//===- InlineFunction.cpp - Code to perform function inlining -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements inlining of a function into a call site, resolving // parameters and the return value as appropriate. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/Intrinsics.h" #include "llvm/Attributes.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/Analysis/DebugInfo.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/IRBuilder.h" using namespace llvm; bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) { return InlineFunction(CallSite(CI), IFI); } bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) { return InlineFunction(CallSite(II), IFI); } namespace { /// A class for recording information about inlining through an invoke. class InvokeInliningInfo { BasicBlock *OuterResumeDest; //< Destination of the invoke's unwind. BasicBlock *InnerResumeDest; //< Destination for the callee's resume. LandingPadInst *CallerLPad; //< LandingPadInst associated with the invoke. PHINode *InnerEHValuesPHI; //< PHI for EH values from landingpad insts. SmallVector UnwindDestPHIValues; public: InvokeInliningInfo(InvokeInst *II) : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0), CallerLPad(0), InnerEHValuesPHI(0) { // If there are PHI nodes in the unwind destination block, we need to keep // track of which values came into them from the invoke before removing // the edge from this block. llvm::BasicBlock *InvokeBB = II->getParent(); BasicBlock::iterator I = OuterResumeDest->begin(); for (; isa(I); ++I) { // Save the value to use for this edge. PHINode *PHI = cast(I); UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); } CallerLPad = cast(I); } /// getOuterResumeDest - The outer unwind destination is the target of /// unwind edges introduced for calls within the inlined function. BasicBlock *getOuterResumeDest() const { return OuterResumeDest; } BasicBlock *getInnerResumeDest(); LandingPadInst *getLandingPadInst() const { return CallerLPad; } /// forwardResume - Forward the 'resume' instruction to the caller's landing /// pad block. When the landing pad block has only one predecessor, this is /// a simple branch. When there is more than one predecessor, we need to /// split the landing pad block after the landingpad instruction and jump /// to there. void forwardResume(ResumeInst *RI); /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind /// destination block for the given basic block, using the values for the /// original invoke's source block. void addIncomingPHIValuesFor(BasicBlock *BB) const { addIncomingPHIValuesForInto(BB, OuterResumeDest); } void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { BasicBlock::iterator I = dest->begin(); for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { PHINode *phi = cast(I); phi->addIncoming(UnwindDestPHIValues[i], src); } } }; } /// getInnerResumeDest - Get or create a target for the branch from ResumeInsts. BasicBlock *InvokeInliningInfo::getInnerResumeDest() { if (InnerResumeDest) return InnerResumeDest; // Split the landing pad. BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; InnerResumeDest = OuterResumeDest->splitBasicBlock(SplitPoint, OuterResumeDest->getName() + ".body"); // The number of incoming edges we expect to the inner landing pad. const unsigned PHICapacity = 2; // Create corresponding new PHIs for all the PHIs in the outer landing pad. BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); BasicBlock::iterator I = OuterResumeDest->begin(); for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { PHINode *OuterPHI = cast(I); PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, OuterPHI->getName() + ".lpad-body", InsertPoint); OuterPHI->replaceAllUsesWith(InnerPHI); InnerPHI->addIncoming(OuterPHI, OuterResumeDest); } // Create a PHI for the exception values. InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, "eh.lpad-body", InsertPoint); CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); // All done. return InnerResumeDest; } /// forwardResume - Forward the 'resume' instruction to the caller's landing pad /// block. When the landing pad block has only one predecessor, this is a simple /// branch. When there is more than one predecessor, we need to split the /// landing pad block after the landingpad instruction and jump to there. void InvokeInliningInfo::forwardResume(ResumeInst *RI) { BasicBlock *Dest = getInnerResumeDest(); BasicBlock *Src = RI->getParent(); BranchInst::Create(Dest, Src); // Update the PHIs in the destination. They were inserted in an order which // makes this work. addIncomingPHIValuesForInto(Src, Dest); InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); RI->eraseFromParent(); } /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into /// an invoke, we have to turn all of the calls that can throw into /// invokes. This function analyze BB to see if there are any calls, and if so, /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI /// nodes