//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based // register allocator for LLVM. This allocator works by constructing a PBQP // problem representing the register allocation problem under consideration, // solving this using a PBQP solver, and mapping the solution back to a // register assignment. If any variables are selected for spilling then spill // code is inserted and the process repeated. // // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned // for register allocation. For more information on PBQP for register // allocation, see the following papers: // // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with // PBQP. In Proceedings of the 7th Joint Modular Languages Conference // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. // // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular // architectures. In Proceedings of the Joint Conference on Languages, // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, // NY, USA, 139-148. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "PBQP.h" #include "VirtRegMap.h" #include "Spiller.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/CodeGen/RegisterCoalescer.h" #include "llvm/Support/Debug.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include #include #include #include #include using namespace llvm; static RegisterRegAlloc registerPBQPRepAlloc("pbqp", "PBQP register allocator", createPBQPRegisterAllocator); namespace { //! //! PBQP based allocators solve the register allocation problem by mapping //! register allocation problems to Partitioned Boolean Quadratic //! Programming problems. class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass { public: static char ID; //! Construct a PBQP register allocator. PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID) {} //! Return the pass name. virtual const char* getPassName() const throw() { return "PBQP Register Allocator"; } //! PBQP analysis usage. virtual void getAnalysisUsage(AnalysisUsage &au) const { au.addRequired(); au.addRequiredTransitive(); au.addRequired(); au.addPreserved(); au.addRequired(); au.addPreserved(); MachineFunctionPass::getAnalysisUsage(au); } //! Perform register allocation virtual bool runOnMachineFunction(MachineFunction &MF); private: typedef std::map LI2NodeMap; typedef std::vector Node2LIMap; typedef std::vector AllowedSet; typedef std::vector AllowedSetMap; typedef std::set RegSet; typedef std::pair RegPair; typedef std::map CoalesceMap; typedef std::set LiveIntervalSet; MachineFunction *mf; const TargetMachine *tm; const TargetRegisterInfo *tri; const TargetInstrInfo *tii; const MachineLoopInfo *loopInfo; MachineRegisterInfo *mri; LiveIntervals *lis; LiveStacks *lss; VirtRegMap *vrm; LI2NodeMap li2Node; Node2LIMap node2LI; AllowedSetMap allowedSets; LiveIntervalSet vregIntervalsToAlloc, emptyVRegIntervals; //! Builds a PBQP cost vector. template PBQPVector* buildCostVector(unsigned vReg, const RegContainer &allowed, const CoalesceMap &cealesces, PBQPNum spillCost) const; //! \brief Builds a PBQP interference matrix. //! //! @return Either a pointer to a non-zero PBQP matrix representing the //! allocation option costs, or a null pointer for a zero matrix. //! //! Expects allowed sets for two interfering LiveIntervals. These allowed //! sets should contain only allocable registers from the LiveInterval's //! register class, with any interfering pre-colored registers removed. template PBQPMatrix* buildInterferenceMatrix(const RegContainer &allowed1, const RegContainer &allowed2) const; //! //! Expects allowed sets for two potentially coalescable LiveIntervals, //! and an estimated benefit due to coalescing. The allowed sets should //! contain only allocable registers from the LiveInterval's register //! classes, with any interfering pre-colored registers removed. template PBQPMatrix* buildCoalescingMatrix(const RegContainer &allowed1, const RegContainer &allowed2, PBQPNum cBenefit) const; //! \brief Finds coalescing opportunities and returns them as a map. //! //! Any entries in the map are guaranteed coalescable, even if their //! corresponding