//===- FunctionResolution.cpp - Resolve declarations to implementations ---===// // // Loop over the functions that are in the module and look for functions that // have the same name. More often than not, there will be things like: // // declare void %foo(...) // void %foo(int, int) { ... } // // because of the way things are declared in C. If this is the case, patch // things up. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO.h" #include "llvm/Module.h" #include "llvm/SymbolTable.h" #include "llvm/DerivedTypes.h" #include "llvm/Pass.h" #include "llvm/iOther.h" #include "llvm/Constants.h" #include "Support/Statistic.h" #include using std::vector; using std::string; using std::cerr; namespace { Statistic<>NumResolved("funcresolve", "Number of varargs functions resolved"); Statistic<> NumGlobals("funcresolve", "Number of global variables resolved"); struct FunctionResolvingPass : public Pass { bool run(Module &M); }; RegisterOpt X("funcresolve", "Resolve Functions"); } Pass *createFunctionResolvingPass() { return new FunctionResolvingPass(); } // ConvertCallTo - Convert a call to a varargs function with no arg types // specified to a concrete nonvarargs function. // static void ConvertCallTo(CallInst *CI, Function *Dest) { const FunctionType::ParamTypes &ParamTys = Dest->getFunctionType()->getParamTypes(); BasicBlock *BB = CI->getParent(); // Keep an iterator to where we want to insert cast instructions if the // argument types don't agree. // BasicBlock::iterator BBI = CI; assert(CI->getNumOperands()-1 == ParamTys.size() && "Function calls resolved funny somehow, incompatible number of args"); vector Params; // Convert all of the call arguments over... inserting cast instructions if // the types are not compatible. for (unsigned i = 1; i < CI->getNumOperands(); ++i) { Value *V = CI->getOperand(i); if (V->getType() != ParamTys[i-1]) // Must insert a cast... V = new CastInst(V, ParamTys[i-1], "argcast", BBI); Params.push_back(V); } // Replace the old call instruction with a new call instruction that calls // the real function. // Instruction *NewCall = new CallInst(Dest, Params, "", BBI); // Remove the old call instruction from the program... BB->getInstList().remove(BBI); // Transfer the name over... if (NewCall->getType() != Type::VoidTy) NewCall->setName(CI->getName()); // Replace uses of the old instruction with the appropriate values... // if (NewCall->getType() == CI->getType()) { CI->replaceAllUsesWith(NewCall); NewCall->setName(CI->getName()); } else if (NewCall->getType() == Type::VoidTy) { // Resolved function does not return a value but the prototype does. This // often occurs because undefined functions default to returning integers. // Just replace uses of the call (which are broken anyway) with dummy // values. CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); } else if (CI->getType() == Type::VoidTy) { // If we are gaining a new return value, we don't have to do anything // special here, because it will automatically be ignored. } else { // Insert a cast instruction to convert the return value of the function // into it's new type. Of course we only need to do this if the return // value of the function is actually USED. // if (!CI->use_empty()) { // Insert the new cast instruction... CastInst *NewCast = new CastInst(NewCall, CI->getType(), NewCall->getName(), BBI); CI->replaceAllUsesWith(NewCast); } } // The old instruction is no longer needed, destroy it! delete CI; } static bool ResolveFunctions(Module &M, vector &Globals, Function *Concrete) { bool Changed = false; for (unsigned i = 0; i != Globals.size(); ++i) if (Globals[i] != Concrete) { Function *Old = cast(Globals[i]); const FunctionType *OldMT = Old->getFunctionType(); const FunctionType *ConcreteMT = Concrete->getFunctionType(); assert(OldMT->getParamTypes().size() <= ConcreteMT->getParamTypes().size() && "Concrete type must have more specified parameters!"); // Check to make sure that if there are specified types, that they // match... // for (unsigned i = 0; i < OldMT->getParamTypes().size(); ++i) if (OldMT->getParamTypes()[i] != ConcreteMT->getParamTypes()[i]) { cerr << "Parameter types conflict for" << OldMT << " and " << ConcreteMT; return Changed; } // Attempt to convert all of the uses of the old function to the // concrete form of the function. If there is a use of the fn that // we don't understand here we punt to avoid making a bad // transformation. // // At this point, we know that the return values are the same for // our two functions and that the Old function has no varargs fns // specified. In otherwords it's just (...) // for (unsigned i = 0; i < Old->use_size(); ) { User *U = *(Old->use_begin()+i); if (CastInst *CI = dyn_cast(U)) { // Convert casts directly assert(CI->getOperand(0) == Old); CI->setOperand(0, Concrete); Changed = true; ++NumResolved; } else if (CallInst *CI = dyn_cast(U)) { // Can only fix up calls TO the argument, not args passed in. if (CI->getCalledValue() == Old) { ConvertCallTo(CI, Concrete); Changed = true; ++NumResolved; } else { cerr << "Couldn't cleanup this function call, must be an" << " argument or something!" << CI; ++i; } } else { cerr << "Cannot convert use of function: " << U << "\n"; ++i; } } } return Changed; } static bool ResolveGlobalVariables(Module &M, vector &Globals, GlobalVariable *Concrete) { bool Changed = false; assert(isa(Concrete->getType()->getElementType()) && "Concrete version should be an array type!"); // Get the type of the things that may be resolved to us... const Type *AETy = cast(Concrete->getType()->getElementType())->getElementType(); std::vector Args; Args.push_back(Constant::getNullValue(Type::LongTy)); Args.push_back(Constant::getNullValue(Type::LongTy)); ConstantExpr *Replacement = ConstantExpr::getGetElementPtr(ConstantPointerRef::get(Concrete), Args); for (unsigned i = 0; i != Globals.size(); ++i) if (Globals[i] != Concrete) { GlobalVariable *Old = cast(Globals[i]); if (Old->getType()->getElementType() != AETy) { std::cerr << "WARNING: Two global variables exist with the same name " << "that cannot be resolved!