in that block with the values specified in InvokeDestPHIValues. /// /// Returns true to indicate that the next block should be skipped. static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, InvokeInliningInfo &Invoke) { LandingPadInst *LPI = Invoke.getLandingPadInst(); for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { Instruction *I = BBI++; if (LandingPadInst *L = dyn_cast(I)) { unsigned NumClauses = LPI->getNumClauses(); L->reserveClauses(NumClauses); for (unsigned i = 0; i != NumClauses; ++i) L->addClause(LPI->getClause(i)); } // We only need to check for function calls: inlined invoke // instructions require no special handling. CallInst *CI = dyn_cast(I); // If this call cannot unwind, don't convert it to an invoke. if (!CI || CI->doesNotThrow()) continue; // Convert this function call into an invoke instruction. First, split the // basic block. BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); // Delete the unconditional branch inserted by splitBasicBlock BB->getInstList().pop_back(); // Create the new invoke instruction. ImmutableCallSite CS(CI); SmallVector InvokeArgs(CS.arg_begin(), CS.arg_end()); InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, Invoke.getOuterResumeDest(), InvokeArgs, CI->getName(), BB); II->setCallingConv(CI->getCallingConv()); II->setAttributes(CI->getAttributes()); // Make sure that anything using the call now uses the invoke! This also // updates the CallGraph if present, because it uses a WeakVH. CI->replaceAllUsesWith(II); // Delete the original call Split->getInstList().pop_front(); // Update any PHI nodes in the exceptional block to indicate that there is // now a new entry in them. Invoke.addIncomingPHIValuesFor(BB); return false; } return false; } /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls /// in the body of the inlined function into invokes. /// /// II is the invoke instruction being inlined. FirstNewBlock is the first /// block of the inlined code (the last block is the end of the function), /// and InlineCodeInfo is information about the code that got inlined. static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, ClonedCodeInfo &InlinedCodeInfo) { BasicBlock *InvokeDest = II->getUnwindDest(); Function *Caller = FirstNewBlock->getParent(); // The inlined code is currently at the end of the function, scan from the // start of the inlined code to its end, checking for stuff we need to // rewrite. If the code doesn't have calls or unwinds, we know there is // nothing to rewrite. if (!InlinedCodeInfo.ContainsCalls) { // Now that everything is happy, we have one final detail. The PHI nodes in // the exception destination block still have entries due to the original // invoke instruction. Eliminate these entries (which might even delete the // PHI node) now. InvokeDest->removePredecessor(II->getParent()); return; } InvokeInliningInfo Invoke(II); for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ if (InlinedCodeInfo.ContainsCalls) if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) { // Honor a request to skip the next block. ++BB; continue; } if (ResumeInst *RI = dyn_cast(BB->getTerminator())) Invoke.forwardResume(RI); } // Now that everything is happy, we have one final detail. The PHI nodes in // the exception destination block still have entries due to the original // invoke instruction. Eliminate these entries (which might even delete the // PHI node) now. InvokeDest->removePredecessor(II->getParent()); } /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee /// into the caller, update the specified callgraph to reflect the changes we /// made. Note that it's possible that not all code was copied over, so only /// some edges of the callgraph may remain. static void UpdateCallGraphAfterInlining(CallSite CS, Function::iterator FirstNewBlock, ValueToValueMapTy &VMap, InlineFunctionInfo &IFI) { CallGraph &CG = *IFI.CG; const Function *Caller = CS.getInstruction()->getParent()->getParent(); const Function *Callee = CS.getCalledFunction(); CallGraphNode *CalleeNode = CG[Callee]; CallGraphNode *CallerNode = CG[Caller]; // Since we inlined some uninlined call sites in the callee into the caller, // add edges from the caller to all of the callees of the callee. CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); // Consider the case where CalleeNode == CallerNode. CallGraphNode::CalledFunctionsVector CallCache; if (CalleeNode == CallerNode) { CallCache.assign(I, E); I = CallCache.begin(); E = CallCache.end(); } for (; I != E; ++I) { const Value *OrigCall = I->first; ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); // Only copy the edge if the call was inlined! if (VMI == VMap.end() || VMI->second == 0) continue; // If the call was inlined, but then constant folded, there is no edge to // add. Check for this case. Instruction *NewCall = dyn_cast(VMI->second); if (NewCall == 0) continue; // Remember that this call site got inlined for the client of // InlineFunction. IFI.InlinedCalls.push_back(NewCall); // It's possible that inlining the callsite will cause it to go from an // indirect to a direct call by resolving a function pointer. If this // happens, set the callee of the new call site to a more precise // destination. This can also happen if the call graph node of the caller // was just unnecessarily imprecise. if (I->second->getFunction() == 0) if (Function *F = CallSite(NewCall).getCalledFunction()) { // Indirect call site resolved to direct call. CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); continue; } CallerNode->addCalledFunction(CallSite(NewCall), I->second); } // Update the call graph by deleting the edge from Callee to Caller. We must // do this after the loop above in case Caller and Callee are the same. CallerNode->removeCallEdgeFor(CS); } /// HandleByValArgument - When inlining a call site that has a byval argument, /// we have to make the implicit memcpy explicit by adding it. static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, const Function *CalledFunc, InlineFunctionInfo &IFI, unsigned ByValAlignment) { Type *AggTy = cast(Arg->getType())->getElementType(); // If the called function is readonly, then it could not mutate the caller's // copy of the byval'd memory. In this case, it is safe to elide the copy and // temporary. if (CalledFunc->onlyReadsMemory()) { // If the byval argument has a specified alignment that is greater than the // passed in pointer, then we either have to round up the input pointer or // give up on this transformation. if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. return Arg; // If the pointer is already known to be sufficiently aligned, or if we can // round it up to a larger alignment, then we don't need a temporary. if (getOrEnforceKnownAlignment(Arg, ByValAlignment, IFI.TD) >= ByValAlignment) return Arg; // Otherwise, we have to make a memcpy to get a safe alignment. This is bad // for code quality, but rarely happens and is required for correctness. } LLVMContext &Context = Arg->getContext(); Type *VoidPtrTy = Type::getInt8PtrTy(Context); // Create the alloca. If we have TargetData, use nice alignment. unsigned Align = 1; if (IFI.TD) Align = IFI.TD->getPrefTypeAlignment(AggTy); // If the byval had an alignment specified, we *must* use at least that // alignment, as it is required by the byval argument (and uses of the // pointer inside the callee). Align = std::max(Align, ByValAlignment); Function *Caller = TheCall->getParent()->getParent(); Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(), &*Caller->begin()->begin()); // Emit a memcpy. Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)}; Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(), Intrinsic::memcpy, Tys); Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall); Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall); Value *Size; if (IFI.TD == 0) Size = ConstantExpr::getSizeOf(AggTy); else Size = ConstantInt::get(Type::getInt64Ty(Context), IFI.TD->getTypeStoreSize(AggTy)); // Always generate a memcpy of alignment 1 here because we don't know // the alignment of the src pointer. Other optimizations can infer // better alignment. Value *CallArgs[] = { DestCast, SrcCast, Size, ConstantInt::get(Type::getInt32Ty(Context), 1), ConstantInt::getFalse(Context) // isVolatile }; IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs); // Uses of the argument in the function should use our new alloca // instead. return NewAlloca; } // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime // intrinsic. static bool isUsedByLifetimeMarker(Value *V) { for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE; ++UI) { if (IntrinsicInst *II = dyn_cast(*UI)) { switch (II->getIntrinsicID()) { default: break; case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: return true; } } } return false; } // hasLifetimeMarkers - Check whether the given alloca already has // lifetime.start or lifetime.end intrinsics. static bool hasLifetimeMarkers(AllocaInst *AI) { Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext()); if (AI->getType() == Int8PtrTy) return isUsedByLifetimeMarker(AI); // Do a scan to find all the casts to i8*. for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E; ++I) { if (I->getType() != Int8PtrTy) continue; if (I->stripPointerCasts() != AI) continue; if (isUsedByLifetimeMarker(*I)) return true; } return false; } /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to recursively /// update InlinedAtEntry of a DebugLoc. static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, const DebugLoc &InlinedAtDL, LLVMContext &Ctx) { if (MDNode *IA = DL.getInlinedAt(Ctx)) { DebugLoc NewInlinedAtDL = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx); return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), NewInlinedAtDL.getAsMDNode(Ctx)); } return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), InlinedAtDL.getAsMDNode(Ctx)); } /// fixupLineNumbers - Update inlined instructions' line numbers