//===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a simple register coalescing pass that attempts to // aggressively coalesce every register copy that it can. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regcoalescing" #include "SimpleRegisterCoalescing.h" #include "VirtRegMap.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/Value.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegisterCoalescer.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace llvm; STATISTIC(numJoins , "Number of interval joins performed"); STATISTIC(numCommutes , "Number of instruction commuting performed"); STATISTIC(numExtends , "Number of copies extended"); STATISTIC(numPeep , "Number of identity moves eliminated after coalescing"); STATISTIC(numAborts , "Number of times interval joining aborted"); char SimpleRegisterCoalescing::ID = 0; namespace { static cl::opt EnableJoining("join-liveintervals", cl::desc("Coalesce copies (default=true)"), cl::init(true)); static cl::opt NewHeuristic("new-coalescer-heuristic", cl::desc("Use new coalescer heuristic"), cl::init(false)); RegisterPass X("simple-register-coalescing", "Simple Register Coalescing"); // Declare that we implement the RegisterCoalescer interface RegisterAnalysisGroup V(X); } const PassInfo *llvm::SimpleRegisterCoalescingID = X.getPassInfo(); void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved(); AU.addPreserved(); AU.addPreservedID(MachineDominatorsID); AU.addPreservedID(PHIEliminationID); AU.addPreservedID(TwoAddressInstructionPassID); AU.addRequired(); AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA /// being the source and IntB being the dest, thus this defines a value number /// in IntB. If the source value number (in IntA) is defined by a copy from B, /// see if we can merge these two pieces of B into a single value number, /// eliminating a copy. For example: /// /// A3 = B0 /// ... /// B1 = A3 <- this copy /// /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1 /// value number to be replaced with B0 (which simplifies the B liveinterval). /// /// This returns true if an interval was modified. /// bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB, MachineInstr *CopyMI) { unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI)); // BValNo is a value number in B that is defined by a copy from A. 'B3' in // the example above. LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx); VNInfo *BValNo = BLR->valno; // Get the location that B is defined at. Two options: either this value has // an unknown definition point or it is defined at CopyIdx. If unknown, we // can't process it. if (!BValNo->copy) return false; assert(BValNo->def == CopyIdx && "Copy doesn't define the value?"); // AValNo is the value number in A that defines the copy, A3 in the example. LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx-1); VNInfo *AValNo = ALR->valno; // If AValNo is defined as a copy from IntB, we can potentially process this. // Get the instruction that defines this value number. unsigned SrcReg = li_->getVNInfoSourceReg(AValNo); if (!SrcReg) return false; // Not defined by a copy. // If the value number is not defined by a copy instruction, ignore it. // If the source register comes from an interval other than IntB, we can't // handle this. if (SrcReg != IntB.reg) return false; // Get the LiveRange in IntB that this value number starts with. LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNo->def-1); // Make sure that the end of the live range is inside the same block as // CopyMI. MachineInstr *ValLREndInst = li_->getInstructionFromIndex(ValLR->end-1); if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent()) return false; // Okay, we now know that ValLR ends in the same block that the CopyMI // live-range starts. If there are no intervening live ranges between them in // IntB, we can merge them. if (ValLR+1 != BLR) return false; // If a live interval is a physical register, conservatively check if any // of its sub-registers is overlapping the live interval of the virtual // register. If so, do not coalesce. if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) && *tri_->getSubRegisters(IntB.reg)) { for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) { DOUT << "Interfere with sub-register "; DEBUG(li_->getInterval(*SR).print(DOUT, tri_)); return false; } } DOUT << "\nExtending: "; IntB.print(DOUT, tri_); unsigned FillerStart = ValLR->end, FillerEnd = BLR->start; // We are about to delete CopyMI, so need to remove it as the 'instruction // that defines this value #'. Update the the valnum with the new defining // instruction #. BValNo->def = FillerStart; BValNo->copy = NULL; // Okay, we can merge them. We need to insert a new liverange: // [ValLR.end, BLR.begin) of either value number, then we merge the // two value numbers. IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo)); // If the IntB live range is assigned to a physical register, and if that // physreg has aliases, if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) { // Update the liveintervals of sub-registers. for (const unsigned *AS = tri_->getSubRegisters(IntB.reg); *AS; ++AS) { LiveInterval &AliasLI = li_->getInterval(*AS); AliasLI.addRange(LiveRange(FillerStart, FillerEnd, AliasLI.getNextValue(FillerStart, 0, li_->getVNInfoAllocator()))); } } // Okay, merge "B1" into the same value number as "B0". if (BValNo != ValLR->valno) IntB.MergeValueNumberInto(BValNo, ValLR->valno); DOUT << " result = "; IntB.print(DOUT, tri_); DOUT << "\n"; // If the source instruction was killing the source register before the // merge, unset the isKill marker given the live range has been extended. int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true); if (UIdx != -1) ValLREndInst->getOperand(UIdx).setIsKill(false); ++numExtends; return true; } /// HasOtherReachingDefs - Return true if there are definitions of IntB /// other than BValNo val# that can reach uses of AValno val# of IntA. bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, VNInfo *AValNo, VNInfo *BValNo) { for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end(); AI != AE; ++AI) { if (AI->valno != AValNo) continue; LiveInterval::Ranges::iterator BI = std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start); if (BI != IntB.ranges.begin()) --BI; for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) { if (BI->valno == BValNo) continue; if (BI->start <= AI->start && BI->end > AI->start) return true; if (BI->start > AI->start && BI->start < AI->end) return true; } } return false; } /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with IntA /// being the source and IntB being the dest, thus this defines a value number /// in IntB. If the source value number (in IntA) is defined by a commutable /// instruction and its other operand is coalesced to the copy dest register, /// see if we can transform the copy into a noop by commuting the definition. For /// example, /// /// A3 = op A2 B0 /// ... /// B1 = A3 <- this copy /// ... /// = op A3 <- more uses /// /// ==> /// /// B2 = op B0 A2 /// ... /// B1 = B2 <- now an identify copy /// ... /// = op B2 <- more uses /// /// This returns true if an interval was modified. /// bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA, LiveInterval &IntB, MachineInstr *CopyMI) { unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI)); // FIXME: For now, only eliminate the copy by commuting its def when the // source register is a virtual register. We want to guard against cases // where the copy is a back edge copy and commuting the def lengthen the // live interval of the source register to the entire loop. if (TargetRegisterInfo::isPhysicalRegister(IntA.reg)) return false; // BValNo is a value number in B that is defined by a copy from A. 