//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveInterval analysis pass which is used // by the Linear Scan Register allocator. This pass linearizes the // basic blocks of the function in DFS order and uses the // LiveVariables pass to conservatively compute live intervals for // each virtual and physical register. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "liveintervals" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "VirtRegMap.h" #include "llvm/Value.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/CalcSpillWeights.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/ProcessImplicitDefs.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include #include #include using namespace llvm; // Hidden options for help debugging. static cl::opt DisableReMat("disable-rematerialization", cl::init(false), cl::Hidden); STATISTIC(numIntervals , "Number of original intervals"); STATISTIC(numFolds , "Number of loads/stores folded into instructions"); STATISTIC(numSplits , "Number of intervals split"); char LiveIntervals::ID = 0; INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", "Live Interval Analysis", false, false) INITIALIZE_PASS_DEPENDENCY(LiveVariables) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_DEPENDENCY(PHIElimination) INITIALIZE_PASS_DEPENDENCY(TwoAddressInstructionPass) INITIALIZE_PASS_DEPENDENCY(ProcessImplicitDefs) INITIALIZE_PASS_DEPENDENCY(SlotIndexes) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_END(LiveIntervals, "liveintervals", "Live Interval Analysis", false, false) void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addPreservedID(MachineDominatorsID); if (!StrongPHIElim) { AU.addPreservedID(PHIEliminationID); AU.addRequiredID(PHIEliminationID); } AU.addRequiredID(TwoAddressInstructionPassID); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequiredTransitive(); MachineFunctionPass::getAnalysisUsage(AU); } void LiveIntervals::releaseMemory() { // Free the live intervals themselves. for (DenseMap::iterator I = r2iMap_.begin(), E = r2iMap_.end(); I != E; ++I) delete I->second; r2iMap_.clear(); // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd. VNInfoAllocator.Reset(); while (!CloneMIs.empty()) { MachineInstr *MI = CloneMIs.back(); CloneMIs.pop_back(); mf_->DeleteMachineInstr(MI); } } /// runOnMachineFunction - Register allocate the whole function /// bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { mf_ = &fn; mri_ = &mf_->getRegInfo(); tm_ = &fn.getTarget(); tri_ = tm_->getRegisterInfo(); tii_ = tm_->getInstrInfo(); aa_ = &getAnalysis(); lv_ = &getAnalysis(); indexes_ = &getAnalysis(); allocatableRegs_ = tri_->getAllocatableSet(fn); computeIntervals(); numIntervals += getNumIntervals(); DEBUG(dump()); return true; } /// print - Implement the dump method. void LiveIntervals::print(raw_ostream &OS, const Module* ) const { OS << "********** INTERVALS **********\n"; for (const_iterator I = begin(), E = end(); I != E; ++I) { I->second->print(OS, tri_); OS << "\n"; } printInstrs(OS); } void LiveIntervals::printInstrs(raw_ostream &OS) const { OS << "********** MACHINEINSTRS **********\n"; mf_->print(OS, indexes_); } void LiveIntervals::dumpInstrs() const { printInstrs(dbgs()); } bool LiveIntervals::conflictsWithPhysReg(const LiveInterval &li, VirtRegMap &vrm, unsigned reg) { // We don't handle fancy stuff crossing basic block boundaries if (li.ranges.size() != 1) return true; const LiveRange &range = li.ranges.front(); SlotIndex idx = range.start.getBaseIndex(); SlotIndex end = range.end.getPrevSlot().getBaseIndex().getNextIndex(); // Skip deleted instructions MachineInstr *firstMI = getInstructionFromIndex(idx); while (!firstMI && idx != end) { idx = idx.getNextIndex(); firstMI = getInstructionFromIndex(idx); } if (!firstMI) return false; // Find last instruction in range SlotIndex lastIdx = end.getPrevIndex(); MachineInstr *lastMI = getInstructionFromIndex(lastIdx); while (!lastMI && lastIdx != idx) { lastIdx = lastIdx.getPrevIndex(); lastMI = getInstructionFromIndex(lastIdx); } if (!lastMI) return false; // Range cannot cross basic block boundaries or terminators MachineBasicBlock *MBB = firstMI->getParent(); if (MBB != lastMI->getParent() || lastMI->getDesc().isTerminator()) return true; MachineBasicBlock::const_iterator E = lastMI; ++E; for (MachineBasicBlock::const_iterator I = firstMI; I != E; ++I) { const MachineInstr &MI = *I; // Allow copies to and from li.reg if (MI.isCopy()) if (MI.getOperand(0).getReg() == li.reg || MI.getOperand(1).getReg() == li.reg) continue; // Check for operands using reg for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { const MachineOperand& mop = MI.getOperand(i); if (!mop.isReg()) continue; unsigned PhysReg = mop.getReg(); if (PhysReg == 0 || PhysReg == li.reg) continue; if (TargetRegisterInfo::isVirtualRegister(PhysReg)) { if (!vrm.hasPhys(PhysReg)) continue; PhysReg = vrm.getPhys(PhysReg); } if (PhysReg && tri_->regsOverlap(PhysReg, reg)) return true; } } // No conflicts found. return false; } bool LiveIntervals::conflictsWithAliasRef(LiveInterval &li, unsigned Reg, SmallPtrSet &JoinedCopies) { for (LiveInterval::Ranges::const_iterator I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) { for (SlotIndex index = I->start.getBaseIndex(), end = I->end.getPrevSlot().getBaseIndex().getNextIndex(); index != end; index = index.getNextIndex()) { MachineInstr *MI = getInstructionFromIndex(index); if (!MI) continue; // skip deleted instructions if (JoinedCopies.count(MI)) continue; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand& MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned PhysReg = MO.getReg(); if (PhysReg == 0 || PhysReg == Reg || TargetRegisterInfo::isVirtualRegister(PhysReg)) continue; if (tri_->regsOverlap(Reg, PhysReg)) return true; } } } return false; } static bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) { unsigned Reg = MI.getOperand(MOIdx).getReg(); for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (!MO.isReg()) continue; if (MO.getReg() == Reg && MO.isDef()) { assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() && MI.getOperand(MOIdx).getSubReg() && (MO.getSubReg() || MO.isImplicit())); return true; } } return false; } /// isPartialRedef - Return true if the specified def at the specific index is /// partially re-defining the specified live interval. A common case of this is /// a definition of the sub-register. bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO, LiveInterval &interval) { if (!MO.getSubReg() || MO.isEarlyClobber()) return false; SlotIndex RedefIndex = MIIdx.getDefIndex(); const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex.getUseIndex()); MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def); if (DefMI != 0) { return DefMI->findRegisterDefOperandIdx(interval.reg) != -1; } return false; } void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb, MachineBasicBlock::iterator mi, SlotIndex MIIdx, MachineOperand& MO, unsigned MOIdx, LiveInterval &interval) { DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_)); // Virtual registers may be defined multiple times (due to phi // elimination and 2-addr elimination). Much of what we do only has to be // done once for the vreg. We use an empty interval to detect the first // time we see a vreg. LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg); if (interval.empty()) { // Get the Idx of the defining instructions. SlotIndex defIndex = MIIdx.getDefIndex(); // Earlyclobbers move back one, so that they overlap the live range // of inputs. if (MO.isEarlyClobber()) defIndex = MIIdx.getUseIndex(); // Make sure the first definition is not a partial redefinition. Add an // of the full register. if (MO.getSubReg()) mi->addRegisterDefined(interval.reg); MachineInstr *CopyMI = NULL; if (mi->isCopyLike()) { CopyMI = mi; } VNInfo *ValNo = interval.getNextValue(defIndex, CopyMI, VNInfoAllocator); assert(ValNo->id == 0 && "First value in interval is not 0?"); // Loop over all of the blocks that the vreg is defined in. There are // two cases we have to handle here. The most common case is a vreg // whose lifetime is contained within a basic block. In this case