to /// to encode location where these instructions are inlined. static void fixupLineNumbers(Function *Fn, Function::iterator FI, Instruction *TheCall) { DebugLoc TheCallDL = TheCall->getDebugLoc(); if (TheCallDL.isUnknown()) return; for (; FI != Fn->end(); ++FI) { for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) { DebugLoc DL = BI->getDebugLoc(); if (!DL.isUnknown()) { BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext())); if (DbgValueInst *DVI = dyn_cast(BI)) { LLVMContext &Ctx = BI->getContext(); MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); DVI->setOperand(2, createInlinedVariable(DVI->getVariable(), InlinedAt, Ctx)); } } } } } /// InlineFunction - This function inlines the called function into the basic /// block of the caller. This returns false if it is not possible to inline /// this call. The program is still in a well defined state if this occurs /// though. /// /// Note that this only does one level of inlining. For example, if the /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now /// exists in the instruction stream. Similarly this will inline a recursive /// function by one level. bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { Instruction *TheCall = CS.getInstruction(); assert(TheCall->getParent() && TheCall->getParent()->getParent() && "Instruction not in function!"); // If IFI has any state in it, zap it before we fill it in. IFI.reset(); const Function *CalledFunc = CS.getCalledFunction(); if (CalledFunc == 0 || // Can't inline external function or indirect CalledFunc->isDeclaration() || // call, or call to a vararg function! CalledFunc->getFunctionType()->isVarArg()) return false; // If the call to the callee is not a tail call, we must clear the 'tail' // flags on any calls that we inline. bool MustClearTailCallFlags = !(isa(TheCall) && cast(TheCall)->isTailCall()); // If the call to the callee cannot throw, set the 'nounwind' flag on any // calls that we inline. bool MarkNoUnwind = CS.doesNotThrow(); BasicBlock *OrigBB = TheCall->getParent(); Function *Caller = OrigBB->getParent(); // GC poses two hazards to inlining, which only occur when the callee has GC: // 1. If the caller has no GC, then the callee's GC must be propagated to the // caller. // 2. If the caller has a differing GC, it is invalid to inline. if (CalledFunc->hasGC()) { if (!Caller->hasGC()) Caller->setGC(CalledFunc->getGC()); else if (CalledFunc->getGC() != Caller->getGC()) return false; } // Get the personality function from the callee if it contains a landing pad. Value *CalleePersonality = 0; for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end(); I != E; ++I) if (const InvokeInst *II = dyn_cast(I->getTerminator())) { const BasicBlock *BB = II->getUnwindDest(); const LandingPadInst *LP = BB->getLandingPadInst(); CalleePersonality = LP->getPersonalityFn(); break; } // Find the personality function used by the landing pads of the caller. If it // exists, then check to see that it matches the personality function used in // the callee. if (CalleePersonality) { for (Function::const_iterator I = Caller->begin(), E = Caller->end(); I != E; ++I) if (const InvokeInst *II = dyn_cast(I->getTerminator())) { const BasicBlock *BB = II->getUnwindDest(); const LandingPadInst *LP = BB->getLandingPadInst(); // If the personality functions match, then we can perform the // inlining. Otherwise, we can't inline. // TODO: This isn't 100% true. Some personality functions are proper // supersets of others and can be used in place of the other. if (LP->getPersonalityFn() != CalleePersonality) return false; break; } } // Get an iterator to the last basic block in the function, which will have // the new function inlined after it. Function::iterator LastBlock = &Caller->back(); // Make sure to capture all of the return instructions from the cloned // function. SmallVector Returns; ClonedCodeInfo InlinedFunctionInfo; Function::iterator FirstNewBlock; { // Scope to destroy VMap after cloning. ValueToValueMapTy VMap; assert(CalledFunc->arg_size() == CS.arg_size() && "No varargs calls can be inlined!"); // Calculate the vector of arguments to pass into the function cloner, which // matches up the formal to the actual argument values. CallSite::arg_iterator AI = CS.arg_begin(); unsigned ArgNo = 0; for (Function::const_arg_iterator I = CalledFunc->arg_begin(), E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { Value *ActualArg = *AI; // When byval arguments actually inlined, we need to make the copy implied // by them explicit. However, we don't do this if the callee is readonly // or readnone, because the copy would be unneeded: the callee doesn't // modify the struct. if (CS.isByValArgument(ArgNo)) { ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, CalledFunc->getParamAlignment(ArgNo+1)); // Calls that we inline may use the new alloca, so we need to clear // their 'tail' flags if HandleByValArgument introduced a new alloca and // the callee has calls. MustClearTailCallFlags |= ActualArg != *AI; } VMap[I] = ActualArg; } // We want the inliner to prune the code as it copies. We would LOVE to // have no dead or constant instructions leftover after inlining occurs // (which can happen, e.g., because an argument was constant), but we'll be // happy with whatever the cloner can do. CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, /*ModuleLevelChanges=*/false, Returns, ".i", &InlinedFunctionInfo, IFI.TD, TheCall); // Remember the first block that is newly cloned over. FirstNewBlock = LastBlock; ++FirstNewBlock; // Update the callgraph if requested. if (IFI.CG) UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); // Update inlined instructions' line number information. fixupLineNumbers(Caller, FirstNewBlock, TheCall); } // If there are any alloca instructions in the block that used to be the entry // block for the callee, move them to the entry block of the caller. First // calculate which instruction they should be inserted before. We insert the // instructions at the end of the current alloca list. { BasicBlock::iterator InsertPoint = Caller->begin()->begin(); for (BasicBlock::iterator I = FirstNewBlock->begin(), E = FirstNewBlock->end(); I != E; ) { AllocaInst *AI = dyn_cast(I++); if (AI == 0) continue; // If the alloca is now dead, remove it. This often occurs due to code // specialization. if (AI->use_empty()) { AI->eraseFromParent(); continue; } if (!isa(AI->getArraySize())) continue; // Keep track of the static allocas that we inline into the caller. IFI.StaticAllocas.push_back(AI); // Scan for the block of allocas that we can move over, and move them // all at once. while (isa(I) && isa(cast(I)->getArraySize())) { IFI.StaticAllocas.push_back(cast(I)); ++I; } // Transfer all of the allocas over in a block. Using splice means // that the instructions aren't removed from the symbol table, then // reinserted. Caller->getEntryBlock().getInstList().splice(InsertPoint, FirstNewBlock->getInstList(), AI, I); } } // Leave lifetime markers for the static alloca's, scoping them to the // function we just inlined. if (!IFI.StaticAllocas.empty()) { IRBuilder<> builder(FirstNewBlock->begin()); for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { AllocaInst *AI = IFI.StaticAllocas[ai]; // If the alloca is already scoped to something smaller than the whole // function then there's no need to add redundant, less accurate markers. if (hasLifetimeMarkers(AI)) continue; builder.CreateLifetimeStart(AI); for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) { IRBuilder<> builder(Returns[ri]); builder.CreateLifetimeEnd(AI); } } } // If the inlined code contained dynamic alloca instructions, wrap the inlined // code with llvm.stacksave/llvm.stackrestore intrinsics. if (InlinedFunctionInfo.ContainsDynamicAllocas) { Module *M = Caller->getParent(); // Get the two intrinsics we care about. Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); // Insert the llvm.stacksave. CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) .CreateCall(StackSave, "savedstack"); // Insert a call to llvm.stackrestore before any return instructions in the // inlined function. for (unsigned i = 0, e = Returns.size(); i != e; ++i) { IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr); } } // If we are inlining tail call instruction through a call site that isn't // marked 'tail', we must remove the tail marker for any calls in the inlined // code. Also, calls inlined through a 'nounwind' call site should be marked // 'nounwind'. if (InlinedFunctionInfo.ContainsCalls && (MustClearTailCallFlags || MarkNoUnwind)) { for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB) for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (CallInst *CI = dyn_cast(I)) { if (MustClearTailCallFlags) CI->setTailCall(false); if (MarkNoUnwind) CI->setDoesNotThrow(); } } // If we are inlining for an invoke instruction, we must make sure to rewrite // any call instructions into invoke instructions. if (InvokeInst *II = dyn_cast(TheCall)) HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); // If we cloned in _exactly one_ basic block, and if that block ends in a // return instruction, we splice the body of the inlined callee directly into // the calling basic block. if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { // Move all of the instructions right before the call. OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), FirstNewBlock->begin(), FirstNewBlock->end()); // Remove the cloned basic block. Caller->getBasicBlockList().pop_back(); // If the call site was an invoke instruction, add a branch to the normal // destination. if (InvokeInst *II = dyn_cast(TheCall)) BranchInst::Create(II->getNormalDest(), TheCall); // If the return instruction returned a value, replace uses of the call with // uses of the returned value. if (!TheCall->use_empty()) { ReturnInst *R = Returns[0]; if (TheCall == R->getReturnValue()) TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); else