live intervals overlap. CoalesceMap findCoalesces(); //! \brief Finds the initial set of vreg intervals to allocate. void findVRegIntervalsToAlloc(); //! \brief Constructs a PBQP problem representation of the register //! allocation problem for this function. //! //! @return a PBQP solver object for the register allocation problem. pbqp* constructPBQPProblem(); //! \brief Adds a stack interval if the given live interval has been //! spilled. Used to support stack slot coloring. void addStackInterval(const LiveInterval *spilled, float &weight); //! \brief Given a solved PBQP problem maps this solution back to a register //! assignment. bool mapPBQPToRegAlloc(pbqp *problem); //! \brief Postprocessing before final spilling. Sets basic block "live in" //! variables. void finalizeAlloc() const; }; char PBQPRegAlloc::ID = 0; } template PBQPVector* PBQPRegAlloc::buildCostVector(unsigned vReg, const RegContainer &allowed, const CoalesceMap &coalesces, PBQPNum spillCost) const { typedef typename RegContainer::const_iterator AllowedItr; // Allocate vector. Additional element (0th) used for spill option PBQPVector *v = new PBQPVector(allowed.size() + 1); (*v)[0] = spillCost; // Iterate over the allowed registers inserting coalesce benefits if there // are any. unsigned ai = 0; for (AllowedItr itr = allowed.begin(), end = allowed.end(); itr != end; ++itr, ++ai) { unsigned pReg = *itr; CoalesceMap::const_iterator cmItr = coalesces.find(RegPair(vReg, pReg)); // No coalesce - on to the next preg. if (cmItr == coalesces.end()) continue; // We have a coalesce - insert the benefit. (*v)[ai + 1] = -cmItr->second; } return v; } template PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix( const RegContainer &allowed1, const RegContainer &allowed2) const { typedef typename RegContainer::const_iterator RegContainerIterator; // Construct a PBQP matrix representing the cost of allocation options. The // rows and columns correspond to the allocation options for the two live // intervals. Elements will be infinite where corresponding registers alias, // since we cannot allocate aliasing registers to interfering live intervals. // All other elements (non-aliasing combinations) will have zero cost. Note // that the spill option (element 0,0) has zero cost, since we can allocate // both intervals to memory safely (the cost for each individual allocation // to memory is accounted for by the cost vectors for each live interval). PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1); // Assume this is a zero matrix until proven otherwise. Zero matrices occur // between interfering live ranges with non-overlapping register sets (e.g. // non-overlapping reg classes, or disjoint sets of allowed regs within the // same class). The term "overlapping" is used advisedly: sets which do not // intersect, but contain registers which alias, will have non-zero matrices. // We optimize zero matrices away to improve solver speed. bool isZeroMatrix = true; // Row index. Starts at 1, since the 0th row is for the spill option, which // is always zero. unsigned ri = 1; // Iterate over allowed sets, insert infinities where required. for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end(); a1Itr != a1End; ++a1Itr) { // Column index, starts at 1 as for row index. unsigned ci = 1; unsigned reg1 = *a1Itr; for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end(); a2Itr != a2End; ++a2Itr) { unsigned reg2 = *a2Itr; // If the row/column regs are identical or alias insert an infinity. if ((reg1 == reg2) || tri->areAliases(reg1, reg2)) { (*m)[ri][ci] = std::numeric_limits::infinity(); isZeroMatrix = false; } ++ci; } ++ri; } // If this turns out to be a zero matrix... if (isZeroMatrix) { // free it and return null. delete m; return 0; } // ...otherwise return the cost matrix. return m; } template PBQPMatrix* PBQPRegAlloc::buildCoalescingMatrix( const RegContainer &allowed1, const RegContainer &allowed2, PBQPNum cBenefit) const { typedef typename RegContainer::const_iterator RegContainerIterator; // Construct a PBQP Matrix representing the benefits of coalescing. As with // interference matrices the rows and columns represent allowed registers // for the LiveIntervals which are (potentially) to be coalesced. The amount // -cBenefit will be placed in any element representing the same register // for both intervals. PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1); // Reset costs to zero. m->reset(0); // Assume the matrix is zero till proven otherwise. Zero matrices will be // optimized away as in the interference case. bool isZeroMatrix = true; // Row index. Starts at 1, since the 0th row is for the spill option, which // is always zero. unsigned ri = 1; // Iterate over the allowed sets, insert coalescing benefits where // appropriate. for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end(); a1Itr != a1End; ++a1Itr) { // Column index, starts at 1 as for row index. unsigned ci = 1; unsigned reg1 = *a1Itr; for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end(); a2Itr != a2End; ++a2Itr) { // If the row and column represent the same register insert a beneficial // cost to preference this allocation - it would allow us to eliminate a // move instruction. if (reg1 == *a2Itr) { (*m)[ri][ci] = -cBenefit; isZeroMatrix = false; } ++ci; } ++ri; } // If this turns out to be a zero matrix... if (isZeroMatrix) { // ...free it and return null. delete m; return 0; } return m; } PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() { typedef MachineFunction::const_iterator MFIterator; typedef MachineBasicBlock::const_iterator MBBIterator; typedef LiveInterval::const_vni_iterator VNIIterator; CoalesceMap coalescesFound; // To find coalesces we need to iterate over the function looking for // copy instructions. for (MFIterator bbItr = mf->begin(), bbEnd = mf->end(); bbItr != bbEnd; ++bbItr) { const MachineBasicBlock *mbb = &*bbItr; for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end(); iItr != iEnd; ++iItr) { const MachineInstr *instr = &*iItr; unsigned srcReg, dstReg, srcSubReg, dstSubReg; // If this isn't a copy then continue to the next instruction. if (!tii->isMoveInstr(*instr, srcReg, dstReg, srcSubReg, dstSubReg)) continue; // If the registers are already the same our job is nice and easy. if (dstReg == srcReg) continue; bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg), dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg); // If both registers are physical then we can't coalesce. if (srcRegIsPhysical && dstRegIsPhysical) continue; // If it's a copy that includes a virtual register but the source and // destination classes differ then we can't coalesce, so continue with // the next instruction. const TargetRegisterClass *srcRegClass = srcRegIsPhysical ? tri->getPhysicalRegisterRegClass(srcReg) : mri->getRegClass(srcReg); const TargetRegisterClass *dstRegClass = dstRegIsPhysical ? tri->getPhysicalRegisterRegClass(dstReg) : mri->getRegClass(dstReg); if (srcRegClass != dstRegClass) continue; // We also need any physical regs to be allocable, coalescing with // a non-allocable register is invalid. if (srcRegIsPhysical) { if (std::find(srcRegClass->allocation_order_begin(*mf), srcRegClass->allocation_order_end(*mf), srcReg) == srcRegClass->allocation_order_end(*mf)) continue; } if (dstRegIsPhysical) { if (std::find(dstRegClass->allocation_order_begin(*mf), dstRegClass->allocation_order_end(*mf), dstReg) == dstRegClass->allocation_order_end(*mf)) continue; } // If we've made it here we have a copy with compatible register classes. // We can probably coalesce, but we need to consider overlap. const LiveInterval *srcLI = &lis->getInterval(srcReg), *dstLI = &lis->getInterval(dstReg); if (srcLI->overlaps(*dstLI)) { // Even in the case of an overlap we might still be able to coalesce, // but we need to make sure that no definition of either range occurs // while the other range is live. // Otherwise start by assuming we're ok. bool badDef = false; // Test all defs of the source range. for (VNIIterator vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end(); vniItr != vniEnd; ++vniItr) { // If we find a def that kills the coalescing opportunity then // record it and break from