//===- ARMInstrInfo.td - Target Description for ARM Target -*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the "Instituto Nokia de Tecnologia" and // is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the ARM instructions in TableGen format. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ARM specific DAG Nodes. // // Type profiles. def SDT_ARMCallSeq : SDTypeProfile<0, 1, [ SDTCisVT<0, i32> ]>; def SDT_ARMSaveCallPC : SDTypeProfile<0, 1, []>; def SDT_ARMcall : SDTypeProfile<0, -1, [SDTCisInt<0>]>; def SDT_ARMCMov : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<3, i32>]>; def SDT_ARMBrcond : SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>; def SDT_ARMBrJT : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>; def SDT_ARMCmp : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>; def SDT_ARMPICAdd : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisPtrTy<1>, SDTCisVT<2, i32>]>; def SDT_ARMThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; // Node definitions. def ARMWrapper : SDNode<"ARMISD::Wrapper", SDTIntUnaryOp>; def ARMWrapperJT : SDNode<"ARMISD::WrapperJT", SDTIntBinOp>; def ARMcallseq_start : SDNode<"ISD::CALLSEQ_START", SDT_ARMCallSeq, [SDNPHasChain, SDNPOutFlag]>; def ARMcallseq_end : SDNode<"ISD::CALLSEQ_END", SDT_ARMCallSeq, [SDNPHasChain, SDNPInFlag, SDNPOutFlag]>; def ARMcall : SDNode<"ARMISD::CALL", SDT_ARMcall, [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>; def ARMcall_pred : SDNode<"ARMISD::CALL_PRED", SDT_ARMcall, [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>; def ARMcall_nolink : SDNode<"ARMISD::CALL_NOLINK", SDT_ARMcall, [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>; def ARMretflag : SDNode<"ARMISD::RET_FLAG", SDTRet, [SDNPHasChain, SDNPOptInFlag]>; def ARMcmov : SDNode<"ARMISD::CMOV", SDT_ARMCMov, [SDNPInFlag]>; def ARMcneg : SDNode<"ARMISD::CNEG", SDT_ARMCMov, [SDNPInFlag]>; def ARMbrcond : SDNode<"ARMISD::BRCOND", SDT_ARMBrcond, [SDNPHasChain, SDNPInFlag, SDNPOutFlag]>; def ARMbrjt : SDNode<"ARMISD::BR_JT", SDT_ARMBrJT, [SDNPHasChain]>; def ARMcmp : SDNode<"ARMISD::CMP", SDT_ARMCmp, [SDNPOutFlag]>; def ARMcmpNZ : SDNode<"ARMISD::CMPNZ", SDT_ARMCmp, [SDNPOutFlag]>; def ARMpic_add : SDNode<"ARMISD::PIC_ADD", SDT_ARMPICAdd>; def ARMsrl_flag : SDNode<"ARMISD::SRL_FLAG", SDTIntUnaryOp, [SDNPOutFlag]>; def ARMsra_flag : SDNode<"ARMISD::SRA_FLAG", SDTIntUnaryOp, [SDNPOutFlag]>; def ARMrrx : SDNode<"ARMISD::RRX" , SDTIntUnaryOp, [SDNPInFlag ]>; def ARMthread_pointer: SDNode<"ARMISD::THREAD_POINTER", SDT_ARMThreadPointer>; //===----------------------------------------------------------------------===// // ARM Instruction Predicate Definitions. // def HasV5T : Predicate<"Subtarget->hasV5TOps()">; def HasV5TE : Predicate<"Subtarget->hasV5TEOps()">; def HasV6 : Predicate<"Subtarget->hasV6Ops()">; def IsThumb : Predicate<"Subtarget->isThumb()">; def IsARM : Predicate<"!Subtarget->isThumb()">; //===----------------------------------------------------------------------===// // ARM Flag Definitions. class RegConstraint { string Constraints = C; } //===----------------------------------------------------------------------===// // ARM specific transformation functions and pattern fragments. // // so_imm_XFORM - Return a so_imm value packed into the format described for // so_imm def below. def so_imm_XFORM : SDNodeXFormgetTargetConstant(ARM_AM::getSOImmVal(N->getValue()), MVT::i32); }]>; // so_imm_neg_XFORM - Return a so_imm value packed into the format described for // so_imm_neg def below. def so_imm_neg_XFORM : SDNodeXFormgetTargetConstant(ARM_AM::getSOImmVal(-(int)N->getValue()), MVT::i32); }]>; // so_imm_not_XFORM - Return a so_imm value packed into the format described for // so_imm_not def below. def so_imm_not_XFORM : SDNodeXFormgetTargetConstant(ARM_AM::getSOImmVal(~(int)N->getValue()), MVT::i32); }]>; // rot_imm predicate - True if the 32-bit immediate is equal to 8, 16, or 24. def rot_imm : PatLeaf<(i32 imm), [{ int32_t v = (int32_t)N->getValue(); return v == 8 || v == 16 || v == 24; }]>; /// imm1_15 predicate - True if the 32-bit immediate is in the range [1,15]. def imm1_15 : PatLeaf<(i32 imm), [{ return (int32_t)N->getValue() >= 1 && (int32_t)N->getValue() < 16; }]>; /// imm16_31 predicate - True if the 32-bit immediate is in the range [16,31]. def imm16_31 : PatLeaf<(i32 imm), [{ return (int32_t)N->getValue() >= 16 && (int32_t)N->getValue() < 32; }]>; def so_imm_neg : PatLeaf<(imm), [{ return ARM_AM::getSOImmVal(-(int)N->getValue()) != -1; }], so_imm_neg_XFORM>; def so_imm_not : PatLeaf<(imm), [{ return ARM_AM::getSOImmVal(~(int)N->getValue()) != -1; }], so_imm_not_XFORM>; // sext_16_node predicate - True if the SDNode is sign-extended 16 or more bits. def sext_16_node : PatLeaf<(i32 GPR:$a), [{ return CurDAG->ComputeNumSignBits(SDOperand(N,0)) >= 17; }]>; //===----------------------------------------------------------------------===// // Operand Definitions. // // Branch target. def brtarget : Operand; // A list of registers separated by comma. Used by load/store multiple. def reglist : Operand { let PrintMethod = "printRegisterList"; } // An operand for the CONSTPOOL_ENTRY pseudo-instruction. def cpinst_operand : Operand { let PrintMethod = "printCPInstOperand"; } def jtblock_operand : Operand { let PrintMethod = "printJTBlockOperand"; } // Local PC labels. def pclabel : Operand { let PrintMethod = "printPCLabel"; } // shifter_operand operands: so_reg and so_imm. def so_reg : Operand, // reg reg imm ComplexPattern { let PrintMethod = "printSORegOperand"; let MIOperandInfo = (ops GPR, GPR, i32imm); } // so_imm - Match a 32-bit shifter_operand immediate operand, which is an // 8-bit immediate rotated by an arbitrary number of bits. so_imm values are // represented in the imm field in the same 12-bit form that they are encoded // into so_imm instructions: the 8-bit immediate is the least significant bits // [bits 0-7], the 4-bit shift amount is the next 4 bits [bits 8-11]. def so_imm : Operand, PatLeaf<(imm), [{ return ARM_AM::getSOImmVal(N->getValue()) != -1; }], so_imm_XFORM> { let PrintMethod = "printSOImmOperand"; } // Break so_imm's up into two pieces. This handles immediates with up to 16 // bits set in them. This uses so_imm2part to match and so_imm2part_[12] to // get the first/second pieces. def so_imm2part : Operand, PatLeaf<(imm), [{ return ARM_AM::isSOImmTwoPartVal((unsigned)N->getValue()); }]> { let PrintMethod = "printSOImm2PartOperand"; } def so_imm2part_1 : SDNodeXFormgetValue()); return CurDAG->getTargetConstant(ARM_AM::getSOImmVal(V), MVT::i32); }]>; def so_imm2part_2 : SDNodeXFormgetValue()); return CurDAG->getTargetConstant(ARM_AM::getSOImmVal(V), MVT::i32); }]>; // Define ARM specific addressing modes. // addrmode2 := reg +/- reg shop imm // addrmode2 := reg +/- imm12 // def addrmode2 : Operand, ComplexPattern { let PrintMethod = "printAddrMode2Operand"; let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm); } def am2offset : Operand, ComplexPattern { let PrintMethod = "printAddrMode2OffsetOperand"; let MIOperandInfo = (ops GPR, i32imm); } // addrmode3 := reg +/- reg // addrmode3 := reg +/- imm8 // def addrmode3 : Operand, ComplexPattern { let PrintMethod = "printAddrMode3Operand"; let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm); } def am3offset : Operand, ComplexPattern { let PrintMethod = "printAddrMode3OffsetOperand"; let MIOperandInfo = (ops GPR, i32imm); } // addrmode4 := reg, // def addrmode4 : Operand, ComplexPattern { let PrintMethod = "printAddrMode4Operand"; let MIOperandInfo = (ops GPR, i32imm); } // addrmode5 := reg +/- imm8*4 // def addrmode5 : Operand, ComplexPattern { let PrintMethod = "printAddrMode5Operand"; let MIOperandInfo = (ops GPR, i32imm); } // addrmodepc := pc + reg // def addrmodepc : Operand, ComplexPattern { let PrintMethod = "printAddrModePCOperand"; let MIOperandInfo = (ops GPR, i32imm); } // ARM Predicate operand. Default to 14 = always (AL). Second part is CC // register whose default is 0 (no register). def pred : PredicateOperand { let PrintMethod = "printPredicateOperand"; } // Conditional code result for instructions whose 's' bit is set, e.g. subs. // def cc_out : OptionalDefOperand { let PrintMethod = "printSBitModifierOperand"; } //===----------------------------------------------------------------------===// // ARM Instruction flags. These need to match ARMInstrInfo.h. // // Addressing mode. class AddrMode val> { bits<4> Value = val; } def AddrModeNone : AddrMode<0>; def AddrMode1 : AddrMode<1>; def AddrMode2 : AddrMode<2>; def AddrMode3 : AddrMode<3>; def AddrMode4 : AddrMode<4>; def AddrMode5 : AddrMode<5>; def AddrModeT1 : AddrMode<6>; def AddrModeT2 : AddrMode<7>; def AddrModeT4 : AddrMode<8>; def AddrModeTs : AddrMode<9>; // Instruction size. class SizeFlagVal val> { bits<3> Value = val; } def SizeInvalid : SizeFlagVal<0>; // Unset. def SizeSpecial : SizeFlagVal<1>; // Pseudo or special. def Size8Bytes : SizeFlagVal<2>; def Size4Bytes : SizeFlagVal<3>; def Size2Bytes : SizeFlagVal<4>; // Load / store index mode. class IndexMode val> { bits<2> Value = val; } def IndexModeNone : IndexMode<0>; def IndexModePre : IndexMode<1>; def IndexModePost : IndexMode<2>; //===----------------------------------------------------------------------===// // ARM Instruction templates. // // ARMPat - Same as Pat<>, but requires that the compiler be in ARM mode. class ARMPat : Pat { list Predicates = [IsARM]; } class ARMV5TEPat : Pat { list Predicates = [IsARM, HasV5TE]; } class ARMV6Pat : Pat { list Predicates = [IsARM, HasV6]; } class InstARM opcod, AddrMode am, SizeFlagVal sz, IndexMode im, string cstr> : Instruction { let Namespace = "ARM"; bits<4> Opcode = opcod; AddrMode AM = am; bits<4> AddrModeBits = AM.Value; SizeFlagVal SZ = sz; bits<3> SizeFlag = SZ.Value; IndexMode IM = im; bits<2> IndexModeBits = IM.Value; let Constraints = cstr; } class PseudoInst pattern> : InstARM<0, AddrModeNone, SizeSpecial, IndexModeNone, ""> { let OutOperandList = oops; let InOperandList = iops; let AsmString = asm; let Pattern = pattern; } // Almost all ARM instructions are predicable. class I pattern> // FIXME: Set all opcodes to 0 for now. : InstARM<0, am, sz, im, cstr> { let OutOperandList = oops; let InOperandList = !con(iops, (ops pred:$p)); let AsmString = !strconcat(opc, !strconcat("${p}", asm)); let Pattern = pattern; list Predicates = [IsARM]; } // Same as I except it can optionally modify CPSR. Note it's modeled as // an input operand since by default it's a zero register. It will // become an implicit def once it's "flipped". class sI pattern> // FIXME: Set all opcodes to 0 for now. : InstARM<0, am, sz, im, cstr> { let OutOperandList = oops; let InOperandList = !con(iops, (ops pred:$p, cc_out:$s)); let AsmString = !strconcat(opc, !strconcat("${p}${s}", asm)); let