\n"; return false; } // In this case, Old is a pointer to T, Concrete is a pointer to array of // T. Because of this, replace all uses of Old with a constantexpr // getelementptr that returns the address of the first element of the // array. // Old->replaceAllUsesWith(Replacement); // Since there are no uses of Old anymore, remove it from the module. M.getGlobalList().erase(Old); ++NumGlobals; Changed = true; } return Changed; } static bool ProcessGlobalsWithSameName(Module &M, vector &Globals) { assert(!Globals.empty() && "Globals list shouldn't be empty here!"); bool isFunction = isa(Globals[0]); // Is this group all functions? bool Changed = false; GlobalValue *Concrete = 0; // The most concrete implementation to resolve to assert((isFunction ^ isa(Globals[0])) && "Should either be function or gvar!"); for (unsigned i = 0; i != Globals.size(); ) { if (isa(Globals[i]) != isFunction) { std::cerr << "WARNING: Found function and global variable with the " << "same name: '" << Globals[i]->getName() << "'.\n"; return false; // Don't know how to handle this, bail out! } // Ignore globals that are never used so they don't cause spurious // warnings... here we will actually DCE the function so that it isn't used // later. // if (Globals[i]->isExternal() && Globals[i]->use_empty()) { if (isFunction) M.getFunctionList().erase(cast(Globals[i])); else M.getGlobalList().erase(cast(Globals[i])); Globals.erase(Globals.begin()+i); Changed = true; ++NumResolved; } else if (isFunction) { // For functions, we look to merge functions definitions of "int (...)" // to 'int (int)' or 'int ()' or whatever else is not completely generic. // Function *F = cast(Globals[i]); if (!F->getFunctionType()->isVarArg() || F->getFunctionType()->getNumParams()) { if (Concrete) return false; // Found two different functions types. Can't choose! Concrete = Globals[i]; } ++i; } else { // For global variables, we have to merge C definitions int A[][4] with // int[6][4] GlobalVariable *GV = cast(Globals[i]); if (Concrete == 0) { if (isa(GV->getType()->getElementType())) Concrete = GV; } else { // Must have different types... one is an array of the other? const ArrayType *AT = dyn_cast(GV->getType()->getElementType()); // If GV is an array of Concrete, then GV is the array. if (AT && AT->getElementType() == Concrete->getType()->getElementType()) Concrete = GV; else { // Concrete must be an array type, check to see if the element type of // concrete is already GV. AT = cast(Concrete->getType()->getElementType()); if (AT->getElementType() != GV->getType()->getElementType()) Concrete = 0; // Don't know how to handle it! } } ++i; } } if (Globals.size() > 1) { // Found a multiply defined global... // We should find exactly one concrete function definition, which is // probably the implementation. Change all of the function definitions and // uses to use it instead. // if (!Concrete) { cerr << "WARNING: Found function types that are not compatible:\n"; for (unsigned i = 0; i < Globals.size(); ++i) { cerr << "\t" << Globals[i]->getType()->getDescription() << " %" << Globals[i]->getName() << "\n"; } cerr << " No linkage of globals named '" << Globals[0]->getName() << "' performed!\n"; return Changed; } if (isFunction) return Changed | ResolveFunctions(M, Globals, cast(Concrete)); else return Changed | ResolveGlobalVariables(M, Globals, cast(Concrete)); } return Changed; } bool FunctionResolvingPass::run(Module &M) { SymbolTable *ST = M.getSymbolTable(); if (!ST) return false; std::map > Globals; // Loop over the entries in the symbol table. If an entry is a func pointer, // then add it to the Functions map. We do a two pass algorithm here to avoid // problems with iterators getting invalidated if we did a one pass scheme. // for (SymbolTable::iterator I = ST->begin(), E = ST->end(); I != E; ++I) if (const PointerType *PT = dyn_cast(I->first)) { SymbolTable::VarMap &Plane = I->second; for (SymbolTable::type_iterator PI = Plane.begin(), PE = Plane.end(); PI != PE; ++PI) { GlobalValue *GV = cast(PI->second); assert(PI->first == GV->getName() && "Global name and symbol table do not agree!"); if (GV->hasExternalLinkage()) // Only resolve decls to external fns Globals[PI->first].push_back(GV); } } bool Changed = false; // Now we have a list of all functions with a particular name. If there is // more than one entry in a list, merge the functions together. // for (std::map >::iterator I = Globals.begin(), E = Globals.end(); I != E; ++I) Changed |= ProcessGlobalsWithSameName(M, I->second); return Changed; }