there // will be a single kill, in MBB, which comes after the definition. if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) { // FIXME: what about dead vars? SlotIndex killIdx; if (vi.Kills[0] != mi) killIdx = getInstructionIndex(vi.Kills[0]).getDefIndex(); else killIdx = defIndex.getStoreIndex(); // If the kill happens after the definition, we have an intra-block // live range. if (killIdx > defIndex) { assert(vi.AliveBlocks.empty() && "Shouldn't be alive across any blocks!"); LiveRange LR(defIndex, killIdx, ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR << "\n"); return; } } // The other case we handle is when a virtual register lives to the end // of the defining block, potentially live across some blocks, then is // live into some number of blocks, but gets killed. Start by adding a // range that goes from this definition to the end of the defining block. LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo); DEBUG(dbgs() << " +" << NewLR); interval.addRange(NewLR); bool PHIJoin = lv_->isPHIJoin(interval.reg); if (PHIJoin) { // A phi join register is killed at the end of the MBB and revived as a new // valno in the killing blocks. assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks"); DEBUG(dbgs() << " phi-join"); ValNo->setHasPHIKill(true); } else { // Iterate over all of the blocks that the variable is completely // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the // live interval. for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(), E = vi.AliveBlocks.end(); I != E; ++I) { MachineBasicBlock *aliveBlock = mf_->getBlockNumbered(*I); LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR); } } // Finally, this virtual register is live from the start of any killing // block to the 'use' slot of the killing instruction. for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) { MachineInstr *Kill = vi.Kills[i]; SlotIndex Start = getMBBStartIdx(Kill->getParent()); SlotIndex killIdx = getInstructionIndex(Kill).getDefIndex(); // Create interval with one of a NEW value number. Note that this value // number isn't actually defined by an instruction, weird huh? :) if (PHIJoin) { assert(getInstructionFromIndex(Start) == 0 && "PHI def index points at actual instruction."); ValNo = interval.getNextValue(Start, 0, VNInfoAllocator); ValNo->setIsPHIDef(true); } LiveRange LR(Start, killIdx, ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR); } } else { if (MultipleDefsBySameMI(*mi, MOIdx)) // Multiple defs of the same virtual register by the same instruction. // e.g. %reg1031:5, %reg1031:6 = VLD1q16 %reg1024, ... // This is likely due to elimination of REG_SEQUENCE instructions. Return // here since there is nothing to do. return; // If this is the second time we see a virtual register definition, it // must be due to phi elimination or two addr elimination. If this is // the result of two address elimination, then the vreg is one of the // def-and-use register operand. // It may also be partial redef like this: // 80 %reg1041:6 = VSHRNv4i16 %reg1034, 12, pred:14, pred:%reg0 // 120 %reg1041:5 = VSHRNv4i16 %reg1039, 12, pred:14, pred:%reg0 bool PartReDef = isPartialRedef(MIIdx, MO, interval); if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) { // If this is a two-address definition, then we have already processed // the live range. The only problem is that we didn't realize there // are actually two values in the live interval. Because of this we // need to take the LiveRegion that defines this register and split it // into two values. SlotIndex RedefIndex = MIIdx.getDefIndex(); if (MO.isEarlyClobber()) RedefIndex = MIIdx.getUseIndex(); const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex.getUseIndex()); VNInfo *OldValNo = OldLR->valno; SlotIndex DefIndex = OldValNo->def.getDefIndex(); // Delete the previous value, which should be short and continuous, // because the 2-addr copy must be in the same MBB as the redef. interval.removeRange(DefIndex, RedefIndex); // The new value number (#1) is defined by the instruction we claimed // defined value #0. VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator); // Value#0 is now defined by the 2-addr instruction. OldValNo->def = RedefIndex; OldValNo->setCopy(0); // A re-def may be a copy. e.g. %reg1030:6 = VMOVD %reg1026, ... if (PartReDef && mi->isCopyLike()) OldValNo->setCopy(&*mi); // Add the new live interval which replaces the range for the input copy. LiveRange LR(DefIndex, RedefIndex, ValNo); DEBUG(dbgs() << " replace range with " << LR); interval.addRange(LR); // If this redefinition is dead, we need to add a dummy unit live // range covering the def slot. if (MO.isDead()) interval.addRange(LiveRange(RedefIndex, RedefIndex.getStoreIndex(), OldValNo)); DEBUG({ dbgs() << " RESULT: "; interval.print(dbgs(), tri_); }); } else if (lv_->isPHIJoin(interval.reg)) { // In the case of PHI elimination, each variable definition is only // live until the end of the block. We've already taken care of the // rest of the live range. SlotIndex defIndex = MIIdx.getDefIndex(); if (MO.isEarlyClobber()) defIndex = MIIdx.getUseIndex(); VNInfo *ValNo; MachineInstr *CopyMI = NULL; if (mi->isCopyLike()) CopyMI = mi; ValNo = interval.getNextValue(defIndex, CopyMI, VNInfoAllocator); SlotIndex killIndex = getMBBEndIdx(mbb); LiveRange LR(defIndex, killIndex, ValNo); interval.addRange(LR); ValNo->setHasPHIKill(true); DEBUG(dbgs() << " phi-join +" << LR); } else { llvm_unreachable("Multiply defined register"); } } DEBUG(dbgs() << '\n'); } void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB, MachineBasicBlock::iterator mi, SlotIndex MIIdx, MachineOperand& MO, LiveInterval &interval, MachineInstr *CopyMI) { // A physical register cannot be live across basic block, so its // lifetime must end somewhere in its defining basic block. DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_)); SlotIndex baseIndex = MIIdx; SlotIndex start = baseIndex.getDefIndex(); // Earlyclobbers move back one. if (MO.isEarlyClobber()) start = MIIdx.getUseIndex(); SlotIndex end = start; // If it is not used after definition, it is considered dead at // the instruction defining it. Hence its interval is: // [defSlot(def), defSlot(def)+1) // For earlyclobbers, the defSlot was pushed back one; the extra // advance below compensates. if (MO.isDead()) { DEBUG(dbgs() << " dead"); end = start.getStoreIndex(); goto exit; } // If it is not dead on definition, it must be killed by a // subsequent instruction. Hence its interval is: // [defSlot(def), useSlot(kill)+1) baseIndex = baseIndex.getNextIndex(); while (++mi != MBB->end()) { if (mi->isDebugValue()) continue; if (getInstructionFromIndex(baseIndex) == 0) baseIndex = indexes_->getNextNonNullIndex(baseIndex); if (mi->killsRegister(interval.reg, tri_)) { DEBUG(dbgs() << " killed"); end = baseIndex.getDefIndex(); goto exit; } else { int DefIdx = mi->findRegisterDefOperandIdx(interval.reg,false,false,tri_); if (DefIdx != -1) { if (mi->isRegTiedToUseOperand(DefIdx)) { // Two-address instruction. end = baseIndex.getDefIndex(); } else { // Another instruction redefines the register before it is ever read. // Then the register is essentially dead at the instruction that // defines it. Hence its interval is: // [defSlot(def), defSlot(def)+1) DEBUG(dbgs() << " dead"); end = start.getStoreIndex(); } goto exit; } } baseIndex = baseIndex.getNextIndex(); } // The only case we should have a dead physreg here without a killing or // instruction where we know it's dead is if it is live-in to the function // and never used. Another possible case is the implicit use of the // physical register has been deleted by two-address pass. end = start.getStoreIndex(); exit: assert(start < end && "did not find end of interval?"); // Already exists? Extend old live interval. VNInfo *ValNo = interval.getVNInfoAt(start); bool Extend = ValNo != 0; if (!Extend) ValNo = interval.getNextValue(start, CopyMI, VNInfoAllocator); if (Extend && MO.isEarlyClobber()) ValNo->setHasRedefByEC(true); LiveRange LR(start, end, ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR << '\n'); } void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB, MachineBasicBlock::iterator