Pattern = pattern; list Predicates = [IsARM]; } class AI pattern> : I; class AsI pattern> : sI; class AI1 pattern> : I; class AsI1 pattern> : sI; class AI2 pattern> : I; class AI3 pattern> : I; class AI4 pattern> : I; class AI1x2 pattern> : I; // Pre-indexed ops class AI2pr pattern> : I; class AI3pr pattern> : I; // Post-indexed ops class AI2po pattern> : I; class AI3po pattern> : I; class BinOpFrag : PatFrag<(ops node:$LHS, node:$RHS), res>; class UnOpFrag : PatFrag<(ops node:$Src), res>; /// AI1_bin_irs - Defines a set of (op r, {so_imm|r|so_reg}) patterns for a /// binop that produces a value. multiclass AsI1_bin_irs { def ri : AsI1<(outs GPR:$dst), (ins GPR:$a, so_imm:$b), opc, " $dst, $a, $b", [(set GPR:$dst, (opnode GPR:$a, so_imm:$b))]>; def rr : AsI1<(outs GPR:$dst), (ins GPR:$a, GPR:$b), opc, " $dst, $a, $b", [(set GPR:$dst, (opnode GPR:$a, GPR:$b))]>; def rs : AsI1<(outs GPR:$dst), (ins GPR:$a, so_reg:$b), opc, " $dst, $a, $b", [(set GPR:$dst, (opnode GPR:$a, so_reg:$b))]>; } /// ASI1_bin_s_irs - Similar to AsI1_bin_irs except it sets the 's' bit so the /// instruction modifies the CSPR register. multiclass ASI1_bin_s_irs { def ri : AI1<(outs GPR:$dst), (ins GPR:$a, so_imm:$b), opc, "s $dst, $a, $b", [(set GPR:$dst, (opnode GPR:$a, so_imm:$b))]>, Imp<[], [CPSR]>; def rr : AI1<(outs GPR:$dst), (ins GPR:$a, GPR:$b), opc, "s $dst, $a, $b", [(set GPR:$dst, (opnode GPR:$a, GPR:$b))]>, Imp<[], [CPSR]>; def rs : AI1<(outs GPR:$dst), (ins GPR:$a, so_reg:$b), opc, "s $dst, $a, $b", [(set GPR:$dst, (opnode GPR:$a, so_reg:$b))]>, Imp<[], [CPSR]>; } /// AI1_cmp_irs - Defines a set of (op r, {so_imm|r|so_reg}) cmp / test /// patterns. Similar to AsI1_bin_irs except the instruction does not produce /// a explicit result, only implicitly set CPSR. multiclass AI1_cmp_irs { def ri : AI1<(outs), (ins GPR:$a, so_imm:$b), opc, " $a, $b", [(opnode GPR:$a, so_imm:$b)]>, Imp<[], [CPSR]>; def rr : AI1<(outs), (ins GPR:$a, GPR:$b), opc, " $a, $b", [(opnode GPR:$a, GPR:$b)]>, Imp<[], [CPSR]>; def rs : AI1<(outs), (ins GPR:$a, so_reg:$b), opc, " $a, $b", [(opnode GPR:$a, so_reg:$b)]>, Imp<[], [CPSR]>; } /// AI_unary_rrot - A unary operation with two forms: one whose operand is a /// register and one whose operand is a register rotated by 8/16/24. multiclass AI_unary_rrot { def r : AI<(outs GPR:$dst), (ins GPR:$Src), opc, " $dst, $Src", [(set GPR:$dst, (opnode GPR:$Src))]>, Requires<[IsARM, HasV6]>; def r_rot : AI<(outs GPR:$dst), (ins GPR:$Src, i32imm:$rot), opc, " $dst, $Src, ror $rot", [(set GPR:$dst, (opnode (rotr GPR:$Src, rot_imm:$rot)))]>, Requires<[IsARM, HasV6]>; } /// AI_bin_rrot - A binary operation with two forms: one whose operand is a /// register and one whose operand is a register rotated by 8/16/24. multiclass AI_bin_rrot { def rr : AI<(outs GPR:$dst), (ins GPR:$LHS, GPR:$RHS), opc, " $dst, $LHS, $RHS", [(set GPR:$dst, (opnode GPR:$LHS, GPR:$RHS))]>, Requires<[IsARM, HasV6]>; def rr_rot : AI<(outs GPR:$dst), (ins GPR:$LHS, GPR:$RHS, i32imm:$rot), opc, " $dst, $LHS, $RHS, ror $rot", [(set GPR:$dst, (opnode GPR:$LHS, (rotr GPR:$RHS, rot_imm:$rot)))]>, Requires<[IsARM, HasV6]>; } // Special cases. class XI pattern> // FIXME: Set all opcodes to 0 for now. : InstARM<0, am, sz, im, cstr> { let OutOperandList = oops; let InOperandList = iops; let AsmString = asm; let Pattern = pattern; list Predicates = [IsARM]; } class AXI pattern> : XI; class AXI1 pattern> : XI; class AXI2 pattern> : XI; class AXI3 pattern> : XI; class AXI4 pattern> : XI; class AXIx2 pattern> : XI; // BR_JT instructions class JTI pattern> : XI; class JTI1 pattern> : XI; class JTI2 pattern> : XI; /// AsXI1_bin_c_irs - Same as AsI1_bin_irs but without the predicate operand and /// setting carry bit. But it can optionally set CPSR. multiclass AsXI1_bin_c_irs { def ri : AXI1<(outs GPR:$dst), (ins GPR:$a, so_imm:$b, cc_out:$s), !strconcat(opc, "${s} $dst, $a, $b"), [(set GPR:$dst, (opnode GPR:$a, so_imm:$b))]>, Imp<[CPSR], []>; def rr : AXI1<(outs GPR:$dst), (ins GPR:$a, GPR:$b, cc_out:$s), !strconcat(opc, "${s} $dst, $a, $b"), [(set GPR:$dst, (opnode GPR:$a, GPR:$b))]>, Imp<[CPSR], []>; def rs : AXI1<(outs GPR:$dst), (ins GPR:$a, so_reg:$b, cc_out:$s), !strconcat(opc, "${s} $dst, $a, $b"), [(set GPR:$dst, (opnode GPR:$a, so_reg:$b))]>, Imp<[CPSR], []>; } //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Miscellaneous Instructions. // def IMPLICIT_DEF_GPR : PseudoInst<(outs GPR:$rD), (ins pred:$p), "@ IMPLICIT_DEF_GPR $rD", [(set GPR:$rD, (undef))]>; /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in /// the function. The first operand is the ID# for this instruction, the second /// is the index into the MachineConstantPool that this is, the third is the /// size in bytes of this constant pool entry. let isNotDuplicable = 1 in def CONSTPOOL_ENTRY : PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx, i32imm:$size), "${instid:label} ${cpidx:cpentry}", []>; def ADJCALLSTACKUP : PseudoInst<(outs), (ins i32imm:$amt, pred:$p), "@ ADJCALLSTACKUP $amt", [(ARMcallseq_end imm:$amt)]>, Imp<[SP],[SP]>; def ADJCALLSTACKDOWN : PseudoInst<(outs), (ins i32imm:$amt, pred:$p), "@ ADJCALLSTACKDOWN $amt", [(ARMcallseq_start imm:$amt)]>, Imp<[SP],[SP]>; def DWARF_LOC : PseudoInst<(outs), (ins i32imm:$line, i32imm:$col, i32imm:$file), ".loc $file, $line, $col", [(dwarf_loc (i32 imm:$line), (i32 imm:$col), (i32 