the loop. if (dstLI->liveAt((*vniItr)->def)) { badDef = true; break; } } // If we have a bad def give up, continue to the next instruction. if (badDef) continue; // Otherwise test definitions of the destination range. for (VNIIterator vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end(); vniItr != vniEnd; ++vniItr) { // We want to make sure we skip the copy instruction itself. if ((*vniItr)->copy == instr) continue; if (srcLI->liveAt((*vniItr)->def)) { badDef = true; break; } } // As before a bad def we give up and continue to the next instr. if (badDef) continue; } // If we make it to here then either the ranges didn't overlap, or they // did, but none of their definitions would prevent us from coalescing. // We're good to go with the coalesce. float cBenefit = powf(10.0f, loopInfo->getLoopDepth(mbb)) / 5.0; coalescesFound[RegPair(srcReg, dstReg)] = cBenefit; coalescesFound[RegPair(dstReg, srcReg)] = cBenefit; } } return coalescesFound; } void PBQPRegAlloc::findVRegIntervalsToAlloc() { // Iterate over all live ranges. for (LiveIntervals::iterator itr = lis->begin(), end = lis->end(); itr != end; ++itr) { // Ignore physical ones. if (TargetRegisterInfo::isPhysicalRegister(itr->first)) continue; LiveInterval *li = itr->second; // If this live interval is non-empty we will use pbqp to allocate it. // Empty intervals we allocate in a simple post-processing stage in // finalizeAlloc. if (!li->empty()) { vregIntervalsToAlloc.insert(li); } else { emptyVRegIntervals.insert(li); } } } pbqp* PBQPRegAlloc::constructPBQPProblem() { typedef std::vector LIVector; typedef std::vector RegVector; // This will store the physical intervals for easy reference. LIVector physIntervals; // Start by clearing the old node <-> live interval mappings & allowed sets li2Node.clear(); node2LI.clear(); allowedSets.clear(); // Populate physIntervals, update preg use: for (LiveIntervals::iterator itr = lis->begin(), end = lis->end(); itr != end; ++itr) { if (TargetRegisterInfo::isPhysicalRegister(itr->first)) { physIntervals.push_back(itr->second); mri->setPhysRegUsed(itr->second->reg); } } // Iterate over vreg intervals, construct live interval <-> node number // mappings. for (LiveIntervalSet::const_iterator itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end(); itr != end; ++itr) { const LiveInterval *li = *itr; li2Node[li] = node2LI.size(); node2LI.push_back(li); } // Get the set of potential coalesces. CoalesceMap coalesces(findCoalesces()); // Construct a PBQP solver for this problem pbqp *solver = alloc_pbqp(vregIntervalsToAlloc.size()); // Resize allowedSets container appropriately. allowedSets.resize(vregIntervalsToAlloc.size()); // Iterate over virtual register intervals to compute allowed sets... for (unsigned node = 0; node < node2LI.size(); ++node) { // Grab pointers to the interval and its register class. const LiveInterval *li = node2LI[node]; const TargetRegisterClass *liRC = mri->getRegClass(li->reg); // Start by assuming all allocable registers in the class are allowed... RegVector liAllowed(liRC->allocation_order_begin(*mf), liRC->allocation_order_end(*mf)); // Eliminate the physical registers which overlap with this range, along // with all their aliases. for (LIVector::iterator pItr = physIntervals.begin(), pEnd = physIntervals.end(); pItr != pEnd; ++pItr) { if (!li->overlaps(**pItr)) continue; unsigned pReg = (*pItr)->reg; // If we get here then the live intervals overlap, but we're still ok // if they're coalescable. if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end()) continue; // If we get here then we have a genuine exclusion. // Remove the overlapping reg... RegVector::iterator eraseItr = std::find(liAllowed.begin(), liAllowed.end(), pReg); if (eraseItr != liAllowed.end()) liAllowed.erase(eraseItr); const unsigned *aliasItr = tri->getAliasSet(pReg); if (aliasItr != 0) { // ...and its aliases. for (; *aliasItr != 0; ++aliasItr) { RegVector::iterator eraseItr = std::find(liAllowed.begin(), liAllowed.end(), *aliasItr); if (eraseItr != liAllowed.end()) { liAllowed.erase(eraseItr); } } } } // Copy the allowed set