'B3' in // the example above. LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx); VNInfo *BValNo = BLR->valno; // Get the location that B is defined at. Two options: either this value has // an unknown definition point or it is defined at CopyIdx. If unknown, we // can't process it. if (!BValNo->copy) return false; assert(BValNo->def == CopyIdx && "Copy doesn't define the value?"); // AValNo is the value number in A that defines the copy, A3 in the example. LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx-1); VNInfo *AValNo = ALR->valno; // If other defs can reach uses of this def, then it's not safe to perform // the optimization. if (AValNo->def == ~0U || AValNo->def == ~1U || AValNo->hasPHIKill) return false; MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def); const TargetInstrDesc &TID = DefMI->getDesc(); unsigned NewDstIdx; if (!TID.isCommutable() || !tii_->CommuteChangesDestination(DefMI, NewDstIdx)) return false; MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); unsigned NewReg = NewDstMO.getReg(); if (NewReg != IntB.reg || !NewDstMO.isKill()) return false; // Make sure there are no other definitions of IntB that would reach the // uses which the new definition can reach. if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) return false; // At this point we have decided that it is legal to do this // transformation. Start by commuting the instruction. MachineBasicBlock *MBB = DefMI->getParent(); MachineInstr *NewMI = tii_->commuteInstruction(DefMI); if (!NewMI) return false; if (NewMI != DefMI) { li_->ReplaceMachineInstrInMaps(DefMI, NewMI); MBB->insert(DefMI, NewMI); MBB->erase(DefMI); } unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false); NewMI->getOperand(OpIdx).setIsKill(); bool BHasPHIKill = BValNo->hasPHIKill; SmallVector BDeadValNos; SmallVector BKills; std::map BExtend; // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. // A = or A, B // ... // B = A // ... // C = A // ... // = B // // then do not add kills of A to the newly created B interval. bool Extended = BLR->end > ALR->end && ALR->end != ALR->start; if (Extended) BExtend[ALR->end] = BLR->end; // Update uses of IntA of the specific Val# with IntB. for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg), UE = mri_->use_end(); UI != UE;) { MachineOperand &UseMO = UI.getOperand(); MachineInstr *UseMI = &*UI; ++UI; if (JoinedCopies.count(UseMI)) continue; unsigned UseIdx = li_->getInstructionIndex(UseMI); LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx); if (ULR->valno != AValNo) continue; UseMO.setReg(NewReg); if (UseMI == CopyMI) continue; if (UseMO.isKill()) { if (Extended) UseMO.setIsKill(false); else BKills.push_back(li_->getUseIndex(UseIdx)+1); } unsigned SrcReg, DstReg; if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg)) continue; if (DstReg == IntB.reg) { // This copy will become a noop. If it's defining a new val#, // remove that val# as well. However this live range is being // extended to the end of the existing live range defined by the copy. unsigned DefIdx = li_->getDefIndex(UseIdx); LiveInterval::iterator DLR = IntB.FindLiveRangeContaining(DefIdx); BHasPHIKill |= DLR->valno->hasPHIKill; assert(DLR->valno->def == DefIdx); BDeadValNos.push_back(DLR->valno); BExtend[DLR->start] = DLR->end; JoinedCopies.insert(UseMI); // If this is a kill but it's going to be removed, the last use // of the same val# is the new kill. if (UseMO.isKill()) BKills.pop_back(); } } // We need to insert a new liverange: [ALR.start, LastUse). It may be we can // simply extend BLR if CopyMI doesn't end the range. DOUT << "\nExtending: "; IntB.print(DOUT, tri_); IntB.removeValNo(BValNo); for (unsigned i = 0, e = BDeadValNos.size(); i != e; ++i) IntB.removeValNo(BDeadValNos[i]); VNInfo *ValNo = IntB.getNextValue(AValNo->def, 0, li_->getVNInfoAllocator()); for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end(); AI != AE; ++AI) { if (AI->valno != AValNo) continue; unsigned End = AI->end; std::map::iterator EI = BExtend.find(End); if (EI != BExtend.end()) End = EI->second; IntB.addRange(LiveRange(AI->start, End, ValNo)); } IntB.addKills(ValNo, BKills); ValNo->hasPHIKill = BHasPHIKill; DOUT << " result = "; IntB.print(DOUT, tri_); DOUT << "\n"; DOUT << "\nShortening: "; IntA.print(DOUT, tri_); IntA.removeValNo(AValNo); DOUT << " result = "; IntA.print(DOUT, tri_); DOUT << "\n"; ++numCommutes; return true; } /// isBackEdgeCopy - Returns true if CopyMI is a back edge copy. /// bool SimpleRegisterCoalescing::isBackEdgeCopy(MachineInstr *CopyMI, unsigned DstReg) { MachineBasicBlock *MBB = CopyMI->getParent(); const MachineLoop *L = loopInfo->getLoopFor(MBB); if (!L) return false; if (MBB != L->getLoopLatch()) return false; LiveInterval &LI = li_->getInterval(DstReg); unsigned DefIdx = li_->getInstructionIndex(CopyMI); LiveInterval::const_iterator DstLR = LI.FindLiveRangeContaining(li_->getDefIndex(DefIdx)); if (DstLR == LI.end()) return false; unsigned KillIdx = li_->getInstructionIndex(&MBB->back()) + InstrSlots::NUM; if (DstLR->valno->kills.size() == 1 && DstLR->valno->kills[0] == KillIdx && DstLR->valno->hasPHIKill) return true; return false; } /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and /// update the subregister number if it is not zero. If DstReg is a /// physical register and the existing subregister number of the def / use /// being updated is not zero, make sure to set it to the correct physical /// subregister. void SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx) { bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); if (DstIsPhys && SubIdx) { // Figure out the real physical register we are updating with. DstReg = tri_->getSubReg(DstReg, SubIdx); SubIdx = 0; } for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg), E = mri_->reg_end(); I != E; ) { MachineOperand &O = I.getOperand(); MachineInstr *UseMI = &*I; ++I; if (DstIsPhys) { unsigned UseSubIdx = O.getSubReg(); unsigned UseDstReg = DstReg; if (UseSubIdx) UseDstReg = tri_->getSubReg(DstReg, UseSubIdx); O.setReg(UseDstReg); O.setSubReg(0); } else { unsigned OldSubIdx = O.getSubReg(); // Sub-register indexes goes from small to large. e.g. // RAX: 0 -> AL, 1 -> AH, 2 -> AX, 3 -> EAX // EAX: 0 -> AL, 1 -> AH, 2 -> AX // So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose // sub-register 2 is also AX. if (SubIdx && OldSubIdx && SubIdx != OldSubIdx) assert(OldSubIdx < SubIdx && "Conflicting sub-register index!"); else if (SubIdx) O.setSubReg(SubIdx); // Remove would-be duplicated kill marker. if (O.isKill() && UseMI->killsRegister(DstReg)) O.setIsKill(false); O.setReg(DstReg); } } } /// RemoveUnnecessaryKills - Remove kill markers that are no longer accurate /// due to live range lengthening as the result of coalescing. void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg, LiveInterval &LI) { for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(Reg), UE = mri_->use_end(); UI != UE; ++UI) { MachineOperand &UseMO = UI.getOperand(); if (UseMO.isKill()) { MachineInstr *UseMI = UseMO.getParent(); unsigned SReg, DReg; if (!tii_->isMoveInstr(*UseMI, SReg, DReg)) continue; unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(UseMI)); if (JoinedCopies.count(UseMI)) continue; LiveInterval::const_iterator UI = LI.FindLiveRangeContaining(UseIdx); assert(UI != LI.end()); if (!LI.isKill(UI->valno, UseIdx+1)) UseMO.setIsKill(false); } } } /// removeRange - Wrapper for LiveInterval::removeRange. This removes a range /// from a physical register live interval as well as from the live intervals /// of its sub-registers. static void removeRange(LiveInterval &li, unsigned Start, unsigned End, LiveIntervals *li_, const TargetRegisterInfo *tri_) { li.removeRange(Start, End, true); if (TargetRegisterInfo::isPhysicalRegister(li.reg)) { for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) { if (!li_->hasInterval(*SR)) continue; LiveInterval &sli = li_->getInterval(*SR); unsigned RemoveEnd = Start; while (RemoveEnd != End) { LiveInterval::iterator LR = sli.FindLiveRangeContaining(Start); if (LR == sli.end()) break; RemoveEnd = (LR->end < End) ? LR->end : End; sli.removeRange(Start, RemoveEnd, true); Start = RemoveEnd; } } } } /// removeIntervalIfEmpty - Check if the live interval of a physical register /// is empty, if so remove it and also remove the empty intervals of its /// sub-registers. static void removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_, const TargetRegisterInfo *tri_) { if (li.empty()) { li_->removeInterval(li.reg); if (TargetRegisterInfo::isPhysicalRegister(li.reg)) for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) { if (!li_->hasInterval(*SR)) continue; LiveInterval &sli = li_->getInterval(*SR); if (sli.empty()) li_->removeInterval(*SR); } } } /// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy. /// void SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li, MachineInstr *CopyMI) { unsigned CopyIdx = li_->getInstructionIndex(CopyMI); LiveInterval::iterator MLR = li.FindLiveRangeContaining(li_->getDefIndex(CopyIdx)); if (MLR == li.end()) return; // Already removed by ShortenDeadCopySrcLiveRange. unsigned RemoveStart = MLR->start; unsigned RemoveEnd = MLR->end; // Remove the liverange that's defined by this. if (RemoveEnd == li_->getDefIndex(CopyIdx)+1) { removeRange(li, RemoveStart, RemoveEnd, li_, tri_); removeIntervalIfEmpty(li, li_, tri_); } } /// ShortenDeadCopyLiveRange - Shorten a live range as it's artificially /// extended by a dead copy. Mark the last use (if any) of the val# as kill /// as ends the live range there. If there isn't another use, then this /// live range is dead. void SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li, MachineInstr *CopyMI) { unsigned CopyIdx = li_->getInstructionIndex(CopyMI); if (CopyIdx == 0) { // FIXME: special case: function live in. It can be a general case if the // first instruction index starts at > 0 value. assert(TargetRegisterInfo::isPhysicalRegister(li.reg)); // Live-in to the function but dead. Remove it from entry live-in set. mf_->begin()->removeLiveIn(li.reg); LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx); removeRange(li, LR->start, LR->end, li_, tri_); removeIntervalIfEmpty(li, li_, tri_); return; } LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx-1); if (LR == li.end()) // Livein but defined by a phi. return; unsigned RemoveStart = LR->start; unsigned RemoveEnd = li_->getDefIndex(CopyIdx)+1; if (LR->end > RemoveEnd) // More uses past this copy? Nothing to do. return; unsigned LastUseIdx; MachineOperand *LastUse = lastRegisterUse(LR->start, CopyIdx-1, li.reg, LastUseIdx); if (LastUse) { // There are uses before the copy, just shorten the live range to the end // of last use. LastUse->setIsKill(); MachineInstr *LastUseMI = LastUse->getParent(); removeRange(li, li_->getDefIndex(LastUseIdx), LR->end, li_, tri_); unsigned SrcReg, DstReg; if (tii_->isMoveInstr(*LastUseMI, SrcReg, DstReg) && DstReg == li.reg) { // Last use is itself an identity code. int DeadIdx = LastUseMI->findRegisterDefOperandIdx(li.reg, false, tri_); LastUseMI->getOperand(DeadIdx).setIsDead(); } return; } // Is it livein? MachineBasicBlock *CopyMBB = CopyMI->getParent(); unsigned MBBStart = li_->getMBBStartIdx(CopyMBB); if (LR->start <= MBBStart && LR->end > MBBStart) { if (LR->start == 0) { assert(TargetRegisterInfo::isPhysicalRegister(li.reg)); // Live-in to the function but dead. Remove it from entry live-in set. mf_->begin()->removeLiveIn(li.reg); } removeRange(li, LR->start, LR->end, li_, tri_); // FIXME: Shorten intervals in BBs that reaches this BB. } else { // Not livein into BB. MachineInstr *DefMI = li_->getInstructionFromIndex(li_->getDefIndex(RemoveStart)); if (DefMI && DefMI != CopyMI) { int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg, false, tri_); if (DeadIdx != -1) { DefMI->getOperand(DeadIdx).setIsDead(); // A dead def should have a single cycle interval. ++RemoveStart; } } removeRange(li, RemoveStart, LR->end, li_, tri_); } removeIntervalIfEmpty(li, li_, tri_); } /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg, /// which are the src/dst of the copy instruction CopyMI. This returns true /// if the copy was successfully coalesced away. If it is not currently /// possible to coalesce this interval, but it may be possible if other /// things get coalesced, then it returns true by reference in 'Again'. bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) { MachineInstr *CopyMI = TheCopy.MI; Again = false; if (JoinedCopies.count(CopyMI)) return false; // Already done. DOUT << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI; unsigned SrcReg; unsigned DstReg; bool isExtSubReg = CopyMI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG; unsigned SubIdx = 0; if (isExtSubReg) { DstReg = CopyMI->getOperand(0).getReg(); SrcReg = CopyMI->getOperand(1).getReg(); } else if (!tii_->isMoveInstr(*CopyMI, SrcReg, DstReg)) { assert(0 && "Unrecognized copy instruction!"); return false; } // If they are already joined we continue. if (SrcReg == DstReg) { DOUT << "\tCopy already coalesced.\n"; return false; // Not coalescable. } bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); // If they are both physical registers, we cannot join them. if (SrcIsPhys && DstIsPhys) { DOUT << "\tCan not coalesce physregs.\n"; return false; // Not coalescable. } // We only join virtual registers with allocatable physical registers. if (SrcIsPhys && !allocatableRegs_[SrcReg]) { DOUT << "\tSrc reg is unallocatable physreg.