MI, SlotIndex MIIdx, MachineOperand& MO, unsigned MOIdx) { if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx, getOrCreateInterval(MO.getReg())); else { MachineInstr *CopyMI = NULL; if (MI->isCopyLike()) CopyMI = MI; handlePhysicalRegisterDef(MBB, MI, MIIdx, MO, getOrCreateInterval(MO.getReg()), CopyMI); } } void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB, SlotIndex MIIdx, LiveInterval &interval, bool isAlias) { DEBUG(dbgs() << "\t\tlivein register: " << PrintReg(interval.reg, tri_)); // Look for kills, if it reaches a def before it's killed, then it shouldn't // be considered a livein. MachineBasicBlock::iterator mi = MBB->begin(); MachineBasicBlock::iterator E = MBB->end(); // Skip over DBG_VALUE at the start of the MBB. if (mi != E && mi->isDebugValue()) { while (++mi != E && mi->isDebugValue()) ; if (mi == E) // MBB is empty except for DBG_VALUE's. return; } SlotIndex baseIndex = MIIdx; SlotIndex start = baseIndex; if (getInstructionFromIndex(baseIndex) == 0) baseIndex = indexes_->getNextNonNullIndex(baseIndex); SlotIndex end = baseIndex; bool SeenDefUse = false; while (mi != E) { if (mi->killsRegister(interval.reg, tri_)) { DEBUG(dbgs() << " killed"); end = baseIndex.getDefIndex(); SeenDefUse = true; break; } else if (mi->definesRegister(interval.reg, tri_)) { // Another instruction redefines the register before it is ever read. // Then the register is essentially dead at the instruction that defines // it. Hence its interval is: // [defSlot(def), defSlot(def)+1) DEBUG(dbgs() << " dead"); end = start.getStoreIndex(); SeenDefUse = true; break; } while (++mi != E && mi->isDebugValue()) // Skip over DBG_VALUE. ; if (mi != E) baseIndex = indexes_->getNextNonNullIndex(baseIndex); } // Live-in register might not be used at all. if (!SeenDefUse) { if (isAlias) { DEBUG(dbgs() << " dead"); end = MIIdx.getStoreIndex(); } else { DEBUG(dbgs() << " live through"); end = baseIndex; } } SlotIndex defIdx = getMBBStartIdx(MBB); assert(getInstructionFromIndex(defIdx) == 0 && "PHI def index points at actual instruction."); VNInfo *vni = interval.getNextValue(defIdx, 0, VNInfoAllocator); vni->setIsPHIDef(true); LiveRange LR(start, end, vni); interval.addRange(LR); DEBUG(dbgs() << " +" << LR << '\n'); } /// computeIntervals - computes the live intervals for virtual /// registers. for some ordering of the machine instructions [1,N] a /// live interval is an interval [i, j) where 1 <= i <= j < N for /// which a variable is live void LiveIntervals::computeIntervals() { DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n" << "********** Function: " << ((Value*)mf_->getFunction())->getName() << '\n'); SmallVector UndefUses; for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end(); MBBI != E; ++MBBI) { MachineBasicBlock *MBB = MBBI; if (MBB->empty()) continue; // Track the index of the current machine instr. SlotIndex MIIndex = getMBBStartIdx(MBB); DEBUG(dbgs() << "BB#" << MBB->getNumber() << ":\t\t# derived from " << MBB->getName() << "\n"); // Create intervals for live-ins to this BB first. for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(), LE = MBB->livein_end(); LI != LE; ++LI) { handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI)); // Multiple live-ins can alias the same register. for (const unsigned* AS = tri_->getSubRegisters(*LI); *AS; ++AS) if (!hasInterval(*AS)) handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS), true); } // Skip over empty initial indices. if (getInstructionFromIndex(MIIndex) == 0) MIIndex = indexes_->getNextNonNullIndex(MIIndex); for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end(); MI != miEnd; ++MI) { DEBUG(dbgs() << MIIndex << "\t" << *MI); if (MI->isDebugValue()) continue; // Handle defs. for (int i = MI->getNumOperands() - 1; i >= 0; --i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.getReg()) continue; // handle register defs - build intervals if (MO.isDef()) handleRegisterDef(MBB, MI, MIIndex, MO, i); else if (MO.isUndef()) UndefUses.push_back(MO.getReg()); } // Move to the next instr slot. MIIndex = indexes_->getNextNonNullIndex(MIIndex); } } // Create empty intervals for registers defined by implicit_def's (except // for those implicit_def that define values which are liveout of their // blocks. for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) { unsigned UndefReg = UndefUses[i]; (void)getOrCreateInterval(UndefReg); } } LiveInterval* LiveIntervals::createInterval(unsigned reg) { float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F; return new LiveInterval(reg, Weight); } /// dupInterval - Duplicate a live interval. The caller is responsible for /// managing the allocated memory. LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) { LiveInterval *NewLI = createInterval(li->reg); NewLI->Copy(*li, mri_, getVNInfoAllocator()); return NewLI; } /// shrinkToUses - After removing some uses of a register, shrink its live /// range to just the remaining uses. This method does not compute reaching /// defs for new uses, and it doesn't remove dead defs. bool LiveIntervals::shrinkToUses(LiveInterval *li, SmallVectorImpl *dead) { DEBUG(dbgs() << "Shrink: " << *li << '\n'); assert(TargetRegisterInfo::isVirtualRegister(li->reg) && "Can't only shrink physical registers"); // Find all the values used, including PHI kills. SmallVector, 16> WorkList; // Visit all instructions reading li->reg. for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li->reg); MachineInstr *UseMI = I.skipInstruction();) { if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg)) continue; SlotIndex Idx = getInstructionIndex(UseMI).getUseIndex(); VNInfo *VNI = li->getVNInfoAt(Idx); if (!VNI) { // This shouldn't happen: readsVirtualRegister returns true, but there is // no live value. It is likely caused by a target getting flags // wrong. DEBUG(dbgs() << Idx << '\t' << *UseMI << "Warning: Instr claims to read non-existent value in " << *li << '\n'); continue; } if (VNI->def == Idx) { // Special case: An early-clobber tied operand reads and writes the // register one slot early. Idx = Idx.getPrevSlot(); VNI = li->getVNInfoAt(Idx); assert(VNI && "Early-clobber tied value not available"); } WorkList.push_back(std::make_pair(Idx, VNI)); } // Create a new live interval with only minimal live segments per def. LiveInterval NewLI(li->reg, 0); for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end(); I != E; ++I) { VNInfo *VNI = *I; if (VNI->isUnused()) continue; // We may eliminate PHI values, so recompute PHIKill flags. VNI->setHasPHIKill(false); NewLI.addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), VNI)); // A use tied to an early-clobber def ends at the load slot and isn't caught // above. Catch it here instead. This probably only ever happens for inline // assembly. if (VNI->def.isUse()) if (VNInfo *UVNI = li->getVNInfoAt(VNI->def.getLoadIndex())) WorkList.push_back(std::make_pair(VNI->def.getLoadIndex(), UVNI)); } // Keep track of the PHIs that are in use. SmallPtrSet UsedPHIs; // Extend intervals to reach all uses in WorkList. while (!WorkList.empty()) { SlotIndex Idx = WorkList.back().first; VNInfo *VNI = WorkList.back().second; WorkList.pop_back(); const MachineBasicBlock *MBB = getMBBFromIndex(Idx); SlotIndex BlockStart = getMBBStartIdx(MBB); // Extend the live range for VNI to be live at Idx. if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) { (void)ExtVNI; assert(ExtVNI == VNI && "Unexpected existing value number"); // Is this a PHIDef we haven't seen before? if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI)) continue; // The PHI is live, make sure the predecessors are live-out. for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); PI != PE; ++PI) { SlotIndex Stop = getMBBEndIdx(*PI).getPrevSlot(); VNInfo *PVNI = li->getVNInfoAt(Stop); // A predecessor is not required to have a live-out value for a PHI. if (PVNI) { PVNI->setHasPHIKill(true); WorkList.push_back(std::make_pair(Stop, PVNI)); } } continue; } // VNI is live-in to MBB. DEBUG(dbgs() << " live-in at " << BlockStart << '\n'); NewLI.addRange(LiveRange(BlockStart, Idx.getNextSlot(), VNI)); // Make sure VNI is live-out