructions, processing them. for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) { MachineInstr *MI = I; // Process all of the operands of the instruction... unsigned NumOperandsToProcess = MI->getNumOperands(); // Unless it is a PHI node. In this case, ONLY process the DEF, not any // of the uses. They will be handled in other basic blocks. if (MI->getOpcode() == TargetInstrInfo::PHI) NumOperandsToProcess = 1; // Process all uses... for (unsigned i = 0; i != NumOperandsToProcess; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isRegister() && MO.isUse() && MO.getReg()) { if (MRegisterInfo::isVirtualRegister(MO.getReg())){ HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI); } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && !ReservedRegisters[MO.getReg()]) { HandlePhysRegUse(MO.getReg(), MI); } } } // Process all defs... for (unsigned i = 0; i != NumOperandsToProcess; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isRegister() && MO.isDef() && MO.getReg()) { if (MRegisterInfo::isVirtualRegister(MO.getReg())) { VarInfo &VRInfo = getVarInfo(MO.getReg()); assert(VRInfo.DefInst == 0 && "Variable multiply defined!"); VRInfo.DefInst = MI; // Defaults to dead VRInfo.Kills.push_back(MI); } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && !ReservedRegisters[MO.getReg()]) { HandlePhysRegDef(MO.getReg(), MI); } } } } // Handle any virtual assignments from PHI nodes which might be at the // bottom of this basic block. We check all of our successor blocks to see // if they have PHI nodes, and if so, we simulate an assignment at the end // of the current block. if (!PHIVarInfo[MBB->getNumber()].empty()) { SmallVector& VarInfoVec = PHIVarInfo[MBB->getNumber()]; for (SmallVector::iterator I = VarInfoVec.begin(), E = VarInfoVec.end(); I != E; ++I) { VarInfo& VRInfo = getVarInfo(*I); assert(VRInfo.DefInst && "Register use before def (or no def)!"); // Only mark it alive only in the block we are representing. MarkVirtRegAliveInBlock(VRInfo, MBB); } } // Finally, if the last instruction in the block is a return, make sure to mark // it as using all of the live-out values in the function. if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) { MachineInstr *Ret = &MBB->back(); for (MachineFunction::liveout_iterator I = MF->liveout_begin(), E = MF->liveout_end(); I != E; ++I) { assert(MRegisterInfo::isPhysicalRegister(*I) && "Cannot have a live-in virtual register!"); HandlePhysRegUse(*I, Ret); // Add live-out registers as implicit uses. if (Ret->findRegisterUseOperandIdx(*I) == -1) Ret->addRegOperand(*I, false, true); } } // Loop over PhysRegInfo, killing any registers that are available at the // end of the basic block. This also resets the PhysRegInfo map. for (unsigned i = 0; i != NumRegs; ++i) if (PhysRegInfo[i]) HandlePhysRegDef(i, 0); // Clear some states between BB's. These are purely local information. for (unsigned i = 0; i != NumRegs; ++i) PhysRegPartDef[i].clear(); std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0); std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false); std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0); } // Convert and transfer the dead / killed information we have gathered into // VirtRegInfo onto MI's. // for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) { if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst) addRegisterDead(i + MRegisterInfo::FirstVirtualRegister, VirtRegInfo[i].Kills[j]); else addRegisterKilled(i + MRegisterInfo::FirstVirtualRegister, VirtRegInfo[i].Kills[j]); } // Check to make sure there are no unreachable blocks in the MC CFG for the // function. If so, it is due to a bug in the instruction selector or some // other part of the code generator if this happens. #ifndef NDEBUG for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) assert(Visited.count(&*i) != 0 && "unreachable basic block found"); #endif delete[] PhysRegInfo; delete[] PhysRegUsed; delete[] PhysRegPartUse; delete[] PhysRegPartDef; delete[] PHIVarInfo; return false; } /// instructionChanged - When the address of an instruction changes, this /// method should be called so that live variables can update its internal /// data structures. This removes the records for OldMI, transfering them to /// the records for NewMI. void LiveVariables::instructionChanged(MachineInstr *OldMI, MachineInstr *NewMI) { // If the instruction defines any virtual registers, update the VarInfo, // kill and dead information for the instruction. for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { MachineOperand &MO = OldMI->getOperand(i); if (MO.isRegister() && MO.getReg() && MRegisterInfo::isVirtualRegister(MO.getReg())) { unsigned Reg = MO.getReg(); VarInfo &VI = getVarInfo(Reg); if (MO.isDef()) { if (MO.isDead()) { MO.unsetIsDead(); addVirtualRegisterDead(Reg, NewMI); } // Update the defining instruction. if (VI.DefInst == OldMI) VI.DefInst = NewMI; } if (MO.isUse()) { if (MO.isKill()) { MO.unsetIsKill(); addVirtualRegisterKilled(Reg, NewMI); } // If this is a kill of the value, update the VI kills list. if (VI.removeKill(OldMI)) VI.Kills.push_back(NewMI); // Yes, there was a kill of it } } } } /// removeVirtualRegistersKilled - Remove all killed info for the specified /// instruction. void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isKill()) { MO.unsetIsKill(); unsigned Reg = MO.getReg(); if (MRegisterInfo::isVirtualRegister(Reg)) { bool removed = getVarInfo(Reg).removeKill(MI); assert(removed && "kill not in register's VarInfo?"); } } } } /// removeVirtualRegistersDead - Remove all of the dead registers for the /// specified instruction from the live variable information. void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isDead()) { MO.unsetIsDead(); unsigned Reg = MO.getReg(); if (MRegisterInfo::isVirtualRegister(Reg)) { bool removed = getVarInfo(Reg).removeKill(MI); assert(removed && "kill not in register's VarInfo?"); } } } } /// analyzePHINodes - Gather information about the PHI nodes in here. In /// particular, we want to map the variable information of a virtual /// register which is used in a PHI node. We map that to the BB the vreg is /// coming from. /// void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) PHIVarInfo[BBI->getOperand(i + 1).getMachineBasicBlock()->getNumber()]. push_back(BBI->getOperand(i).getReg()); }