\n"; return false; // Not coalescable. } if (DstIsPhys && !allocatableRegs_[DstReg]) { DOUT << "\tDst reg is unallocatable physreg.\n"; return false; // Not coalescable. } unsigned RealDstReg = 0; if (isExtSubReg) { SubIdx = CopyMI->getOperand(2).getImm(); if (SrcIsPhys) { // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be // coalesced with AX. SrcReg = tri_->getSubReg(SrcReg, SubIdx); SubIdx = 0; } else if (DstIsPhys) { // If this is a extract_subreg where dst is a physical register, e.g. // cl = EXTRACT_SUBREG reg1024, 1 // then create and update the actual physical register allocated to RHS. const TargetRegisterClass *RC = mri_->getRegClass(SrcReg); for (const unsigned *SRs = tri_->getSuperRegisters(DstReg); unsigned SR = *SRs; ++SRs) { if (DstReg == tri_->getSubReg(SR, SubIdx) && RC->contains(SR)) { RealDstReg = SR; break; } } assert(RealDstReg && "Invalid extra_subreg instruction!"); // For this type of EXTRACT_SUBREG, conservatively // check if the live interval of the source register interfere with the // actual super physical register we are trying to coalesce with. LiveInterval &RHS = li_->getInterval(SrcReg); if (li_->hasInterval(RealDstReg) && RHS.overlaps(li_->getInterval(RealDstReg))) { DOUT << "Interfere with register "; DEBUG(li_->getInterval(RealDstReg).print(DOUT, tri_)); return false; // Not coalescable } for (const unsigned* SR = tri_->getSubRegisters(RealDstReg); *SR; ++SR) if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) { DOUT << "Interfere with sub-register "; DEBUG(li_->getInterval(*SR).print(DOUT, tri_)); return false; // Not coalescable } SubIdx = 0; } else { unsigned SrcSize= li_->getInterval(SrcReg).getSize() / InstrSlots::NUM; unsigned DstSize= li_->getInterval(DstReg).getSize() / InstrSlots::NUM; const TargetRegisterClass *RC = mri_->getRegClass(DstReg); unsigned Threshold = allocatableRCRegs_[RC].count(); // Be conservative. If both sides are virtual registers, do not coalesce // if this will cause a high use density interval to target a smaller set // of registers. if (DstSize > Threshold || SrcSize > Threshold) { LiveVariables::VarInfo &svi = lv_->getVarInfo(SrcReg); LiveVariables::VarInfo &dvi = lv_->getVarInfo(DstReg); if ((float)dvi.NumUses / DstSize < (float)svi.NumUses / SrcSize) { Again = true; // May be possible to coalesce later. return false; } } } } else if (differingRegisterClasses(SrcReg, DstReg)) { // FIXME: What if the resul of a EXTRACT_SUBREG is then coalesced // with another? If it's the resulting destination register, then // the subidx must be propagated to uses (but only those defined // by the EXTRACT_SUBREG). If it's being coalesced into another // register, it should be safe because register is assumed to have // the register class of the super-register. // If they are not of the same register class, we cannot join them. DOUT << "\tSrc/Dest are different register classes.\n"; // Allow the coalescer to try again in case either side gets coalesced to // a physical register that's compatible with the other side. e.g. // r1024 = MOV32to32_ r1025 // but later r1024 is assigned EAX then r1025 may be coalesced with EAX. Again = true; // May be possible to coalesce later. return false; } LiveInterval &SrcInt = li_->getInterval(SrcReg); LiveInterval &DstInt = li_->getInterval(DstReg); assert(SrcInt.reg == SrcReg && DstInt.reg == DstReg && "Register mapping is horribly broken!"); DOUT << "\t\tInspecting "; SrcInt.print(DOUT, tri_); DOUT << " and "; DstInt.print(DOUT, tri_); DOUT << ": "; // Check if it is necessary to propagate "isDead" property. MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg, false); bool isDead = mopd->isDead(); // We need to be careful about coalescing a source physical register with a // virtual register. Once the coalescing is done, it cannot be broken and // these are not spillable! If the destination interval uses are far away, // think twice about coalescing them! if (!isDead && (SrcIsPhys || DstIsPhys) && !isExtSubReg) { LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt; unsigned JoinVReg = SrcIsPhys ? DstReg : SrcReg; unsigned JoinPReg = SrcIsPhys ? SrcReg : DstReg; const TargetRegisterClass *RC = mri_->getRegClass(JoinVReg); unsigned Threshold = allocatableRCRegs_[RC].count() * 2; if (TheCopy.isBackEdge) Threshold *= 2; // Favors back edge copies. // If the virtual register live interval is long but it has low use desity, // do not join them, instead mark the physical register as its allocation // preference. unsigned Length = JoinVInt.getSize() / InstrSlots::NUM; LiveVariables::VarInfo &vi = lv_->getVarInfo(JoinVReg); if (Length > Threshold && (((float)vi.NumUses / Length) < (1.0 / Threshold))) { JoinVInt.preference = JoinPReg; ++numAborts; DOUT << "\tMay tie down a physical register, abort!\n"; Again = true; // May be possible to coalesce later. return false; } } // Okay, attempt to join these two intervals. On failure, this returns false. // Otherwise, if one of the intervals being joined is a physreg, this method // always canonicalizes DstInt to be it. The output "SrcInt" will not have // been modified, so we can use this information below to update aliases. bool Swapped = false; if (!JoinIntervals(DstInt, SrcInt, Swapped)) { // Coalescing failed. // If we can eliminate the copy without merging the live ranges, do so now. if (!isExtSubReg && (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI) || RemoveCopyByCommutingDef(SrcInt, DstInt, CopyMI))) { JoinedCopies.insert(CopyMI); return true; } // Otherwise, we are unable to join the intervals. DOUT << "Interference!\n"; Again = true; // May be possible to coalesce later. return false; } LiveInterval *ResSrcInt = &SrcInt; LiveInterval *ResDstInt = &DstInt; if (Swapped) { std::swap(SrcReg, DstReg); std::swap(ResSrcInt, ResDstInt); } assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && "LiveInterval::join didn't work right!"); // If we're about to merge live ranges into a physical register live range, // we have to update any aliased register's live ranges to indicate that they // have clobbered values for this range. if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { // If this is a extract_subreg where dst is a physical register, e.g. // cl = EXTRACT_SUBREG reg1024, 1 // then create and update the actual physical register allocated to RHS. if (RealDstReg) { LiveInterval &RealDstInt = li_->getOrCreateInterval(RealDstReg); SmallSet CopiedValNos; for (LiveInterval::Ranges::const_iterator I = ResSrcInt->ranges.begin(), E = ResSrcInt->ranges.end(); I != E; ++I) { LiveInterval::const_iterator DstLR = ResDstInt->FindLiveRangeContaining(I->start); assert(DstLR != ResDstInt->end() && "Invalid joined interval!"); const VNInfo *DstValNo = DstLR->valno; if (CopiedValNos.insert(DstValNo)) { VNInfo *ValNo = RealDstInt.getNextValue(DstValNo->def, DstValNo->copy, li_->getVNInfoAllocator()); ValNo->hasPHIKill = DstValNo->hasPHIKill; RealDstInt.addKills(ValNo, DstValNo->kills); RealDstInt.MergeValueInAsValue(*ResDstInt, DstValNo, ValNo); } } DstReg = RealDstReg; } // Update the liveintervals