from the predecessors. for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); PI != PE; ++PI) { SlotIndex Stop = getMBBEndIdx(*PI).getPrevSlot(); assert(li->getVNInfoAt(Stop) == VNI && "Wrong value out of predecessor"); WorkList.push_back(std::make_pair(Stop, VNI)); } } // Handle dead values. bool CanSeparate = false; for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end(); I != E; ++I) { VNInfo *VNI = *I; if (VNI->isUnused()) continue; LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def); assert(LII != NewLI.end() && "Missing live range for PHI"); if (LII->end != VNI->def.getNextSlot()) continue; if (VNI->isPHIDef()) { // This is a dead PHI. Remove it. VNI->setIsUnused(true); NewLI.removeRange(*LII); DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n"); CanSeparate = true; } else { // This is a dead def. Make sure the instruction knows. MachineInstr *MI = getInstructionFromIndex(VNI->def); assert(MI && "No instruction defining live value"); MI->addRegisterDead(li->reg, tri_); if (dead && MI->allDefsAreDead()) { DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI); dead->push_back(MI); } } } // Move the trimmed ranges back. li->ranges.swap(NewLI.ranges); DEBUG(dbgs() << "Shrunk: " << *li << '\n'); return CanSeparate; } //===----------------------------------------------------------------------===// // Register allocator hooks. // MachineBasicBlock::iterator LiveIntervals::getLastSplitPoint(const LiveInterval &li, MachineBasicBlock *mbb) const { const MachineBasicBlock *lpad = mbb->getLandingPadSuccessor(); // If li is not live into a landing pad, we can insert spill code before the // first terminator. if (!lpad || !isLiveInToMBB(li, lpad)) return mbb->getFirstTerminator(); // When there is a landing pad, spill code must go before the call instruction // that can throw. MachineBasicBlock::iterator I = mbb->end(), B = mbb->begin(); while (I != B) { --I; if (I->getDesc().isCall()) return I; } // The block contains no calls that can throw, so use the first terminator. return mbb->getFirstTerminator(); } void LiveIntervals::addKillFlags() { for (iterator I = begin(), E = end(); I != E; ++I) { unsigned Reg = I->first; if (TargetRegisterInfo::isPhysicalRegister(Reg)) continue; if (mri_->reg_nodbg_empty(Reg)) continue; LiveInterval *LI = I->second; // Every instruction that kills Reg corresponds to a live range end point. for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE; ++RI) { // A LOAD index indicates an MBB edge. if (RI->end.isLoad()) continue; MachineInstr *MI = getInstructionFromIndex(RI->end); if (!MI) continue; MI->addRegisterKilled(Reg, NULL); } } } /// getReMatImplicitUse - If the remat definition MI has one (for now, we only /// allow one) virtual register operand, then its uses are implicitly using /// the register. Returns the virtual register. unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li, MachineInstr *MI) const { unsigned RegOp = 0; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isUse()) continue; unsigned Reg = MO.getReg(); if (Reg == 0 || Reg == li.reg) continue; if (TargetRegisterInfo::isPhysicalRegister(Reg) && !allocatableRegs_[Reg]) continue; // FIXME: For now, only remat MI with at most one register operand. assert(!RegOp && "Can't rematerialize instruction with multiple register operand!"); RegOp = MO.getReg(); #ifndef NDEBUG break; #endif } return RegOp; } /// isValNoAvailableAt - Return true if the val# of the specified interval /// which reaches the given instruction also reaches the specified use index. bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI, SlotIndex UseIdx) const { VNInfo *UValNo = li.getVNInfoAt(UseIdx); return UValNo && UValNo == li.getVNInfoAt(getInstructionIndex(MI)); } /// isReMaterializable - Returns true if the definition MI of the specified /// val# of the specified interval is re-materializable. bool LiveIntervals::isReMaterializable(const LiveInterval &li, const VNInfo *ValNo, MachineInstr *MI, const SmallVectorImpl *SpillIs, bool &isLoad) { if (DisableReMat) return false; if (!tii_->isTriviallyReMaterializable(MI, aa_)) return false; // Target-specific code can mark an instruction as being rematerializable // if it has one virtual reg use, though it had better be something like // a PIC base register which is likely to be live everywhere. unsigned ImpUse = getReMatImplicitUse(li, MI); if (ImpUse) { const LiveInterval &ImpLi = getInterval(ImpUse); for (MachineRegisterInfo::use_nodbg_iterator ri = mri_->use_nodbg_begin(li.reg), re = mri_->use_nodbg_end(); ri != re; ++ri) { MachineInstr *UseMI = &*ri; SlotIndex UseIdx = getInstructionIndex(UseMI); if (li.getVNInfoAt(UseIdx) != ValNo) continue; if (!isValNoAvailableAt(ImpLi, MI, UseIdx)) return false; } // If a register operand of the re-materialized instruction is going to // be spilled next, then it's not legal to re-materialize this instruction. if (SpillIs) for (unsigned i = 0, e = SpillIs->size(); i != e; ++i) if (ImpUse == (*SpillIs)[i]->reg) return false; } return true; } /// isReMaterializable - Returns true if the definition MI of the specified /// val# of the specified interval is re-materializable. bool LiveIntervals::isReMaterializable(const LiveInterval &li, const VNInfo *ValNo, MachineInstr *MI) { bool Dummy2; return isReMaterializable(li, ValNo, MI, 0, Dummy2); } /// isReMaterializable - Returns true if every definition of MI of every /// val# of the specified interval is re-materializable. bool LiveIntervals::isReMaterializable(const LiveInterval &li, const SmallVectorImpl *SpillIs, bool &isLoad) { isLoad = false; for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end(); i != e; ++i) { const VNInfo *VNI = *i; if (VNI->isUnused()) continue; // Dead val#. // Is the def for the val# rematerializable? MachineInstr *ReMatDefMI = getInstructionFromIndex(VNI->def); if (!ReMatDefMI) return false; bool DefIsLoad = false; if (!ReMatDefMI || !isReMaterializable(li, VNI, ReMatDefMI, SpillIs, DefIsLoad)) return false; isLoad |= DefIsLoad; } return true; } /// FilterFoldedOps - Filter out two-address use operands. Return /// true if it finds any issue with the operands that ought to prevent /// folding. static bool FilterFoldedOps(MachineInstr *MI, SmallVector &Ops, unsigned &MRInfo, SmallVector &FoldOps) { MRInfo = 0; for (unsigned i = 0, e = Ops.size(); i != e; ++i) { unsigned OpIdx = Ops[i]; MachineOperand &MO = MI->getOperand(OpIdx); // FIXME: fold subreg use. if (MO.getSubReg()) return true; if (MO.isDef()) MRInfo |= (unsigned)VirtRegMap::isMod; else { // Filter out two-address use operand(s). if (MI->isRegTiedToDefOperand(OpIdx)) { MRInfo = VirtRegMap::isModRef; continue; } MRInfo |= (unsigned)VirtRegMap::isRef; } FoldOps.push_back(OpIdx); } return false; } /// tryFoldMemoryOperand - Attempts to fold either a spill / restore from /// slot / to reg or any rematerialized load into ith operand of specified /// MI. If it is successul, MI is updated with the newly created MI and /// returns true. bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI, VirtRegMap &vrm, MachineInstr *DefMI, SlotIndex InstrIdx, SmallVector &Ops, bool isSS, int Slot, unsigned Reg) { // If it is an implicit def instruction, just delete it. if (MI->isImplicitDef()) { RemoveMachineInstrFromMaps(MI); vrm.RemoveMachineInstrFromMaps(MI); MI->eraseFromParent(); ++numFolds; return true; } // Filter the list of operand indexes that are to be folded. Abort if // any operand will prevent folding. unsigned MRInfo = 0; SmallVector FoldOps; if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps)) return false; // The only time it's safe to fold into a two address instruction is when // it's folding reload and spill from / into a spill stack slot. if (DefMI && (MRInfo & VirtRegMap::isMod)) return false; MachineInstr *fmi = isSS ? tii_->foldMemoryOperand(MI, FoldOps, Slot) : tii_->foldMemoryOperand(MI, FoldOps, DefMI); if (fmi) { // Remember this instruction uses the spill slot. if (isSS) vrm.addSpillSlotUse(Slot, fmi); // Attempt to fold the memory reference into the instruction. If // we can do this, we don't need to insert spill code. if (isSS && !mf_->getFrameInfo()->isImmutableObjectIndex(Slot)) vrm.virtFolded(Reg, MI, fmi, (VirtRegMap::ModRef)MRInfo); vrm.transferSpillPts(MI, fmi); vrm.transferRestorePts(MI, fmi); vrm.transferEmergencySpills(MI, fmi); ReplaceMachineInstrInMaps(MI, fmi); MI->eraseFromParent(); MI = fmi; ++numFolds; return true; } return false; } /// canFoldMemoryOperand - Returns true if the specified load / store /// folding is possible. bool LiveIntervals::canFoldMemoryOperand(MachineInstr *MI, SmallVector &Ops, bool ReMat) const { // Filter the list of operand indexes that are to be folded. Abort if // any operand will prevent folding. unsigned MRInfo = 0; SmallVector FoldOps; if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps)) return false; // It's only legal to remat for a use, not a def. if (ReMat && (MRInfo & VirtRegMap::isMod)) return false; return tii_->canFoldMemoryOperand(MI, FoldOps); } bool LiveIntervals::intervalIsInOneMBB(const LiveInterval &li) const { LiveInterval::Ranges::const_iterator itr = li.ranges.begin(); MachineBasicBlock *mbb = indexes_->getMBBCoveringRange(itr->start, itr->end); if (mbb == 0) return false; for (++itr; itr != li.ranges.end(); ++itr) { MachineBasicBlock *mbb2 = indexes_->getMBBCoveringRange(itr->start, itr->end); if (mbb2 != mbb) return false; } return true; } /// rewriteImplicitOps - Rewrite implicit use operands of MI (i.e. uses of /// interval on to-be re-materialized operands of MI) with new register. void LiveIntervals::rewriteImplicitOps(const LiveInterval &li, MachineInstr *MI, unsigned NewVReg, VirtRegMap &vrm) { // There is an implicit use. That means one of the other operand is // being remat'ed and the remat'ed instruction has li.reg as an // use operand. Make sure we rewrite that as well. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; if (!vrm.isReMaterialized(Reg)) continue; MachineInstr *ReMatMI = vrm.getReMaterializedMI(Reg); MachineOperand *UseMO = ReMatMI->findRegisterUseOperand(li.reg); if (UseMO) UseMO->setReg(NewVReg); } } /// rewriteInstructionForSpills, rewriteInstructionsForSpills - Helper functions /// for addIntervalsForSpills to rewrite uses / defs for the given live range. bool LiveIntervals:: rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI, bool TrySplit, SlotIndex index, SlotIndex end, MachineInstr *MI, MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI, unsigned Slot, int LdSlot, bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete, VirtRegMap &vrm, const TargetRegisterClass* rc, SmallVector &ReMatIds, const MachineLoopInfo *loopInfo, unsigned &NewVReg, unsigned ImpUse, bool &HasDef, bool &HasUse, DenseMap &MBBVRegsMap, std::vector &NewLIs) { bool CanFold = false; RestartInstruction: for (unsigned i = 0; i != MI->getNumOperands(); ++i) { MachineOperand& mop = MI->getOperand(i); if (!mop.isReg()) continue; unsigned Reg = mop.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; if (Reg != li.reg) continue; bool TryFold = !DefIsReMat; bool FoldSS = true; // Default behavior unless it's a remat. int FoldSlot = Slot; if (DefIsReMat) { // If this is the rematerializable definition MI itself and // all of its uses are rematerialized, simply delete it. if (MI == ReMatOrigDefMI && CanDelete) { DEBUG(dbgs() << "\t\t\t\tErasing re-materializable def: " << *MI << '\n'); RemoveMachineInstrFromMaps(MI); vrm.RemoveMachineInstrFromMaps(MI); MI->eraseFromParent(); break; } // If def for this use can't be rematerialized, then try folding. // If def is rematerializable and it's a load, also try folding. TryFold = !ReMatDefMI || (ReMatDefMI && (MI == ReMatOrigDefMI || isLoad)); if (isLoad) { // Try fold loads (from stack slot, constant pool, etc.) into uses. FoldSS = isLoadSS; FoldSlot = LdSlot; } } // Scan all of the operands of this instruction rewriting operands // to use NewVReg instead of li.reg as appropriate. We do this for // two reasons: // // 1. If the instr reads the same spilled vreg multiple times, we // want to reuse the NewVReg. // 2. If the instr is a two-addr instruction, we are required to // keep the src/dst regs pinned. // // Keep track of whether we replace a use and/or def so that we can // create the spill interval with the appropriate range. SmallVector Ops; tie(HasUse, HasDef) = MI->readsWritesVirtualRegister(Reg, &Ops); // Create a new virtual register for the spill interval. // Create the new register now so we can map the fold instruction // to the new register so when it is unfolded we get the correct // answer. bool CreatedNewVReg = false; if (NewVReg == 0) { NewVReg = mri_->createVirtualRegister(rc); vrm.grow(); CreatedNewVReg = true; // The new virtual register should get the same allocation hints as the // old one. std::pair Hint = mri_->getRegAllocationHint(Reg); if (Hint.first || Hint.second) mri_->setRegAllocationHint(NewVReg, Hint.first, Hint.second); } if (!TryFold) CanFold = false; else { // Do not fold load / store here if we are splitting. We'll find an // optimal point to insert a load / store later. if (!TrySplit) { if (tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index, Ops, FoldSS, FoldSlot, NewVReg)) { // Folding the load/store can completely change the instruction in // unpredictable ways, rescan it from the beginning. if (FoldSS) { // We need to give the new vreg the same stack slot as the // spilled interval. vrm.assignVirt2StackSlot(NewVReg, FoldSlot); } HasUse = false; HasDef = false; CanFold = false; if (isNotInMIMap(MI)) break; goto RestartInstruction; } } else { // We'll try to fold it later if it's profitable. CanFold = canFoldMemoryOperand(MI, Ops, DefIsReMat); } } mop.setReg(NewVReg); if (mop.isImplicit()) rewriteImplicitOps(li, MI, NewVReg, vrm); // Reuse NewVReg for other reads. bool HasEarlyClobber = false; for (unsigned j = 0, e = Ops.size(); j != e; ++j) { MachineOperand &mopj = MI->getOperand(Ops[j]); mopj.setReg(NewVReg); if (mopj.isImplicit()) rewriteImplicitOps(li, MI, NewVReg, vrm); if (mopj.isEarlyClobber()) HasEarlyClobber = true; } if (CreatedNewVReg) { if (DefIsReMat) { vrm.setVirtIsReMaterialized(NewVReg, ReMatDefMI); if (ReMatIds[VNI->id] == VirtRegMap::MAX_STACK_SLOT) { // Each valnum may have its own remat id. ReMatIds[VNI->id] = vrm.assignVirtReMatId(NewVReg); } else { vrm.assignVirtReMatId(NewVReg, ReMatIds[VNI->id]); } if (!CanDelete || (HasUse && HasDef)) { // If this is a two-addr instruction then its use operands are // rematerializable but its def is not. It should be assigned a // stack slot. vrm.assignVirt2StackSlot(NewVReg, Slot); } } else { vrm.assignVirt2StackSlot(NewVReg, Slot); } } else if (HasUse && HasDef && vrm.getStackSlot(NewVReg) == VirtRegMap::NO_STACK_SLOT) { // If this interval hasn't been assigned a stack slot (because earlier // def is a deleted remat def), do it now. assert(Slot != VirtRegMap::NO_STACK_SLOT); vrm.assignVirt2StackSlot(NewVReg, Slot); } // Re-matting an instruction with virtual register use. Add the // register as an implicit use on the use MI. if (DefIsReMat && ImpUse) MI->addOperand(MachineOperand::CreateReg(ImpUse, false, true)); // Create a new register interval for this spill / remat. LiveInterval &nI = getOrCreateInterval(NewVReg); if (CreatedNewVReg) { NewLIs.push_back(&nI); MBBVRegsMap.insert(std::make_pair(MI->getParent()->getNumber(), NewVReg)); if (TrySplit) vrm.setIsSplitFromReg(NewVReg, li.reg); } if (HasUse) { if (CreatedNewVReg) { LiveRange LR(index.getLoadIndex(), index.getDefIndex(), nI.getNextValue(SlotIndex(), 0, VNInfoAllocator)); DEBUG(dbgs() << " +" << LR); nI.addRange(LR); } else { // Extend the split live interval to this def / use. SlotIndex End = index.getDefIndex(); LiveRange LR(nI.ranges[nI.ranges.size()-1].end, End, nI.getValNumInfo(nI.getNumValNums()-1)); DEBUG(dbgs() << " +" << LR); nI.addRange(LR); } } if (HasDef) { // An early clobber starts at the use slot, except for an early clobber // tied to a use operand (yes, that is a thing). LiveRange LR(HasEarlyClobber && !HasUse ? index.getUseIndex() : index.getDefIndex(), index.getStoreIndex(), nI.getNextValue(SlotIndex(), 0, VNInfoAllocator)); DEBUG(dbgs() << " +" << LR); nI.addRange(LR); } DEBUG({ dbgs() << "\t\t\t\tAdded new interval: "; nI.print(dbgs(), tri_); dbgs() << '\n'; }); } return