imm:$file))]>; let isNotDuplicable = 1 in { def PICADD : AXI1<(outs GPR:$dst), (ins GPR:$a, pclabel:$cp, pred:$p), "$cp:\n\tadd$p $dst, pc, $a", [(set GPR:$dst, (ARMpic_add GPR:$a, imm:$cp))]>; let isLoad = 1, AddedComplexity = 10 in { def PICLD : AXI2<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p), "${addr:label}:\n\tldr$p $dst, $addr", [(set GPR:$dst, (load addrmodepc:$addr))]>; def PICLDZH : AXI3<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p), "${addr:label}:\n\tldr${p}h $dst, $addr", [(set GPR:$dst, (zextloadi16 addrmodepc:$addr))]>; def PICLDZB : AXI2<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p), "${addr:label}:\n\tldr${p}b $dst, $addr", [(set GPR:$dst, (zextloadi8 addrmodepc:$addr))]>; def PICLDH : AXI3<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p), "${addr:label}:\n\tldr${p}h $dst, $addr", [(set GPR:$dst, (extloadi16 addrmodepc:$addr))]>; def PICLDB : AXI2<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p), "${addr:label}:\n\tldr${p}b $dst, $addr", [(set GPR:$dst, (extloadi8 addrmodepc:$addr))]>; def PICLDSH : AXI3<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p), "${addr:label}:\n\tldr${p}sh $dst, $addr", [(set GPR:$dst, (sextloadi16 addrmodepc:$addr))]>; def PICLDSB : AXI3<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p), "${addr:label}:\n\tldr${p}sb $dst, $addr", [(set GPR:$dst, (sextloadi8 addrmodepc:$addr))]>; } let isStore = 1, AddedComplexity = 10 in { def PICSTR : AXI2<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p), "${addr:label}:\n\tstr$p $src, $addr", [(store GPR:$src, addrmodepc:$addr)]>; def PICSTRH : AXI3<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p), "${addr:label}:\n\tstr${p}h $src, $addr", [(truncstorei16 GPR:$src, addrmodepc:$addr)]>; def PICSTRB : AXI2<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p), "${addr:label}:\n\tstr${p}b $src, $addr", [(truncstorei8 GPR:$src, addrmodepc:$addr)]>; } } //===----------------------------------------------------------------------===// // Control Flow Instructions. // let isReturn = 1, isTerminator = 1 in def BX_RET : AI<(outs), (ins), "bx", " lr", [(ARMretflag)]>; // FIXME: remove when we have a way to marking a MI with these properties. // FIXME: $dst1 should be a def. But the extra ops must be in the end of the // operand list. let isLoad = 1, isReturn = 1, isTerminator = 1 in def LDM_RET : AXI4<(outs), (ins addrmode4:$addr, pred:$p, reglist:$dst1, variable_ops), "ldm${p}${addr:submode} $addr, $dst1", []>; let isCall = 1, noResults = 1, Defs = [R0, R1, R2, R3, R12, LR, D0, D1, D2, D3, D4, D5, D6, D7, CPSR] in { def BL : AXI<(outs), (ins i32imm:$func, variable_ops), "bl ${func:call}", [(ARMcall tglobaladdr:$func)]>; def BL_pred : AI<(outs), (ins i32imm:$func, variable_ops), "bl", " ${func:call}", [(ARMcall_pred tglobaladdr:$func)]>; // ARMv5T and above def BLX : AXI<(outs), (ins GPR:$func, variable_ops), "blx $func", [(ARMcall GPR:$func)]>, Requires<[IsARM, HasV5T]>; let Uses = [LR] in { // ARMv4T def BX : AXIx2<(outs), (ins GPR:$func, variable_ops), "mov lr, pc\n\tbx $func", [(ARMcall_nolink GPR:$func)]>; } } let isBranch = 1, isTerminator = 1, noResults = 1 in { // B is "predicable" since it can be xformed into a Bcc. let isBarrier = 1 in { let isPredicable = 1 in def B : AXI<(outs), (ins brtarget:$target), "b $target", [(br bb:$target)]>; let isNotDuplicable = 1 in { def BR_JTr : JTI<(outs), (ins GPR:$target, jtblock_operand:$jt, i32imm:$id), "mov pc, $target \n$jt", [(ARMbrjt GPR:$target, tjumptable:$jt, imm:$id)]>; def BR_JTm : JTI2<(outs), (ins addrmode2:$target, jtblock_operand:$jt, i32imm:$id), "ldr pc, $target \n$jt", [(ARMbrjt (i32 (load addrmode2:$target)), tjumptable:$jt, imm:$id)]>; def BR_JTadd : JTI1<(outs), (ins GPR:$target, GPR:$idx, jtblock_operand:$jt, i32imm:$id), "add pc, $target, $idx \n$jt", [(ARMbrjt (add GPR:$target, GPR:$idx), tjumptable:$jt, imm:$id)]>; } } // FIXME: should be able to write a pattern for ARMBrcond, but can't use // a two-value operand where a dag node expects two operands. :( def Bcc : AI<(outs), (ins brtarget:$target), "b", " $target", [/*(ARMbrcond bb:$target, imm:$cc, CCR:$ccr)*/]>; } //===----------------------------------------------------------------------===// // Load / store Instructions. // // Load let isLoad = 1 in { def LDR : AI2<(outs GPR:$dst), (ins addrmode2:$addr), "ldr", " $dst, $addr", [(set GPR:$dst, (load addrmode2:$addr))]>; // Special LDR for loads from non-pc-relative constpools. let isReMaterializable = 1 in def LDRcp : AI2<(outs GPR:$dst), (ins addrmode2:$addr), "ldr", " $dst, $addr", []>; // Loads with zero extension def LDRH : AI3<(outs GPR:$dst), (ins addrmode3:$addr), "ldr", "h $dst, $addr", [(set GPR:$dst, (zextloadi16 addrmode3:$addr))]>; def LDRB : AI2<(outs GPR:$dst), (ins addrmode2:$addr), "ldr", "b $dst, $addr", [(set GPR:$dst, (zextloadi8 addrmode2:$addr))]>; // Loads with sign extension def LDRSH : AI3<(outs GPR:$dst), (ins addrmode3:$addr), "ldr", "sh $dst, $addr", [(set GPR:$dst, (sextloadi16 addrmode3:$addr))]>; def LDRSB : AI3<(outs GPR:$dst), (ins addrmode3:$addr), "ldr", "sb $dst, $addr", [(set GPR:$dst, (sextloadi8 addrmode3:$addr))]>; // Load doubleword def LDRD : AI3<(outs GPR:$dst), (ins addrmode3:$addr), "ldr", "d $dst, $addr", []>, Requires<[IsARM, HasV5T]>; // Indexed loads def LDR_PRE : AI2pr<(outs GPR:$dst), (ins GPR:$base_wb, addrmode2:$addr), "ldr", " $dst, $addr!", "$addr.base = $base_wb", []>; def LDR_POST : AI2po<(outs GPR:$dst), (ins GPR:$base_wb, GPR:$base, am2offset:$offset), "ldr", " $dst, [$base], $offset", "$base = $base_wb", []>; def LDRH_PRE : AI3pr<(outs GPR:$dst), (ins GPR:$base_wb, addrmode3:$addr), "ldr", "h $dst, $addr!", "$addr.base = $base_wb", []>; def LDRH_POST : AI3po<(outs GPR:$dst), (ins GPR:$base_wb, GPR:$base,am3offset:$offset), "ldr", "h $dst, [$base], $offset", "$base = $base_wb", []>; def LDRB_PRE : AI2pr<(outs GPR:$dst), (ins GPR:$base_wb, addrmode2:$addr), "ldr", "b $dst, $addr!", "$addr.base = $base_wb", []>; def LDRB_POST : AI2po<(outs GPR:$dst), (ins GPR:$base_wb, GPR:$base,am2offset:$offset), "ldr", "b $dst, [$base], $offset", "$base = $base_wb", []>; def LDRSH_PRE : AI3pr<(outs GPR:$dst), (ins GPR:$base_wb, addrmode3:$addr), "ldr", "sh $dst, $addr!", "$addr.base = $base_wb", []>; def LDRSH_POST: AI3po<(outs GPR:$dst), (ins GPR:$base_wb, GPR:$base,am3offset:$offset), "ldr", "sh $dst, [$base], $offset", "$base = $base_wb", []>; def LDRSB_PRE : AI3pr<(outs GPR:$dst), (ins GPR:$base_wb, addrmode3:$addr), "ldr", "sb $dst, $addr!", "$addr.base = $base_wb", []>; def LDRSB_POST: AI3po<(outs GPR:$dst), (ins GPR:$base_wb, GPR:$base,am3offset:$offset), "ldr", "sb $dst, [$base], $offset", "$base = $base_wb", []>; } // isLoad // Store let isStore = 1 in { def STR : AI2<(outs), (ins GPR:$src, addrmode2:$addr), "str", " $src, $addr", [(store GPR:$src, addrmode2:$addr)]>; // Stores with truncate def STRH : AI3<(outs), (ins GPR:$src, addrmode3:$addr), "str", "h $src, $addr", [(truncstorei16 GPR:$src, addrmode3:$addr)]>; def STRB : AI2<(outs), (ins GPR:$src, addrmode2:$addr), "str", "b $src, $addr", [(truncstorei8 GPR:$src, addrmode2:$addr)]>; // Store doubleword def STRD : AI3<(outs), (ins GPR:$src, addrmode3:$addr), "str", "d $src, $addr", []>, Requires<[IsARM, HasV5T]>; // Indexed stores def STR_PRE : AI2pr<(outs GPR:$base_wb), (ins GPR:$src, GPR:$base, am2offset:$offset), "str", " $src, [$base, $offset]!", "$base = $base_wb", [(set GPR:$base_wb, (pre_store GPR:$src, GPR:$base, am2offset:$offset))]>; def STR_POST : AI2po<(outs GPR:$base_wb), (ins GPR:$src, GPR:$base,am2offset:$offset), "str", " $src, [$base], $offset", "$base = $base_wb", [(set GPR:$base_wb, (post_store GPR:$src, GPR:$base, am2offset:$offset))]>; def STRH_PRE : AI3pr<(outs GPR:$base_wb), (ins GPR:$src, GPR:$base,am3offset:$offset), "str", "h $src, [$base, $offset]!", "$base = $base_wb", [(set GPR:$base_wb, (pre_truncsti16 GPR:$src, GPR:$base,am3offset:$offset))]>; def STRH_POST: AI3po<(outs GPR:$base_wb), (ins GPR:$src, GPR:$base,am3offset:$offset), "str", "h $src, [$base], $offset", "$base = $base_wb", [(set GPR:$base_wb, (post_truncsti16 GPR:$src, GPR:$base, am3offset:$offset))]>; def STRB_PRE : AI2pr<(outs GPR:$base_wb), (ins GPR:$src, GPR:$base,am2offset:$offset), "str", "b $src, [$base, $offset]!", "$base = $base_wb", [(set GPR:$base_wb, (pre_truncsti8 GPR:$src, GPR:$base, am2offset:$offset))]>; def STRB_POST: AI2po<(outs GPR:$base_wb), (ins GPR:$src, GPR:$base,am2offset:$offset), "str", "b $src, [$base], $offset", "$base = $base_wb", [(set GPR:$base_wb, (post_truncsti8 GPR:$src, GPR:$base, am2offset:$offset))]>; } // isStore //===----------------------------------------------------------------------===// // Load / store multiple Instructions. // // FIXME: $dst1 should be a def. let isLoad = 1 in def LDM : AXI4<(outs), (ins addrmode4:$addr, pred:$p, reglist:$dst1, variable_ops), "ldm${p}${addr:submode} $addr, $dst1", []>; let isStore = 1 in def STM : AXI4<(outs), (ins addrmode4:$addr, pred:$p, reglist:$src1, variable_ops), "stm${p}${addr:submode} $addr, $src1", []>; //===----------------------------------------------------------------------===// // Move Instructions. // def MOVr : AsI1<(outs GPR:$dst), (ins GPR:$src), "mov", " $dst, $src", []>; def MOVs : AsI1<(outs GPR:$dst), (ins so_reg:$src), "mov", " $dst, $src", [(set GPR:$dst, so_reg:$src)]>; let isReMaterializable = 1 in def MOVi : AsI1<(outs GPR:$dst), (ins so_imm:$src), "mov", " $dst, $src", [(set GPR:$dst, so_imm:$src)]>; def MOVrx : AsI1<(outs GPR:$dst), (ins GPR:$src), "mov", " $dst, $src, rrx", [(set GPR:$dst, (ARMrrx GPR:$src))]>; // These aren't really mov instructions, but we have to define them this way // due to flag operands. def MOVsrl_flag : AI1<(outs GPR:$dst), (ins GPR:$src), "mov", "s $dst, $src, lsr #1", [(set GPR:$dst, (ARMsrl_flag GPR:$src))]>, Imp<[], [CPSR]>; def MOVsra_flag : AI1<(outs GPR:$dst), (ins GPR:$src), "mov", "s $dst, $src, asr #1", [(set GPR:$dst, (ARMsra_flag GPR:$src))]>, Imp<[], [CPSR]>; //===----------------------------------------------------------------------===// // Extend Instructions. // // Sign extenders defm SXTB : AI_unary_rrot<"sxtb", UnOpFrag<(sext_inreg node:$Src, i8)>>; defm SXTH : AI_unary_rrot<"sxth", UnOpFrag<(sext_inreg node:$Src, i16)>>; defm SXTAB : AI_bin_rrot<"sxtab", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS, i8))>>; defm SXTAH : AI_bin_rrot<"sxtah", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS,i16))>>; // TODO: SXT(A){B|H}16 // Zero extenders let AddedComplexity = 16 in { defm UXTB : AI_unary_rrot<"uxtb" , UnOpFrag<(and node:$Src, 0x000000FF)>>; defm UXTH : AI_unary_rrot<"uxth" , UnOpFrag<(and node:$Src, 0x0000FFFF)>>; defm UXTB16 : AI_unary_rrot<"uxtb16", UnOpFrag<(and node:$Src, 0x00FF00FF)>>; def : ARMV6Pat<(and (shl