of sub-registers. for (const unsigned *AS = tri_->getSubRegisters(DstReg); *AS; ++AS) li_->getOrCreateInterval(*AS).MergeInClobberRanges(*ResSrcInt, li_->getVNInfoAllocator()); } else { // Merge use info if the destination is a virtual register. LiveVariables::VarInfo& dVI = lv_->getVarInfo(DstReg); LiveVariables::VarInfo& sVI = lv_->getVarInfo(SrcReg); dVI.NumUses += sVI.NumUses; } // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the // larger super-register. if (isExtSubReg && !SrcIsPhys && !DstIsPhys) { if (!Swapped) { ResSrcInt->Copy(*ResDstInt, li_->getVNInfoAllocator()); std::swap(SrcReg, DstReg); std::swap(ResSrcInt, ResDstInt); } } if (NewHeuristic) { // Add all copies that define val# in the source interval into the queue. for (LiveInterval::const_vni_iterator i = ResSrcInt->vni_begin(), e = ResSrcInt->vni_end(); i != e; ++i) { const VNInfo *vni = *i; if (!vni->def || vni->def == ~1U || vni->def == ~0U) continue; MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def); unsigned NewSrcReg, NewDstReg; if (CopyMI && JoinedCopies.count(CopyMI) == 0 && tii_->isMoveInstr(*CopyMI, NewSrcReg, NewDstReg)) { unsigned LoopDepth = loopInfo->getLoopDepth(CopyMI->getParent()); JoinQueue->push(CopyRec(CopyMI, LoopDepth, isBackEdgeCopy(CopyMI, DstReg))); } } } DOUT << "\n\t\tJoined. Result = "; ResDstInt->print(DOUT, tri_); DOUT << "\n"; // Remember to delete the copy instruction. JoinedCopies.insert(CopyMI); // Some live range has been lengthened due to colaescing, eliminate the // unnecessary kills. RemoveUnnecessaryKills(SrcReg, *ResDstInt); if (TargetRegisterInfo::isVirtualRegister(DstReg)) RemoveUnnecessaryKills(DstReg, *ResDstInt); // SrcReg is guarateed to be the register whose live interval that is // being merged. li_->removeInterval(SrcReg); UpdateRegDefsUses(SrcReg, DstReg, SubIdx); ++numJoins; return true; } /// ComputeUltimateVN - Assuming we are going to join two live intervals, /// compute what the resultant value numbers for each value in the input two /// ranges will be. This is complicated by copies between the two which can /// and will commonly cause multiple value numbers to be merged into one. /// /// VN is the value number that we're trying to resolve. InstDefiningValue /// keeps track of the new InstDefiningValue assignment for the result /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of /// whether a value in this or other is a copy from the opposite set. /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have /// already been assigned. /// /// ThisFromOther[x] - If x is defined as a copy from the other interval, this /// contains the value number the copy is from. /// static unsigned ComputeUltimateVN(VNInfo *VNI, SmallVector &NewVNInfo, DenseMap &ThisFromOther, DenseMap &OtherFromThis, SmallVector &ThisValNoAssignments, SmallVector &OtherValNoAssignments) { unsigned VN = VNI->id; // If the VN has already been computed, just return it. if (ThisValNoAssignments[VN] >= 0) return ThisValNoAssignments[VN]; // assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?"); // If this val is not a copy from the other val, then it must be a new value // number in the destination. DenseMap::iterator I = ThisFromOther.find(VNI); if (I == ThisFromOther.end()) { NewVNInfo.push_back(VNI); return ThisValNoAssignments[VN] = NewVNInfo.size()-1; } VNInfo *OtherValNo = I->second; // Otherwise, this *is* a copy from the RHS. If the other side has already // been computed, return it. if (OtherValNoAssignments[OtherValNo->id] >= 0) return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id]; // Mark this value number as currently being computed, then ask what the // ultimate value # of the other value is. ThisValNoAssignments[VN] = -2; unsigned UltimateVN = ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther, OtherValNoAssignments, ThisValNoAssignments); return ThisValNoAssignments[VN] = UltimateVN; } static bool InVector(VNInfo *Val, const SmallVector &V) { return std::find(V.begin(), V.end(), Val) != V.end(); } /// SimpleJoin - Attempt to joint the specified interval into this one. The /// caller of this method must guarantee that the RHS only contains a single /// value number and that the RHS is not defined by a copy from this /// interval. This returns false if the intervals are not joinable, or it /// joins them and returns true. bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){ assert(RHS.containsOneValue()); // Some number (potentially more than one) value numbers in the current // interval may be defined as copies from the RHS. Scan the overlapping // portions of the LHS and RHS, keeping track of this and looking for // overlapping live ranges that are NOT defined as copies. If these exist, we // cannot coalesce. LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end(); LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end(); if (LHSIt->start < RHSIt->start) { LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start); if (LHSIt != LHS.begin()) --LHSIt; } else if (RHSIt->start < LHSIt->start) { RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start); if (RHSIt != RHS.begin()) --RHSIt; } SmallVector EliminatedLHSVals; while (1) { // Determine if these live intervals overlap. bool Overlaps = false; if (LHSIt->start <= RHSIt->start) Overlaps = LHSIt->end > RHSIt->start; else Overlaps = RHSIt->end > LHSIt->start; // If the live intervals overlap, there are two interesting cases: if the // LHS interval is defined by a copy from the RHS, it's ok and we record // that the LHS value # is the same as the RHS. If it's not, then we cannot // coalesce these live ranges and we bail out. if (Overlaps) { // If we haven't already recorded that this value # is safe, check it. if (!InVector(LHSIt->valno, EliminatedLHSVals)) { // Copy from the RHS? unsigned SrcReg = li_->getVNInfoSourceReg(LHSIt->valno); if (SrcReg != RHS.reg) return false; // Nope, bail out. EliminatedLHSVals.push_back(LHSIt->valno); } // We know this entire LHS live range is okay, so skip it now. if (++LHSIt == LHSEnd) break; continue; } if (LHSIt->end < RHSIt->end) { if (++LHSIt == LHSEnd) break; } else { // One interesting case to check here. It's possible that we have // something like "X3 = Y" which defines a new value number in the LHS, // and is the last use of this liverange of the RHS. In this case, we // want to notice this copy (so that it gets coalesced away) even though // the live ranges don't actually overlap. if (LHSIt->start == RHSIt->end) { if (InVector(LHSIt->valno, EliminatedLHSVals)) { // We already know that this value number is going to be merged in // if coalescing succeeds. Just skip the liverange. if (++LHSIt == LHSEnd) break; } else { // Otherwise, if this is a copy from the RHS, mark it as being merged // in. if (li_->getVNInfoSourceReg(LHSIt->valno) == RHS.reg) { EliminatedLHSVals.push_back(LHSIt->valno); // We know this entire LHS live range is okay, so skip it now. if (++LHSIt == LHSEnd) break; } } } if (++RHSIt == RHSEnd) break; } } // If we got here, we know that the coalescing will be successful and that // the