CanFold; } bool LiveIntervals::anyKillInMBBAfterIdx(const LiveInterval &li, const VNInfo *VNI, MachineBasicBlock *MBB, SlotIndex Idx) const { return li.killedInRange(Idx.getNextSlot(), getMBBEndIdx(MBB)); } /// RewriteInfo - Keep track of machine instrs that will be rewritten /// during spilling. namespace { struct RewriteInfo { SlotIndex Index; MachineInstr *MI; RewriteInfo(SlotIndex i, MachineInstr *mi) : Index(i), MI(mi) {} }; struct RewriteInfoCompare { bool operator()(const RewriteInfo &LHS, const RewriteInfo &RHS) const { return LHS.Index < RHS.Index; } }; } void LiveIntervals:: rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit, LiveInterval::Ranges::const_iterator &I, MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI, unsigned Slot, int LdSlot, bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete, VirtRegMap &vrm, const TargetRegisterClass* rc, SmallVector &ReMatIds, const MachineLoopInfo *loopInfo, BitVector &SpillMBBs, DenseMap > &SpillIdxes, BitVector &RestoreMBBs, DenseMap > &RestoreIdxes, DenseMap &MBBVRegsMap, std::vector &NewLIs) { bool AllCanFold = true; unsigned NewVReg = 0; SlotIndex start = I->start.getBaseIndex(); SlotIndex end = I->end.getPrevSlot().getBaseIndex().getNextIndex(); // First collect all the def / use in this live range that will be rewritten. // Make sure they are sorted according to instruction index. std::vector RewriteMIs; for (MachineRegisterInfo::reg_iterator ri = mri_->reg_begin(li.reg), re = mri_->reg_end(); ri != re; ) { MachineInstr *MI = &*ri; MachineOperand &O = ri.getOperand(); ++ri; if (MI->isDebugValue()) { // Modify DBG_VALUE now that the value is in a spill slot. if (Slot != VirtRegMap::MAX_STACK_SLOT || isLoadSS) { uint64_t Offset = MI->getOperand(1).getImm(); const MDNode *MDPtr = MI->getOperand(2).getMetadata(); DebugLoc DL = MI->getDebugLoc(); int FI = isLoadSS ? LdSlot : (int)Slot; if (MachineInstr *NewDV = tii_->emitFrameIndexDebugValue(*mf_, FI, Offset, MDPtr, DL)) { DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI); ReplaceMachineInstrInMaps(MI, NewDV); MachineBasicBlock *MBB = MI->getParent(); MBB->insert(MBB->erase(MI), NewDV); continue; } } DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI); RemoveMachineInstrFromMaps(MI); vrm.RemoveMachineInstrFromMaps(MI); MI->eraseFromParent(); continue; } assert(!(O.isImplicit() && O.isUse()) && "Spilling register that's used as implicit use?"); SlotIndex index = getInstructionIndex(MI); if (index < start || index >= end) continue; if (O.isUndef()) // Must be defined by an implicit def. It should not be spilled. Note, // this is for correctness reason. e.g. // 8 %reg1024 = IMPLICIT_DEF // 12 %reg1024 = INSERT_SUBREG %reg1024, %reg1025, 2 // The live range [12, 14) are not part of the r1024 live interval since // it's defined by an implicit def. It will not conflicts with live // interval of r1025. Now suppose both registers are spilled, you can // easily see a situation where both registers are reloaded before // the INSERT_SUBREG and both target registers that would overlap. continue; RewriteMIs.push_back(RewriteInfo(index, MI)); } std::sort(RewriteMIs.begin(), RewriteMIs.end(), RewriteInfoCompare()); unsigned ImpUse = DefIsReMat ? getReMatImplicitUse(li, ReMatDefMI) : 0; // Now rewrite the defs and uses. for (unsigned i = 0, e = RewriteMIs.size(); i != e; ) { RewriteInfo &rwi = RewriteMIs[i]; ++i; SlotIndex index = rwi.Index; MachineInstr *MI = rwi.MI; // If MI def and/or use the same register multiple times, then there // are multiple entries. while (i != e && RewriteMIs[i].MI == MI) { assert(RewriteMIs[i].Index == index); ++i; } MachineBasicBlock *MBB = MI->getParent(); if (ImpUse && MI != ReMatDefMI) { // Re-matting an instruction with virtual register use. Prevent interval // from being spilled. getInterval(ImpUse).markNotSpillable(); } unsigned MBBId = MBB->getNumber(); unsigned ThisVReg = 0; if (TrySplit) { DenseMap::iterator NVI = MBBVRegsMap.find(MBBId); if (NVI != MBBVRegsMap.end()) { ThisVReg = NVI->second; // One common case: // x = use // ... // ... // def = ... // = use // It's better to start a new interval to avoid artificially // extend the new interval. if (MI->readsWritesVirtualRegister(li.reg) == std::make_pair(false,true)) { MBBVRegsMap.erase(MBB->getNumber()); ThisVReg = 0; } } } bool IsNew = ThisVReg == 0; if (IsNew) { // This ends the previous live interval. If all of its def / use // can be folded, give it a low spill weight. if (NewVReg && TrySplit && AllCanFold) { LiveInterval &nI = getOrCreateInterval(NewVReg); nI.weight /= 10.0F; } AllCanFold = true; } NewVReg = ThisVReg; bool HasDef = false; bool HasUse = false; bool CanFold = rewriteInstructionForSpills(li, I->valno, TrySplit, index, end, MI, ReMatOrigDefMI, ReMatDefMI, Slot, LdSlot, isLoad, isLoadSS, DefIsReMat, CanDelete, vrm, rc, ReMatIds, loopInfo, NewVReg, ImpUse, HasDef, HasUse, MBBVRegsMap, NewLIs); if (!HasDef && !HasUse) continue; AllCanFold &= CanFold; // Update weight of spill interval. LiveInterval &nI = getOrCreateInterval(NewVReg); if (!TrySplit) { // The spill weight is now infinity as it cannot be spilled again. nI.markNotSpillable(); continue; } // Keep track of the last def and first use in each MBB. if (HasDef) { if (MI != ReMatOrigDefMI || !CanDelete) { bool HasKill = false; if (!HasUse) HasKill = anyKillInMBBAfterIdx(li, I->valno, MBB, index.getDefIndex()); else { // If this is a two-address code, then this index starts a new VNInfo. const VNInfo *VNI = li.findDefinedVNInfoForRegInt(index.getDefIndex()); if (VNI) HasKill = anyKillInMBBAfterIdx(li, VNI, MBB, index.getDefIndex()); } DenseMap >::iterator SII = SpillIdxes.find(MBBId); if (!HasKill) { if (SII == SpillIdxes.end()) { std::vector S; S.push_back(SRInfo(index, NewVReg, true)); SpillIdxes.insert(std::make_pair(MBBId, S)); } else if (SII->second.back().vreg != NewVReg) { SII->second.push_back(SRInfo(index, NewVReg, true)); } else if (index > SII->second.back().index) { // If there is an earlier def and this is a two-address // instruction, then it's not possible to fold the store (which // would also fold the load). SRInfo &Info = SII->second.back(); Info.index = index; Info.canFold = !HasUse; } SpillMBBs.set(MBBId); } else if (SII != SpillIdxes.end() && SII->second.back().vreg == NewVReg && index > SII->second.back().index) { // There is an earlier def that's not killed (must be two-address). // The spill is no longer needed. SII->second.pop_back(); if (SII->second.empty()) { SpillIdxes.erase(MBBId); SpillMBBs.reset(MBBId); } } } } if (HasUse) { DenseMap >::iterator SII = SpillIdxes.find(MBBId); if (SII != SpillIdxes.end() && SII->second.back().vreg == NewVReg && index > SII->second.back().index) // Use(s) following the last def, it's not safe to fold the spill. SII->second.back().canFold = false; DenseMap >::iterator RII = RestoreIdxes.find(MBBId); if (RII != RestoreIdxes.end() && RII->second.back().vreg == NewVReg) // If we are splitting live intervals, only fold if it's the first // use and there isn't another use later in the MBB. RII->second.back().canFold = false; else if (IsNew) { // Only need a reload if there isn't an earlier def / use. if (RII == RestoreIdxes.end()) { std::vector Infos; Infos.push_back(SRInfo(index, NewVReg, true)); RestoreIdxes.insert(std::make_pair(MBBId, Infos)); } else { RII->second.push_back(SRInfo(index, NewVReg, true)); } RestoreMBBs.set(MBBId); } } // Update spill weight. unsigned loopDepth = loopInfo->getLoopDepth(MBB); nI.weight += getSpillWeight(HasDef, HasUse, loopDepth); } if (NewVReg && TrySplit && AllCanFold) { // If all of its def / use can be folded, give it a low spill weight. LiveInterval &nI = getOrCreateInterval(NewVReg); nI.weight /= 10.0F; } } bool LiveIntervals::alsoFoldARestore(int Id, SlotIndex index, unsigned vr, BitVector &RestoreMBBs, DenseMap > &RestoreIdxes) { if (!RestoreMBBs[Id]) return false; std::vector &Restores = RestoreIdxes[Id]; for (unsigned i = 0, e = Restores.size(); i != e; ++i) if (Restores[i].index == index && Restores[i].vreg == vr && Restores[i].canFold) return true; return false; } void LiveIntervals::eraseRestoreInfo(int