GPR:$Src, 8), 0xFF00FF), (UXTB16r_rot GPR:$Src, 24)>; def : ARMV6Pat<(and (srl GPR:$Src, 8), 0xFF00FF), (UXTB16r_rot GPR:$Src, 8)>; defm UXTAB : AI_bin_rrot<"uxtab", BinOpFrag<(add node:$LHS, (and node:$RHS, 0x00FF))>>; defm UXTAH : AI_bin_rrot<"uxtah", BinOpFrag<(add node:$LHS, (and node:$RHS, 0xFFFF))>>; } // This isn't safe in general, the add is two 16-bit units, not a 32-bit add. //defm UXTAB16 : xxx<"uxtab16", 0xff00ff>; // TODO: UXT(A){B|H}16 //===----------------------------------------------------------------------===// // Arithmetic Instructions. // defm ADD : AsI1_bin_irs<"add", BinOpFrag<(add node:$LHS, node:$RHS)>>; defm SUB : AsI1_bin_irs<"sub", BinOpFrag<(sub node:$LHS, node:$RHS)>>; // ADD and SUB with 's' bit set. defm ADDS : ASI1_bin_s_irs<"add", BinOpFrag<(addc node:$LHS, node:$RHS)>>; defm SUBS : ASI1_bin_s_irs<"sub", BinOpFrag<(subc node:$LHS, node:$RHS)>>; // FIXME: Do not allow ADC / SBC to be predicated for now. defm ADC : AsXI1_bin_c_irs<"adc", BinOpFrag<(adde node:$LHS, node:$RHS)>>; defm SBC : AsXI1_bin_c_irs<"sbc", BinOpFrag<(sube node:$LHS, node:$RHS)>>; // These don't define reg/reg forms, because they are handled above. def RSBri : AsI1<(outs GPR:$dst), (ins GPR:$a, so_imm:$b), "rsb", " $dst, $a, $b", [(set GPR:$dst, (sub so_imm:$b, GPR:$a))]>; def RSBrs : AsI1<(outs GPR:$dst), (ins GPR:$a, so_reg:$b), "rsb", " $dst, $a, $b", [(set GPR:$dst, (sub so_reg:$b, GPR:$a))]>; // RSB with 's' bit set. def RSBSri : AI1<(outs GPR:$dst), (ins GPR:$a, so_imm:$b), "rsb", "s $dst, $a, $b", [(set GPR:$dst, (subc so_imm:$b, GPR:$a))]>, Imp<[], [CPSR]>; def RSBSrs : AI1<(outs GPR:$dst), (ins GPR:$a, so_reg:$b), "rsb", "s $dst, $a, $b", [(set GPR:$dst, (subc so_reg:$b, GPR:$a))]>, Imp<[], [CPSR]>; // FIXME: Do not allow RSC to be predicated for now. But they can set CPSR. def RSCri : AXI1<(outs GPR:$dst), (ins GPR:$a, so_imm:$b, cc_out:$s), "rsc${s} $dst, $a, $b", [(set GPR:$dst, (sube so_imm:$b, GPR:$a))]>, Imp<[CPSR], []>; def RSCrs : AXI1<(outs GPR:$dst), (ins GPR:$a, so_reg:$b, cc_out:$s), "rsc${s} $dst, $a, $b", [(set GPR:$dst, (sube so_reg:$b, GPR:$a))]>, Imp<[CPSR], []>; // (sub X, imm) gets canonicalized to (add X, -imm). Match this form. def : ARMPat<(add GPR:$src, so_imm_neg:$imm), (SUBri GPR:$src, so_imm_neg:$imm)>; //def : ARMPat<(addc GPR:$src, so_imm_neg:$imm), // (SUBSri GPR:$src, so_imm_neg:$imm)>; //def : ARMPat<(adde GPR:$src, so_imm_neg:$imm), // (SBCri GPR:$src, so_imm_neg:$imm)>; // Note: These are implemented in C++ code, because they have to generate // ADD/SUBrs instructions, which use a complex pattern that a xform function // cannot produce. // (mul X, 2^n+1) -> (add (X << n), X) // (mul X, 2^n-1) -> (rsb X, (X << n)) //===----------------------------------------------------------------------===// // Bitwise Instructions. // defm AND : AsI1_bin_irs<"and", BinOpFrag<(and node:$LHS, node:$RHS)>>; defm ORR : AsI1_bin_irs<"orr", BinOpFrag<(or node:$LHS, node:$RHS)>>; defm EOR : AsI1_bin_irs<"eor", BinOpFrag<(xor node:$LHS, node:$RHS)>>; defm BIC : AsI1_bin_irs<"bic", BinOpFrag<(and node:$LHS, (not node:$RHS))>>; def MVNr : AsI<(outs GPR:$dst), (ins GPR:$src), "mvn", " $dst, $src", [(set GPR:$dst, (not GPR:$src))]>; def MVNs : AsI<(outs GPR:$dst), (ins so_reg:$src), "mvn", " $dst, $src", [(set GPR:$dst, (not so_reg:$src))]>; let isReMaterializable = 1 in def MVNi : AsI<(outs GPR:$dst), (ins so_imm:$imm), "mvn", " $dst, $imm", [(set GPR:$dst, so_imm_not:$imm)]>; def : ARMPat<(and GPR:$src, so_imm_not:$imm), (BICri GPR:$src, so_imm_not:$imm)>; //===----------------------------------------------------------------------===// // Multiply Instructions. // def MUL : AsI<(outs GPR:$dst), (ins GPR:$a, GPR:$b), "mul", " $dst, $a, $b", [(set GPR:$dst, (mul GPR:$a, GPR:$b))]>; def MLA : AsI<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), "mla", " $dst, $a, $b, $c", [(set GPR:$dst, (add (mul GPR:$a, GPR:$b), GPR:$c))]>; // Extra precision multiplies with low / high results def SMULL : AsI<(outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), "smull", " $ldst, $hdst, $a, $b", []>; def UMULL : AsI<(outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), "umull", " $ldst, $hdst, $a, $b", []>; // Multiply + accumulate def SMLAL : AsI<(outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), "smlal", " $ldst, $hdst, $a, $b", []>; def UMLAL : AsI<(outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), "umlal", " $ldst, $hdst, $a, $b", []>; def UMAAL : AI<(outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), "umaal", " $ldst, $hdst, $a, $b", []>, Requires<[IsARM, HasV6]>; // Most significant word multiply def SMMUL : AI<(outs GPR:$dst), (ins GPR:$a, GPR:$b), "smmul", " $dst, $a, $b", [(set GPR:$dst, (mulhs GPR:$a, GPR:$b))]>, Requires<[IsARM, HasV6]>; def SMMLA : AI<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), "smmla", " $dst, $a, $b, $c", [(set GPR:$dst, (add (mulhs GPR:$a, GPR:$b), GPR:$c))]>, Requires<[IsARM, HasV6]>; def SMMLS : AI<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), "smmls", " $dst, $a, $b, $c", [(set GPR:$dst, (sub GPR:$c, (mulhs GPR:$a, GPR:$b)))]>, Requires<[IsARM, HasV6]>; multiclass AI_smul { def BB : AI<(outs GPR:$dst), (ins GPR:$a, GPR:$b), !strconcat(opc, "bb"), " $dst, $a, $b", [(set GPR:$dst, (opnode (sext_inreg GPR:$a, i16), (sext_inreg GPR:$b, i16)))]>, Requires<[IsARM, HasV5TE]>; def BT : AI<(outs GPR:$dst), (ins