value numbers in EliminatedLHSVals will all be merged together. Since // the most common case is that EliminatedLHSVals has a single number, we // optimize for it: if there is more than one value, we merge them all into // the lowest numbered one, then handle the interval as if we were merging // with one value number. VNInfo *LHSValNo; if (EliminatedLHSVals.size() > 1) { // Loop through all the equal value numbers merging them into the smallest // one. VNInfo *Smallest = EliminatedLHSVals[0]; for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) { if (EliminatedLHSVals[i]->id < Smallest->id) { // Merge the current notion of the smallest into the smaller one. LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]); Smallest = EliminatedLHSVals[i]; } else { // Merge into the smallest. LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest); } } LHSValNo = Smallest; } else { assert(!EliminatedLHSVals.empty() && "No copies from the RHS?"); LHSValNo = EliminatedLHSVals[0]; } // Okay, now that there is a single LHS value number that we're merging the // RHS into, update the value number info for the LHS to indicate that the // value number is defined where the RHS value number was. const VNInfo *VNI = RHS.getValNumInfo(0); LHSValNo->def = VNI->def; LHSValNo->copy = VNI->copy; // Okay, the final step is to loop over the RHS live intervals, adding them to // the LHS. LHSValNo->hasPHIKill |= VNI->hasPHIKill; LHS.addKills(LHSValNo, VNI->kills); LHS.MergeRangesInAsValue(RHS, LHSValNo); LHS.weight += RHS.weight; if (RHS.preference && !LHS.preference) LHS.preference = RHS.preference; return true; } /// JoinIntervals - Attempt to join these two intervals. On failure, this /// returns false. Otherwise, if one of the intervals being joined is a /// physreg, this method always canonicalizes LHS to be it. The output /// "RHS" will not have been modified, so we can use this information /// below to update aliases. bool SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS, bool &Swapped) { // Compute the final value assignment, assuming that the live ranges can be // coalesced. SmallVector LHSValNoAssignments; SmallVector RHSValNoAssignments; DenseMap LHSValsDefinedFromRHS; DenseMap RHSValsDefinedFromLHS; SmallVector NewVNInfo; // If a live interval is a physical register, conservatively check if any // of its sub-registers is overlapping the live interval of the virtual // register. If so, do not coalesce. if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) && *tri_->getSubRegisters(LHS.reg)) { for (const unsigned* SR = tri_->getSubRegisters(LHS.reg); *SR; ++SR) if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) { DOUT << "Interfere with sub-register "; DEBUG(li_->getInterval(*SR).print(DOUT, tri_)); return false; } } else if (TargetRegisterInfo::isPhysicalRegister(RHS.reg) && *tri_->getSubRegisters(RHS.reg)) { for (const unsigned* SR = tri_->getSubRegisters(RHS.reg); *SR; ++SR) if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) { DOUT << "Interfere with sub-register "; DEBUG(li_->getInterval(*SR).print(DOUT, tri_)); return false; } } // Compute ultimate value numbers for the LHS and RHS values. if (RHS.containsOneValue()) { // Copies from a liveinterval with a single value are simple to handle and // very common, handle the special case here. This is important, because // often RHS is small and LHS is large (e.g. a physreg). // Find out if the RHS is defined as a copy from some value in the LHS. int RHSVal0DefinedFromLHS = -1; int RHSValID = -1; VNInfo *RHSValNoInfo = NULL; VNInfo *RHSValNoInfo0 = RHS.getValNumInfo(0); unsigned RHSSrcReg = li_->getVNInfoSourceReg(RHSValNoInfo0); if ((RHSSrcReg == 0 || RHSSrcReg != LHS.reg)) { // If RHS is not defined as a copy from the LHS, we can use simpler and // faster checks to see if the live ranges are coalescable. This joiner // can't swap the LHS/RHS intervals though. if (!TargetRegisterInfo::isPhysicalRegister(RHS.reg)) { return SimpleJoin(LHS, RHS); } else { RHSValNoInfo = RHSValNoInfo0; } } else { // It was defined as a copy from the LHS, find out what value # it is. RHSValNoInfo = LHS.getLiveRangeContaining(RHSValNoInfo0->def-1)->valno; RHSValID = RHSValNoInfo->id; RHSVal0DefinedFromLHS = RHSValID; } LHSValNoAssignments.resize(LHS.getNumValNums(), -1); RHSValNoAssignments.resize(RHS.getNumValNums(), -1); NewVNInfo.resize(LHS.getNumValNums(), NULL); // Okay, *all* of the values in LHS that are defined as a copy from RHS // should now get updated. for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; unsigned VN = VNI->id; if (unsigned LHSSrcReg = li_->getVNInfoSourceReg(VNI)) { if (LHSSrcReg != RHS.reg) { // If this is not a copy from the RHS, its value number will be // unmodified by the coalescing. NewVNInfo[VN] = VNI; LHSValNoAssignments[VN] = VN; } else if (RHSValID == -1) { // Otherwise, it is a copy from the RHS, and we don't already have a // value# for it. Keep the current value number, but remember it. LHSValNoAssignments[VN] = RHSValID = VN; NewVNInfo[VN] = RHSValNoInfo; LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0; } else { // Otherwise, use the specified value #. LHSValNoAssignments[VN] = RHSValID; if (VN == (unsigned)RHSValID) { // Else this val# is dead. NewVNInfo[VN] = RHSValNoInfo; LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0; } } } else { NewVNInfo[VN] = VNI; LHSValNoAssignments[VN] = VN; } } assert(RHSValID != -1 && "Didn't find value #?"); RHSValNoAssignments[0] = RHSValID; if (RHSVal0DefinedFromLHS != -1) { // This path doesn't go through ComputeUltimateVN so just set // it to anything. RHSValsDefinedFromLHS[RHSValNoInfo0] = (VNInfo*)1; } } else { // Loop over the value numbers of the LHS, seeing if any are defined from // the RHS. for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; if (VNI->def == ~1U || VNI->copy == 0) // Src not defined by a copy? continue; // DstReg is known to be a register in the LHS interval. If the src is // from the RHS interval, we can use its value #. if (li_->getVNInfoSourceReg(VNI) != RHS.reg) continue; // Figure out the value # from the RHS. LHSValsDefinedFromRHS[VNI]=RHS.getLiveRangeContaining(VNI->def-1)->valno; } // Loop over the value numbers of the RHS, seeing if any are defined from // the LHS. for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; if (VNI->def == ~1U || VNI->copy == 0) // Src not defined by a copy? continue; // DstReg is known to be a register in the RHS interval. If the src is // from the LHS interval, we can use its value #. if (li_->getVNInfoSourceReg(VNI) != LHS.reg) continue; // Figure out the value # from the LHS. RHSValsDefinedFromLHS[VNI]=LHS.getLiveRangeContaining(VNI->def-1)->valno; } LHSValNoAssignments.resize(LHS.getNumValNums(), -1); RHSValNoAssignments.resize(RHS.getNumValNums(), -1); NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums()); for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; unsigned VN = VNI->id; if (LHSValNoAssignments[VN] >= 0 || VNI->def == ~1U) continue; ComputeUltimateVN(VNI, NewVNInfo, LHSValsDefinedFromRHS, RHSValsDefinedFromLHS, LHSValNoAssignments, RHSValNoAssignments); } for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; unsigned VN = VNI->id; if (RHSValNoAssignments[VN] >= 0 || VNI->def == ~1U) continue; // If this value number isn't a copy from the LHS, it's a new number. if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) { NewVNInfo.push_back(VNI); RHSValNoAssignments[VN] = NewVNInfo.size()-1; continue; } ComputeUltimateVN(VNI, NewVNInfo, RHSValsDefinedFromLHS, LHSValsDefinedFromRHS, RHSValNoAssignments, LHSValNoAssignments); } } // Armed with the mappings of LHS/RHS values to ultimate values, walk the // interval lists to see if these intervals are coalescable. LiveInterval::const_iterator I = LHS.begin(); LiveInterval::const_iterator IE = LHS.end(); LiveInterval::const_iterator J = RHS.begin(); LiveInterval::const_iterator JE = RHS.end(); // Skip ahead until the first place of potential sharing. if (I->start < J->start) { I = std::upper_bound(I, IE, J->start); if (I != LHS.begin()) --I; } else if (J->start < I->start) { J = std::upper_bound(J, JE, I->start); if (J != RHS.begin()) --J; } while (1) { // Determine if these two live ranges overlap. bool Overlaps; if (I->start < J->start) { Overlaps = I->end > J->start; } else { Overlaps = J->end > I->start; } // If so, check value # info to determine if they are really different. if (Overlaps) { // If the live range overlap will map to the same value number in the // result liverange, we can still coalesce them. If not, we can't. if (LHSValNoAssignments[I->valno->id] != RHSValNoAssignments[J->valno->id]) return false; } if (I->end < J->end) { ++I; if (I == IE) break; } else { ++J; if (J == JE) break; } } // Update kill info. Some live ranges are extended due to copy coalescing. for (DenseMap::iterator I = LHSValsDefinedFromRHS.begin(), E = LHSValsDefinedFromRHS.end(); I != E; ++I) { VNInfo *VNI = I->first; unsigned LHSValID = LHSValNoAssignments[VNI->id]; LiveInterval::removeKill(NewVNInfo[LHSValID], VNI->def); NewVNInfo[LHSValID]->hasPHIKill |= VNI->hasPHIKill; RHS.addKills(NewVNInfo[LHSValID], VNI->kills); } // Update kill info. Some live ranges are extended due to copy coalescing. for (DenseMap::iterator I = RHSValsDefinedFromLHS.begin(), E = RHSValsDefinedFromLHS.end(); I != E; ++I) { VNInfo *VNI = I->first; unsigned RHSValID = RHSValNoAssignments[VNI->id]; LiveInterval::removeKill(NewVNInfo[RHSValID], VNI->def); NewVNInfo[RHSValID]->hasPHIKill |= VNI->hasPHIKill; LHS.addKills(NewVNInfo[RHSValID], VNI->kills); } // If we get here, we know that we can coalesce the live ranges. Ask the // intervals to coalesce themselves now. if ((RHS.ranges.size() > LHS.ranges.size() && TargetRegisterInfo::isVirtualRegister(LHS.reg)) || TargetRegisterInfo::isPhysicalRegister(RHS.reg)) { RHS.join(LHS, &RHSValNoAssignments[0], &LHSValNoAssignments[0], NewVNInfo); Swapped = true; } else { LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo); Swapped = false; } return true; } namespace { // DepthMBBCompare - Comparison predicate that sort first based on the loop // depth of the basic block (the unsigned), and then on the MBB number. struct DepthMBBCompare { typedef std::pair DepthMBBPair; bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const { if (LHS.first > RHS.first) return true; // Deeper loops first return LHS.first == RHS.first && LHS.second->getNumber() < RHS.second->getNumber(); } }; } /// getRepIntervalSize - Returns the size of the interval that represents the /// specified register. template unsigned JoinPriorityQueue::getRepIntervalSize(unsigned Reg) { return Rc->getRepIntervalSize(Reg); } /// CopyRecSort::operator - Join priority queue sorting function. /// bool CopyRecSort::operator()(CopyRec left, CopyRec right) const { // Inner loops first. if (left.LoopDepth > right.LoopDepth) return false; else if (left.LoopDepth == right.LoopDepth) if (left.isBackEdge && !right.isBackEdge) return false; return true; } void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB, std::vector &TryAgain) { DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n"; std::vector VirtCopies; std::vector PhysCopies; unsigned LoopDepth = loopInfo->getLoopDepth(MBB); for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); MII != E;) { MachineInstr *Inst = MII++; // If this isn't a copy nor a extract_subreg, we can't join intervals. unsigned SrcReg, DstReg; if (Inst->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) { DstReg = Inst->getOperand(0).getReg(); SrcReg = Inst->getOperand(1).getReg(); } else if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue; bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); if (NewHeuristic) { JoinQueue->push(CopyRec(Inst, LoopDepth, isBackEdgeCopy(Inst, DstReg))); } else { if (SrcIsPhys || DstIsPhys) PhysCopies.push_back(CopyRec(Inst, 0, false)); else VirtCopies.push_back(CopyRec(Inst, 0, false)); } } if (NewHeuristic) return; // Try coalescing physical register + virtual register first. for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) { CopyRec &TheCopy = PhysCopies[i]; bool Again = false; if (!JoinCopy(TheCopy, Again)) if (Again) TryAgain.push_back(TheCopy); } for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) { CopyRec &TheCopy = VirtCopies[i]; bool Again = false; if (!JoinCopy(TheCopy, Again)) if (Again) TryAgain.push_back(TheCopy); } } void SimpleRegisterCoalescing::joinIntervals() { DOUT << "********** JOINING INTERVALS ***********\n"; if (NewHeuristic) JoinQueue = new JoinPriorityQueue(this); std::vector TryAgainList; if (loopInfo->begin() == loopInfo->end()) { // If there are no loops in the function, join intervals in function order. for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); I != E; ++I) CopyCoalesceInMBB(I, TryAgainList); } else { // Otherwise, join intervals in inner loops before other intervals. // Unfortunately we can't just iterate over loop hierarchy here because // there may be more MBB's than BB's. Collect MBB's for sorting. // Join intervals in the function prolog first. We want to join physical // registers with virtual registers before the intervals got too long. std::vector > MBBs; for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){ MachineBasicBlock *MBB = I; MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I)); } // Sort by loop depth. std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare()); // Finally, join intervals in loop nest order. for (unsigned i = 0, e = MBBs.size(); i != e; ++i) CopyCoalesceInMBB(MBBs[i].second, TryAgainList); } // Joining intervals can allow other intervals to be joined. Iteratively join // until we make no progress. if (NewHeuristic) { SmallVector TryAgain; bool ProgressMade = true; while (ProgressMade) { ProgressMade = false; while (!JoinQueue->empty()) { CopyRec R = JoinQueue->pop(); bool Again = false; bool Success = JoinCopy(R, Again); if (Success) ProgressMade = true; else if (Again) TryAgain.push_back(R); } if (ProgressMade) { while (!TryAgain.empty()) { JoinQueue->push(TryAgain.back()); TryAgain.pop_back(); } } } } else { bool ProgressMade = true; while (ProgressMade) { ProgressMade = false; for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) { CopyRec &TheCopy = TryAgainList[i]; if (TheCopy.MI) { bool Again = false; bool Success = JoinCopy(TheCopy, Again); if (Success || !Again) { TheCopy.MI = 0; // Mark this one as done. ProgressMade = true; } } } } } if (NewHeuristic) delete JoinQueue; } /// Return true if the two specified registers belong to different register /// classes. The registers may be either phys or virt regs. bool SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA, unsigned RegB) const { // Get the register classes for the first reg. if (TargetRegisterInfo::isPhysicalRegister(RegA)) { assert(TargetRegisterInfo::isVirtualRegister(RegB) && "Shouldn't consider two physregs!"); return !mri_->getRegClass(RegB)->contains(RegA); } // Compare against the regclass for the second reg. const TargetRegisterClass *RegClass = mri_->getRegClass(RegA); if (TargetRegisterInfo::isVirtualRegister(RegB)) return RegClass != mri_->getRegClass(RegB); else return !RegClass->contains(RegB); } /// lastRegisterUse - Returns the last use of the specific register between /// cycles Start and End or NULL if there are no uses. MachineOperand * SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End, unsigned Reg, unsigned &UseIdx) const{ UseIdx = 0; if (TargetRegisterInfo::isVirtualRegister(Reg)) { MachineOperand *LastUse = NULL; for (MachineRegisterInfo::use_iterator I = mri_->use_begin(Reg), E = mri_->use_end(); I != E; ++I) { MachineOperand &Use = I.getOperand(); MachineInstr *UseMI = Use.getParent(); unsigned Idx = li_->getInstructionIndex(UseMI); if (Idx >= Start && Idx < End && Idx >= UseIdx) { LastUse = &Use; UseIdx = Idx; } } return LastUse; } int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM; int s = Start; while (e >= s) { // Skip deleted instructions MachineInstr *MI = li_->getInstructionFromIndex(e); while ((e - InstrSlots::NUM) >= s && !MI) { e -= InstrSlots::NUM; MI = li_->getInstructionFromIndex(e); } if (e < s || MI == NULL) return NULL; for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) { MachineOperand &Use = MI->getOperand(i); if (Use.isRegister() && Use.isUse() && Use.getReg() && tri_->regsOverlap(Use.getReg(), Reg)) { UseIdx = e; return &Use; } } e -= InstrSlots::NUM; } return NULL; } void SimpleRegisterCoalescing::printRegName(unsigned reg) const { if (TargetRegisterInfo::isPhysicalRegister(reg)) cerr << tri_->getName(reg); else cerr << "%reg" << reg; } void SimpleRegisterCoalescing::releaseMemory() { JoinedCopies.clear(); } static bool isZeroLengthInterval(LiveInterval *li) { for (LiveInterval::Ranges::const_iterator i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i) if (i->end - i->start > LiveIntervals::InstrSlots::NUM) return false; return true; } bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) { mf_ = &fn; mri_ = &fn.getRegInfo(); tm_ = &fn.getTarget(); tri_ = tm_->getRegisterInfo(); tii_ = tm_->getInstrInfo(); li_ = &getAnalysis(); lv_ = &getAnalysis(); loopInfo = &getAnalysis(); DOUT << "********** SIMPLE REGISTER COALESCING **********\n" << "********** Function: " << ((Value*)mf_->getFunction())->getName() << '\n'; allocatableRegs_ = tri_->getAllocatableSet(fn); for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(), E = tri_->regclass_end(); I != E; ++I) allocatableRCRegs_.insert(std::make_pair(*I, tri_->getAllocatableSet(fn, *I))); // Join (coalesce) intervals if requested. if (EnableJoining) { joinIntervals(); DOUT << "********** INTERVALS POST JOINING **********\n"; for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I){ I->second.print(DOUT, tri_); DOUT << "\n"; } // Delete all coalesced copies. for (SmallPtrSet::iterator I = JoinedCopies.begin(), E = JoinedCopies.end(); I != E; ++I) { MachineInstr *CopyMI = *I; unsigned SrcReg, DstReg; tii_->isMoveInstr(*CopyMI, SrcReg, DstReg); if (CopyMI->registerDefIsDead(DstReg)) { LiveInterval &li = li_->getInterval(DstReg); ShortenDeadCopySrcLiveRange(li, CopyMI); ShortenDeadCopyLiveRange(li, CopyMI); } li_->RemoveMachineInstrFromMaps(*I); (*I)->eraseFromParent(); ++numPeep; } } // Perform a final pass over the instructions and compute spill weights // and remove identity moves. for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); mbbi != mbbe; ++mbbi) { MachineBasicBlock* mbb = mbbi; unsigned loopDepth = loopInfo->getLoopDepth(mbb); for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end(); mii != mie; ) { // if the move will be an identity move delete it unsigned srcReg, dstReg; if (tii_->isMoveInstr(*mii, srcReg, dstReg) && srcReg == dstReg) { if (li_->hasInterval(srcReg)) { LiveInterval &RegInt = li_->getInterval(srcReg); // If def of this move instruction is dead, remove its live range // from the dstination register's live interval. if (mii->registerDefIsDead(dstReg)) { ShortenDeadCopySrcLiveRange(RegInt, mii); ShortenDeadCopyLiveRange(RegInt, mii); } } li_->RemoveMachineInstrFromMaps(mii); mii = mbbi->erase(mii); ++numPeep; } else { SmallSet UniqueUses; for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) { const MachineOperand &mop = mii->getOperand(i); if (mop.isRegister() && mop.getReg() && TargetRegisterInfo::isVirtualRegister(mop.getReg())) { unsigned reg = mop.getReg(); // Multiple uses of reg by the same instruction. It should not // contribute to spill weight again. if (UniqueUses.count(reg) != 0) continue; LiveInterval &RegInt = li_->getInterval(reg); RegInt.weight += li_->getSpillWeight(mop.isDef(), mop.isUse(), loopDepth); UniqueUses.insert(reg); } } ++mii; } } } for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) { LiveInterval &LI = I->second; if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { // If the live interval length is essentially zero, i.e. in every live // range the use follows def immediately, it doesn't make sense to spill // it and hope it will be easier to allocate for this li. if (isZeroLengthInterval(&LI)) LI.weight = HUGE_VALF; else { bool isLoad = false; if (li_->isReMaterializable(LI, isLoad)) { // If all of the definitions of the interval are re-materializable, // it is a preferred candidate for spilling. If non of the defs are // loads, then it's potentially very cheap to re-materialize. // FIXME: this gets much more complicated once we support non-trivial // re-materialization. if (isLoad) LI.weight *= 0.9F; else LI.weight *= 0.5F; } } // Slightly prefer live interval that has been assigned a preferred reg. if (LI.preference) LI.weight *= 1.01F; // Divide the weight of the interval by its size. This encourages // spilling of intervals that are large and have few uses, and // discourages spilling of small intervals with many uses. LI.weight /= LI.getSize(); } } DEBUG(dump()); return true; } /// print - Implement the dump method. void SimpleRegisterCoalescing::print(std::ostream &O, const Module* m) const { li_->print(O, m); } RegisterCoalescer* llvm::createSimpleRegisterCoalescer() { return new SimpleRegisterCoalescing(); } // Make sure that anything that uses RegisterCoalescer pulls in this file... DEFINING_FILE_FOR(SimpleRegisterCoalescing)