TheCall->replaceAllUsesWith(R->getReturnValue()); } // Since we are now done with the Call/Invoke, we can delete it. TheCall->eraseFromParent(); // Since we are now done with the return instruction, delete it also. Returns[0]->eraseFromParent(); // We are now done with the inlining. return true; } // Otherwise, we have the normal case, of more than one block to inline or // multiple return sites. // We want to clone the entire callee function into the hole between the // "starter" and "ender" blocks. How we accomplish this depends on whether // this is an invoke instruction or a call instruction. BasicBlock *AfterCallBB; if (InvokeInst *II = dyn_cast(TheCall)) { // Add an unconditional branch to make this look like the CallInst case... BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); // Split the basic block. This guarantees that no PHI nodes will have to be // updated due to new incoming edges, and make the invoke case more // symmetric to the call case. AfterCallBB = OrigBB->splitBasicBlock(NewBr, CalledFunc->getName()+".exit"); } else { // It's a call // If this is a call instruction, we need to split the basic block that // the call lives in. // AfterCallBB = OrigBB->splitBasicBlock(TheCall, CalledFunc->getName()+".exit"); } // Change the branch that used to go to AfterCallBB to branch to the first // basic block of the inlined function. // TerminatorInst *Br = OrigBB->getTerminator(); assert(Br && Br->getOpcode() == Instruction::Br && "splitBasicBlock broken!"); Br->setOperand(0, FirstNewBlock); // Now that the function is correct, make it a little bit nicer. In // particular, move the basic blocks inserted from the end of the function // into the space made by splitting the source basic block. Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), FirstNewBlock, Caller->end()); // Handle all of the return instructions that we just cloned in, and eliminate // any users of the original call/invoke instruction. Type *RTy = CalledFunc->getReturnType(); PHINode *PHI = 0; if (Returns.size() > 1) { // The PHI node should go at the front of the new basic block to merge all // possible incoming values. if (!TheCall->use_empty()) { PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), AfterCallBB->begin()); // Anything that used the result of the function call should now use the // PHI node as their operand. TheCall->replaceAllUsesWith(PHI); } // Loop over all of the return instructions adding entries to the PHI node // as appropriate. if (PHI) { for (unsigned i = 0, e = Returns.size(); i != e; ++i) { ReturnInst *RI = Returns[i]; assert(RI->getReturnValue()->getType() == PHI->getType() && "Ret value not consistent in function!"); PHI->addIncoming(RI->getReturnValue(), RI->getParent()); } } // Add a branch to the merge points and remove return instructions. for (unsigned i = 0, e = Returns.size(); i != e; ++i) { ReturnInst *RI = Returns[i]; BranchInst::Create(AfterCallBB, RI); RI->eraseFromParent(); } } else if (!Returns.empty()) { // Otherwise, if there is exactly one return value, just replace anything // using the return value of the call with the computed value. if (!TheCall->use_empty()) { if (TheCall == Returns[0]->getReturnValue()) TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); else TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); } // Update PHI nodes that use the ReturnBB to use the AfterCallBB. BasicBlock *ReturnBB = Returns[0]->getParent(); ReturnBB->replaceAllUsesWith(AfterCallBB); // Splice the code from the return block into the block that it will return // to, which contains the code that was after the call. AfterCallBB->getInstList().splice(AfterCallBB->begin(), ReturnBB->getInstList()); // Delete the return instruction now and empty ReturnBB now. Returns[0]->eraseFromParent(); ReturnBB->eraseFromParent(); } else if (!TheCall->use_empty()) { // No returns, but something is using the return value of the call. Just // nuke the result. TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); } // Since we are now done with the Call/Invoke, we can delete it. TheCall->eraseFromParent(); // We should always be able to fold the entry block of the function into the // single predecessor of the block... assert(cast(Br)->isUnconditional() && "splitBasicBlock broken!"); BasicBlock *CalleeEntry = cast(Br)->getSuccessor(0); // Splice the code entry block into calling block, right before the // unconditional branch. CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); // Remove the unconditional branch. OrigBB->getInstList().erase(Br); // Now we can remove the CalleeEntry block, which is now empty. Caller->getBasicBlockList().erase(CalleeEntry); // If we inserted a phi node, check to see if it has a single value (e.g. all // the entries are the same or undef). If so, remove the PHI so it doesn't // block other optimizations. if (PHI) { if (Value *V = SimplifyInstruction(PHI, IFI.TD)) { PHI->replaceAllUsesWith(V); PHI->eraseFromParent(); } } return true; }