Id, SlotIndex index, unsigned vr, BitVector &RestoreMBBs, DenseMap > &RestoreIdxes) { if (!RestoreMBBs[Id]) return; std::vector &Restores = RestoreIdxes[Id]; for (unsigned i = 0, e = Restores.size(); i != e; ++i) if (Restores[i].index == index && Restores[i].vreg) Restores[i].index = SlotIndex(); } /// handleSpilledImpDefs - Remove IMPLICIT_DEF instructions which are being /// spilled and create empty intervals for their uses. void LiveIntervals::handleSpilledImpDefs(const LiveInterval &li, VirtRegMap &vrm, const TargetRegisterClass* rc, std::vector &NewLIs) { for (MachineRegisterInfo::reg_iterator ri = mri_->reg_begin(li.reg), re = mri_->reg_end(); ri != re; ) { MachineOperand &O = ri.getOperand(); MachineInstr *MI = &*ri; ++ri; if (MI->isDebugValue()) { // Remove debug info for now. O.setReg(0U); DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI); continue; } if (O.isDef()) { assert(MI->isImplicitDef() && "Register def was not rewritten?"); RemoveMachineInstrFromMaps(MI); vrm.RemoveMachineInstrFromMaps(MI); MI->eraseFromParent(); } else { // This must be an use of an implicit_def so it's not part of the live // interval. Create a new empty live interval for it. // FIXME: Can we simply erase some of the instructions? e.g. Stores? unsigned NewVReg = mri_->createVirtualRegister(rc); vrm.grow(); vrm.setIsImplicitlyDefined(NewVReg); NewLIs.push_back(&getOrCreateInterval(NewVReg)); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.getReg() == li.reg) { MO.setReg(NewVReg); MO.setIsUndef(); } } } } } float LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) { // Limit the loop depth ridiculousness. if (loopDepth > 200) loopDepth = 200; // The loop depth is used to roughly estimate the number of times the // instruction is executed. Something like 10^d is simple, but will quickly // overflow a float. This expression behaves like 10^d for small d, but is // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of // headroom before overflow. // By the way, powf() might be unavailable here. For consistency, // We may take pow(double,double). float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth); return (isDef + isUse) * lc; } static void normalizeSpillWeights(std::vector &NewLIs) { for (unsigned i = 0, e = NewLIs.size(); i != e; ++i) NewLIs[i]->weight = normalizeSpillWeight(NewLIs[i]->weight, NewLIs[i]->getSize()); } std::vector LiveIntervals:: addIntervalsForSpills(const LiveInterval &li, const SmallVectorImpl *SpillIs, const MachineLoopInfo *loopInfo, VirtRegMap &vrm) { assert(li.isSpillable() && "attempt to spill already spilled interval!"); DEBUG({ dbgs() << "\t\t\t\tadding intervals for spills for interval: "; li.print(dbgs(), tri_); dbgs() << '\n'; }); // Each bit specify whether a spill is required in the MBB. BitVector SpillMBBs(mf_->getNumBlockIDs()); DenseMap > SpillIdxes; BitVector RestoreMBBs(mf_->getNumBlockIDs()); DenseMap > RestoreIdxes; DenseMap MBBVRegsMap; std::vector NewLIs; const TargetRegisterClass* rc = mri_->getRegClass(li.reg); unsigned NumValNums = li.getNumValNums(); SmallVector ReMatDefs; ReMatDefs.resize(NumValNums, NULL); SmallVector ReMatOrigDefs; ReMatOrigDefs.resize(NumValNums, NULL); SmallVector ReMatIds; ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT); BitVector ReMatDelete(NumValNums); unsigned Slot = VirtRegMap::MAX_STACK_SLOT; // Spilling a split live interval. It cannot be split any further. Also, // it's also guaranteed to be a single val# / range interval. if (vrm.getPreSplitReg(li.reg)) { vrm.setIsSplitFromReg(li.reg, 0); // Unset the split kill marker on the last use. SlotIndex KillIdx = vrm.getKillPoint(li.reg); if (KillIdx != SlotIndex()) { MachineInstr *KillMI = getInstructionFromIndex(KillIdx); assert(KillMI && "Last use disappeared?"); int KillOp = KillMI->findRegisterUseOperandIdx(li.reg, true); assert(KillOp != -1 && "Last use disappeared?"); KillMI->getOperand(KillOp).setIsKill(false); } vrm.removeKillPoint(li.reg); bool DefIsReMat = vrm.isReMaterialized(li.reg); Slot = vrm.getStackSlot(li.reg); assert(Slot != VirtRegMap::MAX_STACK_SLOT); MachineInstr *ReMatDefMI = DefIsReMat ? vrm.getReMaterializedMI(li.reg) : NULL; int LdSlot = 0; bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot); bool isLoad = isLoadSS || (DefIsReMat && (ReMatDefMI->getDesc().canFoldAsLoad())); bool IsFirstRange = true; for (LiveInterval::Ranges::const_iterator I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) { // If this is a split live interval with multiple ranges, it means there // are two-address instructions that re-defined the value. Only the // first def can be rematerialized! if (IsFirstRange) { // Note ReMatOrigDefMI has already been deleted. rewriteInstructionsForSpills(li, false, I, NULL, ReMatDefMI, Slot, LdSlot, isLoad, isLoadSS, DefIsReMat, false, vrm, rc, ReMatIds, loopInfo, SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes, MBBVRegsMap, NewLIs); } else { rewriteInstructionsForSpills(li, false, I, NULL, 0, Slot, 0, false, false, false, false, vrm, rc, ReMatIds, loopInfo, SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes, MBBVRegsMap, NewLIs); } IsFirstRange = false; } handleSpilledImpDefs(li, vrm, rc, NewLIs); normalizeSpillWeights(NewLIs); return NewLIs; } bool TrySplit = !intervalIsInOneMBB(li); if (TrySplit) ++numSplits; bool NeedStackSlot = false; for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end(); i != e; ++i) { const VNInfo *VNI = *i; unsigned VN = VNI->id; if (VNI->isUnused()) continue; // Dead val#. // Is the def for the val# rematerializable? MachineInstr *ReMatDefMI = getInstructionFromIndex(VNI->def); bool dummy; if (ReMatDefMI && isReMaterializable(li, VNI, ReMatDefMI, SpillIs, dummy)) { // Remember how to remat the def of this val#. ReMatOrigDefs[VN] = ReMatDefMI; // Original def may be modified so we have to make a copy here. MachineInstr *Clone = mf_->CloneMachineInstr(ReMatDefMI); CloneMIs.push_back(Clone); ReMatDefs[VN] = Clone; bool CanDelete = true; if (VNI->hasPHIKill()) { // A kill is a phi node, not all of its uses can be rematerialized. // It must not be deleted. CanDelete = false; // Need a stack slot if there is any live range where uses cannot be // rematerialized. NeedStackSlot = true; } if (CanDelete) ReMatDelete.set(VN); } else { // Need a stack slot if there is any live range where uses cannot be // rematerialized. NeedStackSlot = true; } } // One stack slot per live interval. if (NeedStackSlot && vrm.getPreSplitReg(li.reg) == 0) { if (vrm.getStackSlot(li.reg) == VirtRegMap::NO_STACK_SLOT) Slot = vrm.assignVirt2StackSlot(li.reg); // This case only occurs when the prealloc splitter has already assigned // a stack slot to this vreg. else Slot = vrm.getStackSlot(li.reg); } // Create new intervals and rewrite defs and uses. for (LiveInterval::Ranges::const_iterator I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) { MachineInstr *ReMatDefMI = ReMatDefs[I->valno->id]; MachineInstr *ReMatOrigDefMI = ReMatOrigDefs[I->valno->id]; bool DefIsReMat = ReMatDefMI != NULL; bool CanDelete = ReMatDelete[I->valno->id]; int LdSlot = 0; bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot); bool isLoad = isLoadSS || (DefIsReMat && ReMatDefMI->getDesc().canFoldAsLoad()); rewriteInstructionsForSpills(li, TrySplit, I, ReMatOrigDefMI, ReMatDefMI, Slot, LdSlot, isLoad, isLoadSS, DefIsReMat, CanDelete, vrm, rc, ReMatIds, loopInfo, SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes, MBBVRegsMap, NewLIs); } // Insert spills / restores if we are splitting. if (!TrySplit) { handleSpilledImpDefs(li, vrm, rc, NewLIs); normalizeSpillWeights(NewLIs); return NewLIs; } SmallPtrSet AddedKill; SmallVector Ops; if (NeedStackSlot) { int Id = SpillMBBs.find_first(); while (Id != -1) { std::vector &spills = SpillIdxes[Id]; for (unsigned i = 0, e = spills.size(); i != e; ++i) { SlotIndex index = spills[i].index; unsigned VReg = spills[i].vreg; LiveInterval &nI = getOrCreateInterval(VReg); bool isReMat = vrm.isReMaterialized(VReg); MachineInstr *MI = getInstructionFromIndex(index); bool CanFold = false; bool FoundUse = false; Ops.clear(); if (spills[i].canFold) { CanFold = true; for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) { MachineOperand &MO = MI->getOperand(j); if (!MO.isReg() || MO.getReg() != VReg) continue; Ops.push_back(j); if (MO.isDef()) continue; if (isReMat || (!FoundUse && !alsoFoldARestore(Id, index, VReg, RestoreMBBs, RestoreIdxes))) { // MI has two-address uses of the same register. If the use // isn't the first and only use in the BB, then we can't fold // it. FIXME: Move this to rewriteInstructionsForSpills. CanFold = false; break; } FoundUse = true; } } // Fold the store into the def if possible. bool Folded = false; if (CanFold && !Ops.empty()) { if (tryFoldMemoryOperand(MI, vrm, NULL, index, Ops, true, Slot,VReg)){ Folded = true; if (FoundUse) { // Also folded uses, do not issue a load. eraseRestoreInfo(Id, index, VReg, RestoreMBBs, RestoreIdxes); nI.removeRange(index.getLoadIndex(), index.getDefIndex()); } nI.removeRange(index.getDefIndex(), index.getStoreIndex()); } } // Otherwise tell the spiller to issue a spill. if (!Folded) { LiveRange *LR = &nI.ranges[nI.ranges.size()-1]; bool isKill = LR->end == index.getStoreIndex(); if (!MI->registerDefIsDead(nI.reg)) // No need to spill a dead def. vrm.addSpillPoint(VReg, isKill, MI); if (isKill) AddedKill.insert(&nI); } } Id = SpillMBBs.find_next(Id); } } int Id = RestoreMBBs.find_first(); while (Id != -1) { std::vector &restores = RestoreIdxes[Id]; for (unsigned i = 0, e = restores.size(); i != e; ++i) { SlotIndex index = restores[i].index; if (index == SlotIndex()) continue; unsigned VReg = restores[i].vreg; LiveInterval &nI = getOrCreateInterval(VReg); bool isReMat = vrm.isReMaterialized(VReg); MachineInstr *MI = getInstructionFromIndex(index); bool CanFold = false; Ops.clear(); if (restores[i].canFold) { CanFold = true; for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) { MachineOperand &MO = MI->getOperand(j); if (!MO.isReg() || MO.getReg() != VReg) continue; if (MO.isDef()) { // If this restore were to be folded, it would have been folded // already. CanFold = false; break; } Ops.push_back(j); } } // Fold the load into the use if possible. bool Folded = false; if (CanFold && !Ops.empty()) { if (!isReMat) Folded = tryFoldMemoryOperand(MI, vrm, NULL,index,Ops,true,Slot,VReg); else { MachineInstr *ReMatDefMI = vrm.getReMaterializedMI(VReg); int LdSlot = 0; bool isLoadSS = tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot); // If the rematerializable def is a load, also try to fold it. if (isLoadSS || ReMatDefMI->getDesc().canFoldAsLoad()) Folded = tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index, Ops, isLoadSS, LdSlot, VReg); if (!Folded) { unsigned ImpUse = getReMatImplicitUse(li, ReMatDefMI); if (ImpUse) { // Re-matting an instruction with virtual register use. Add the // register as an implicit use on the use MI and mark the register // interval as unspillable. LiveInterval &ImpLi = getInterval(ImpUse); ImpLi.markNotSpillable(); MI->addOperand(MachineOperand::CreateReg(ImpUse, false, true)); } } } } // If folding is not possible / failed, then tell the spiller to issue a // load / rematerialization for us. if (Folded) nI.removeRange(index.getLoadIndex(), index.getDefIndex()); else vrm.addRestorePoint(VReg, MI); } Id = RestoreMBBs.find_next(Id); } // Finalize intervals: add kills, finalize spill weights, and filter out // dead intervals. std::vector RetNewLIs; for (unsigned i = 0, e = NewLIs.size(); i != e; ++i) { LiveInterval *LI = NewLIs[i]; if (!LI->empty()) { if (!AddedKill.count(LI)) { LiveRange *LR = &LI->ranges[LI->ranges.size()-1]; SlotIndex LastUseIdx = LR->end.getBaseIndex(); MachineInstr *LastUse = getInstructionFromIndex(LastUseIdx); int UseIdx = LastUse->findRegisterUseOperandIdx(LI->reg, false); assert(UseIdx != -1); if (!LastUse->isRegTiedToDefOperand(UseIdx)) { LastUse->getOperand(UseIdx).setIsKill(); vrm.addKillPoint(LI->reg, LastUseIdx); } } RetNewLIs.push_back(LI); } } handleSpilledImpDefs(li, vrm, rc, RetNewLIs); normalizeSpillWeights(RetNewLIs); return RetNewLIs; } /// hasAllocatableSuperReg - Return true if the specified physical register has /// any super register that's allocatable. bool LiveIntervals::hasAllocatableSuperReg(unsigned Reg) const { for (const unsigned* AS = tri_->getSuperRegisters(Reg); *AS; ++AS) if (allocatableRegs_[*AS] && hasInterval(*AS)) return true; return false; } /// getRepresentativeReg - Find the largest super register of the specified /// physical register. unsigned LiveIntervals::getRepresentativeReg(unsigned Reg) const { // Find the largest super-register that is allocatable. unsigned BestReg = Reg; for (const unsigned* AS = tri_->getSuperRegisters(Reg); *AS; ++AS) { unsigned SuperReg = *AS; if (!hasAllocatableSuperReg(SuperReg) && hasInterval(SuperReg)) { BestReg = SuperReg; break; } } return BestReg; } /// getNumConflictsWithPhysReg - Return the number of uses and defs of the /// specified interval that conflicts with the specified physical register. unsigned LiveIntervals::getNumConflictsWithPhysReg(const LiveInterval &li, unsigned PhysReg) const { unsigned NumConflicts = 0; const LiveInterval &pli = getInterval(getRepresentativeReg(PhysReg)); for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li.reg), E = mri_->reg_end(); I != E; ++I) { MachineOperand &O = I.getOperand(); MachineInstr *MI = O.getParent(); if (MI->isDebugValue()) continue; SlotIndex Index = getInstructionIndex(MI); if (pli.liveAt(Index)) ++NumConflicts; } return NumConflicts; } /// spillPhysRegAroundRegDefsUses - Spill the specified physical register /// around all defs and uses of the specified interval. Return true if it /// was able to cut its interval. bool LiveIntervals::spillPhysRegAroundRegDefsUses(const LiveInterval &li, unsigned PhysReg, VirtRegMap &vrm) { unsigned SpillReg = getRepresentativeReg(PhysReg); DEBUG(dbgs() << "spillPhysRegAroundRegDefsUses " << tri_->getName(PhysReg) << " represented by " << tri_->getName(SpillReg) << '\n'); for (const unsigned *AS = tri_->getAliasSet(PhysReg); *AS; ++AS) // If there are registers which alias PhysReg, but which are not a // sub-register of the chosen representative super register. Assert // since we can't handle it yet. assert(*AS == SpillReg || !allocatableRegs_[*AS] || !hasInterval(*AS) || tri_->isSuperRegister(*AS, SpillReg)); bool Cut = false; SmallVector PRegs; if (hasInterval(SpillReg)) PRegs.push_back(SpillReg); for (const unsigned *SR = tri_->getSubRegisters(SpillReg); *SR; ++SR) if (hasInterval(*SR)) PRegs.push_back(*SR); DEBUG({ dbgs() << "Trying to spill:"; for (unsigned i = 0, e = PRegs.size(); i != e; ++i) dbgs() << ' ' << tri_->getName(PRegs[i]); dbgs() << '\n'; }); SmallPtrSet SeenMIs; for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li.reg), E = mri_->reg_end(); I != E; ++I) { MachineOperand &O = I.getOperand(); MachineInstr *MI = O.getParent(); if (MI->isDebugValue() || SeenMIs.count(MI)) continue; SeenMIs.insert(MI); SlotIndex Index = getInstructionIndex(MI); bool LiveReg = false; for (unsigned i = 0, e = PRegs.size(); i != e; ++i) { unsigned PReg = PRegs[i]; LiveInterval &pli = getInterval(PReg); if (!pli.liveAt(Index)) continue; LiveReg = true; SlotIndex StartIdx = Index.getLoadIndex(); SlotIndex EndIdx = Index.getNextIndex().getBaseIndex(); if (!pli.isInOneLiveRange(StartIdx, EndIdx)) { std::string msg; raw_string_ostream Msg(msg); Msg << "Ran out of registers during register allocation!"; if (MI->isInlineAsm()) { Msg << "\nPlease check your inline asm statement for invalid " << "constraints:\n"; MI->print(Msg, tm_); } report_fatal_error(Msg.str()); } pli.removeRange(StartIdx, EndIdx); LiveReg = true; } if (!LiveReg) continue; DEBUG(dbgs() << "Emergency spill around " << Index << '\t' << *MI); vrm.addEmergencySpill(SpillReg, MI); Cut = true; } return Cut; } LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg, MachineInstr* startInst) { LiveInterval& Interval = getOrCreateInterval(reg); VNInfo* VN = Interval.getNextValue( SlotIndex(getInstructionIndex(startInst).getDefIndex()), startInst, getVNInfoAllocator()); VN->setHasPHIKill(true); LiveRange LR( SlotIndex(getInstructionIndex(startInst).getDefIndex()), getMBBEndIdx(startInst->getParent()), VN); Interval.addRange(LR); return LR; }