GPR:$a, GPR:$b), !strconcat(opc, "bt"), " $dst, $a, $b", [(set GPR:$dst, (opnode (sext_inreg GPR:$a, i16), (sra GPR:$b, 16)))]>, Requires<[IsARM, HasV5TE]>; def TB : AI<(outs GPR:$dst), (ins GPR:$a, GPR:$b), !strconcat(opc, "tb"), " $dst, $a, $b", [(set GPR:$dst, (opnode (sra GPR:$a, 16), (sext_inreg GPR:$b, i16)))]>, Requires<[IsARM, HasV5TE]>; def TT : AI<(outs GPR:$dst), (ins GPR:$a, GPR:$b), !strconcat(opc, "tt"), " $dst, $a, $b", [(set GPR:$dst, (opnode (sra GPR:$a, 16), (sra GPR:$b, 16)))]>, Requires<[IsARM, HasV5TE]>; def WB : AI<(outs GPR:$dst), (ins GPR:$a, GPR:$b), !strconcat(opc, "wb"), " $dst, $a, $b", [(set GPR:$dst, (sra (opnode GPR:$a, (sext_inreg GPR:$b, i16)), 16))]>, Requires<[IsARM, HasV5TE]>; def WT : AI<(outs GPR:$dst), (ins GPR:$a, GPR:$b), !strconcat(opc, "wt"), " $dst, $a, $b", [(set GPR:$dst, (sra (opnode GPR:$a, (sra GPR:$b, 16)), 16))]>, Requires<[IsARM, HasV5TE]>; } multiclass AI_smla { def BB : AI<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), !strconcat(opc, "bb"), " $dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (opnode (sext_inreg GPR:$a, i16), (sext_inreg GPR:$b, i16))))]>, Requires<[IsARM, HasV5TE]>; def BT : AI<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), !strconcat(opc, "bt"), " $dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (opnode (sext_inreg GPR:$a, i16), (sra GPR:$b, 16))))]>, Requires<[IsARM, HasV5TE]>; def TB : AI<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), !strconcat(opc, "tb"), " $dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (opnode (sra GPR:$a, 16), (sext_inreg GPR:$b, i16))))]>, Requires<[IsARM, HasV5TE]>; def TT : AI<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), !strconcat(opc, "tt"), " $dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (opnode (sra GPR:$a, 16), (sra GPR:$b, 16))))]>, Requires<[IsARM, HasV5TE]>; def WB : AI<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), !strconcat(opc, "wb"), " $dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (sra (opnode GPR:$a, (sext_inreg GPR:$b, i16)), 16)))]>, Requires<[IsARM, HasV5TE]>; def WT : AI<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), !strconcat(opc, "wt"), " $dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (sra (opnode GPR:$a, (sra GPR:$b, 16)), 16)))]>, Requires<[IsARM, HasV5TE]>; } defm SMUL : AI_smul<"smul", BinOpFrag<(mul node:$LHS, node:$RHS)>>; defm SMLA : AI_smla<"smla", BinOpFrag<(mul node:$LHS, node:$RHS)>>; // TODO: Halfword multiple accumulate long: SMLAL // TODO: Dual halfword multiple: SMUAD, SMUSD, SMLAD, SMLSD, SMLALD, SMLSLD //===----------------------------------------------------------------------===// // Misc. Arithmetic Instructions. // def CLZ : AI<(outs GPR:$dst), (ins GPR:$src), "clz", " $dst, $src", [(set GPR:$dst, (ctlz GPR:$src))]>, Requires<[IsARM, HasV5T]>; def REV : AI<(outs GPR:$dst), (ins GPR:$src), "rev", " $dst, $src", [(set GPR:$dst, (bswap GPR:$src))]>, Requires<[IsARM, HasV6]>; def REV16 : AI<(outs GPR:$dst), (ins GPR:$src), "rev16", " $dst, $src", [(set GPR:$dst, (or (and (srl GPR:$src, 8), 0xFF), (or (and (shl GPR:$src, 8), 0xFF00), (or (and (srl GPR:$src, 8), 0xFF0000), (and (shl GPR:$src, 8), 0xFF000000)))))]>, Requires<[IsARM, HasV6]>; def REVSH : AI<(outs GPR:$dst), (ins GPR:$src), "revsh", " $dst, $src", [(set GPR:$dst, (sext_inreg (or (srl (and GPR:$src, 0xFF00), 8), (shl GPR:$src, 8)), i16))]>, Requires<[IsARM, HasV6]>; def PKHBT : AI<(outs GPR:$dst), (ins GPR:$src1, GPR:$src2, i32imm:$shamt), "pkhbt", " $dst, $src1, $src2, LSL $shamt", [(set GPR:$dst, (or (and GPR:$src1, 0xFFFF), (and (shl GPR:$src2, (i32 imm:$shamt)), 0xFFFF0000)))]>, Requires<[IsARM, HasV6]>; // Alternate cases for PKHBT where identities eliminate some nodes. def : ARMV6Pat<(or (and GPR:$src1, 0xFFFF), (and GPR:$src2, 0xFFFF0000)), (PKHBT GPR:$src1, GPR:$src2, 0)>; def : ARMV6Pat<(or (and GPR:$src1, 0xFFFF), (shl GPR:$src2, imm16_31:$shamt)), (PKHBT GPR:$src1, GPR:$src2, imm16_31:$shamt)>; def PKHTB : AI<(outs GPR:$dst), (ins GPR:$src1, GPR:$src2, i32imm:$shamt), "pkhtb", " $dst, $src1, $src2, ASR $shamt", [(set GPR:$dst, (or (and GPR:$src1, 0xFFFF0000), (and (sra GPR:$src2, imm16_31:$shamt), 0xFFFF)))]>, Requires<[IsARM, HasV6]>; // Alternate cases for PKHTB where identities eliminate some nodes. Note that // a shift amount of 0 is *not legal* here, it is PKHBT instead. def : ARMV6Pat<(or (and GPR:$src1, 0xFFFF0000), (srl GPR:$src2, 16)), (PKHTB GPR:$src1, GPR:$src2, 16)>; def : ARMV6Pat<(or (and GPR:$src1, 0xFFFF0000), (and (srl GPR:$src2, imm1_15:$shamt), 0xFFFF)), (PKHTB GPR:$src1, GPR:$src2, imm1_15:$shamt)>; //===----------------------------------------------------------------------===// // Comparison Instructions... // defm CMP : AI1_cmp_irs<"cmp", BinOpFrag<(ARMcmp node:$LHS, node:$RHS)>>; defm CMN : AI1_cmp_irs<"cmn", BinOpFrag<(ARMcmp node:$LHS,(ineg node:$RHS))>>; // Note that TST/TEQ don't set all the same flags that CMP does! defm TST : AI1_cmp_irs<"tst", BinOpFrag<(ARMcmpNZ (and node:$LHS, node:$RHS), 0)>>; defm TEQ : AI1_cmp_irs<"teq", BinOpFrag<(ARMcmpNZ (xor node:$LHS, node:$RHS), 0)>>; defm CMPnz : AI1_cmp_irs<"cmp", BinOpFrag<(ARMcmpNZ node:$LHS, node:$RHS)>>; defm CMNnz : AI1_cmp_irs<"cmn", BinOpFrag<(ARMcmpNZ node:$LHS,(ineg node:$RHS))>>; def : ARMPat<(ARMcmp GPR:$src, so_imm_neg:$imm), (CMNri GPR:$src, so_imm_neg:$imm)>; def : ARMPat<(ARMcmpNZ GPR:$src, so_imm_neg:$imm), (CMNri GPR:$src, so_imm_neg:$imm)>; // Conditional moves // FIXME: should be able to write a pattern for ARMcmov, but can't use // a two-value operand where a dag node expects two operands. :( def MOVCCr : AI<(outs GPR:$dst), (ins GPR:$false, GPR:$true), "mov", " $dst, $true", [/*(set GPR:$dst, (ARMcmov GPR:$false, GPR:$true, imm:$cc, CCR:$ccr))*/]>, RegConstraint<"$false = $dst">; def MOVCCs : AI<(outs GPR:$dst), (ins GPR:$false, so_reg:$true), "mov", " $dst, $true", [/*(set GPR:$dst, (ARMcmov GPR:$false, so_reg:$true, imm:$cc, CCR:$ccr))*/]>, RegConstraint<"$false = $dst">; def MOVCCi : AI<(outs GPR:$dst), (ins GPR:$false, so_imm:$true), "mov", " $dst, $true", [/*(set GPR:$dst, (ARMcmov GPR:$false, so_imm:$true, imm:$cc, CCR:$ccr))*/]>, RegConstraint<"$false = $dst">; // LEApcrel - Load a pc-relative address into a register without offending the // assembler. def LEApcrel : AXI1<(outs GPR:$dst), (ins i32imm:$label, pred:$p), !strconcat(!strconcat(".set PCRELV${:uid}, ($label-(", "${:private}PCRELL${:uid}+8))\n"), !strconcat("${:private}PCRELL${:uid}:\n\t", "add$p $dst, pc, #PCRELV${:uid}")), []>; def LEApcrelJT : AXI1<(outs GPR:$dst), (ins i32imm:$label, i32imm:$id, pred:$p), !strconcat(!strconcat(".set PCRELV${:uid}, (${label}_${id:no_hash}-(", "${:private}PCRELL${:uid}+8))\n"), !strconcat("${:private}PCRELL${:uid}:\n\t", "add$p $dst, pc, #PCRELV${:uid}")), []>; //===----------------------------------------------------------------------===// // TLS Instructions // // __aeabi_read_tp preserves the registers r1-r3. let isCall = 1, Defs = [R0, R12, LR, CPSR] in { def TPsoft : AXI<(outs), (ins), "bl __aeabi_read_tp", [(set R0, ARMthread_pointer)]>; } //===----------------------------------------------------------------------===// // Non-Instruction Patterns // // ConstantPool, GlobalAddress, and JumpTable def : ARMPat<(ARMWrapper tglobaladdr :$dst), (LEApcrel tglobaladdr :$dst)>; def : ARMPat<(ARMWrapper tconstpool :$dst), (LEApcrel tconstpool :$dst)>; def : ARMPat<(ARMWrapperJT tjumptable:$dst, imm:$id), (LEApcrelJT tjumptable:$dst, imm:$id)>; // Large immediate handling. // Two piece so_imms. let isReMaterializable = 1 in def MOVi2pieces : AI1x2<(outs GPR:$dst), (ins so_imm2part:$src), "mov", " $dst, $src", [(set GPR:$dst, so_imm2part:$src)]>; def : ARMPat<(or GPR:$LHS, so_imm2part:$RHS), (ORRri (ORRri GPR:$LHS, (so_imm2part_1 imm:$RHS)), (so_imm2part_2 imm:$RHS))>; def : ARMPat<(xor GPR:$LHS, so_imm2part:$RHS), (EORri (EORri GPR:$LHS, (so_imm2part_1 imm:$RHS)), (so_imm2part_2 imm:$RHS))>; // TODO: add,sub,and, 3-instr forms? // Direct calls def : ARMPat<(ARMcall texternalsym:$func), (BL texternalsym:$func)>; // zextload i1 -> zextload i8 def : ARMPat<(zextloadi1 addrmode2:$addr), (LDRB addrmode2:$addr)>; // extload -> zextload def : ARMPat<(extloadi1 addrmode2:$addr), (LDRB addrmode2:$addr)>; def : ARMPat<(extloadi8 addrmode2:$addr), (LDRB addrmode2:$addr)>; def : ARMPat<(extloadi16 addrmode3:$addr), (LDRH addrmode3:$addr)>; // truncstore i1 -> truncstore i8 def : ARMPat<(truncstorei1 GPR:$src, addrmode2:$dst), (STRB GPR:$src, addrmode2:$dst)>; def : ARMPat<(pre_truncsti1 GPR:$src, GPR:$base, am2offset:$offset), (STRB_PRE GPR:$src, GPR:$base, am2offset:$offset)>; def : ARMPat<(post_truncsti1 GPR:$src, GPR:$base, am2offset:$offset), (STRB_POST GPR:$src, GPR:$base, am2offset:$offset)>; // smul* and smla* def : ARMV5TEPat<(mul (sra (shl GPR:$a, 16), 16), (sra (shl GPR:$b, 16), 16)), (SMULBB GPR:$a, GPR:$b)>; def : ARMV5TEPat<(mul sext_16_node:$a, sext_16_node:$b), (SMULBB GPR:$a, GPR:$b)>; def : ARMV5TEPat<(mul (sra (shl GPR:$a, 16), 16), (sra GPR:$b, 16)), (SMULBT GPR:$a, GPR:$b)>; def : ARMV5TEPat<(mul sext_16_node:$a, (sra GPR:$b, 16)), (SMULBT GPR:$a, GPR:$b)>; def : ARMV5TEPat<(mul (sra GPR:$a, 16), (sra (shl GPR:$b, 16), 16)), (SMULTB GPR:$a, GPR:$b)>; def : ARMV5TEPat<(mul (sra GPR:$a, 16), sext_16_node:$b), (SMULTB GPR:$a, GPR:$b)>; def : ARMV5TEPat<(sra (mul GPR:$a, (sra (shl GPR:$b, 16), 16)), 16), (SMULWB GPR:$a, GPR:$b)>; def : ARMV5TEPat<(sra (mul GPR:$a, sext_16_node:$b), 16), (SMULWB GPR:$a, GPR:$b)>; def : ARMV5TEPat<(add GPR:$acc, (mul (sra (shl GPR:$a, 16), 16), (sra (shl GPR:$b, 16), 16))), (SMLABB GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5TEPat<(add GPR:$acc, (mul sext_16_node:$a, sext_16_node:$b)), (SMLABB GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5TEPat<(add GPR:$acc, (mul (sra (shl GPR:$a, 16), 16), (sra GPR:$b, 16))), (SMLABT GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5TEPat<(add GPR:$acc, (mul sext_16_node:$a, (sra GPR:$b, 16))), (SMLABT GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5TEPat<(add GPR:$acc, (mul (sra GPR:$a, 16), (sra (shl GPR:$b, 16), 16))), (SMLATB GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5TEPat<(add GPR:$acc, (mul (sra GPR:$a, 16), sext_16_node:$b)), (SMLATB GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5TEPat<(add GPR:$acc, (sra (mul GPR:$a, (sra (shl GPR:$b, 16), 16)), 16)), (SMLAWB GPR:$a, GPR:$b, GPR:$acc)>; def : ARMV5TEPat<(add GPR:$acc, (sra (mul GPR:$a, sext_16_node:$b), 16)), (SMLAWB GPR:$a, GPR:$b, GPR:$acc)>; //===----------------------------------------------------------------------===// // Thumb Support // include "ARMInstrThumb.td" //===----------------------------------------------------------------------===// // Floating Point Support // include "ARMInstrVFP.td"