into a member vector for use when constructing cost // vectors & matrices, and mapping PBQP solutions back to assignments. allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end()); // Set the spill cost to the interval weight, or epsilon if the // interval weight is zero PBQPNum spillCost = (li->weight != 0.0) ? li->weight : std::numeric_limits::min(); // Build a cost vector for this interval. add_pbqp_nodecosts(solver, node, buildCostVector(li->reg, allowedSets[node], coalesces, spillCost)); } // Now add the cost matrices... for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) { const LiveInterval *li = node2LI[node1]; // Test for live range overlaps and insert interference matrices. for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) { const LiveInterval *li2 = node2LI[node2]; CoalesceMap::const_iterator cmItr = coalesces.find(RegPair(li->reg, li2->reg)); PBQPMatrix *m = 0; if (cmItr != coalesces.end()) { m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2], cmItr->second); } else if (li->overlaps(*li2)) { m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]); } if (m != 0) { add_pbqp_edgecosts(solver, node1, node2, m); delete m; } } } // We're done, PBQP problem constructed - return it. return solver; } void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled, float &weight) { int stackSlot = vrm->getStackSlot(spilled->reg); if (stackSlot == VirtRegMap::NO_STACK_SLOT) return; LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot); stackInterval.weight += weight; VNInfo *vni; if (stackInterval.getNumValNums() != 0) vni = stackInterval.getValNumInfo(0); else vni = stackInterval.getNextValue(-0U, 0, lss->getVNInfoAllocator()); LiveInterval &rhsInterval = lis->getInterval(spilled->reg); stackInterval.MergeRangesInAsValue(rhsInterval, vni); } bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) { // Set to true if we have any spills bool anotherRoundNeeded = false; // Clear the existing allocation. vrm->clearAllVirt(); // Iterate over the nodes mapping the PBQP solution to a register assignment. for (unsigned node = 0; node < node2LI.size(); ++node) { unsigned virtReg = node2LI[node]->reg, allocSelection = get_pbqp_solution(problem, node); // If the PBQP solution is non-zero it's a physical register... if (allocSelection != 0) { // Get the physical reg, subtracting 1 to account for the spill option. unsigned physReg = allowedSets[node][allocSelection - 1]; DOUT << "VREG " << virtReg << " -> " << tri->getName(physReg) << "\n"; assert(physReg != 0); // Add to the virt reg map and update the used phys regs. vrm->assignVirt2Phys(virtReg, physReg); } // ...Otherwise it's a spill. else { // Make sure we ignore this virtual reg on the next round // of allocation vregIntervalsToAlloc.erase(&lis->getInterval(virtReg)); float ssWeight; // Insert spill ranges for this live range const LiveInterval *spillInterval = node2LI[node]; double oldSpillWeight = spillInterval->weight; SmallVector spillIs; std::vector newSpills = lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm, ssWeight); addStackInterval(spillInterval, ssWeight); DOUT << "VREG " << virtReg << " -> SPILLED (Cost: " << oldSpillWeight << ", New vregs: "; // Copy any newly inserted live intervals into the list of regs to // allocate. for (std::vector::const_iterator itr = newSpills.begin(), end = newSpills.end(); itr != end; ++itr) { assert(!(*itr)->empty() && "Empty spill range."); DOUT << (*itr)->reg << " "; vregIntervalsToAlloc.insert(*itr); } DOUT << ")\n"; // We need another round if spill intervals were added. anotherRoundNeeded |= !newSpills.empty(); } } return !anotherRoundNeeded; } void PBQPRegAlloc::finalizeAlloc() const { typedef LiveIntervals::iterator LIIterator; typedef LiveInterval::Ranges::const_iterator LRIterator; // First allocate registers for the empty intervals. for (LiveIntervalSet::const_iterator itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end(); itr != end; ++itr) { LiveInterval *li = *itr; unsigned physReg = li->preference; if (physReg == 0) { const TargetRegisterClass *liRC = mri->getRegClass(li->reg); physReg = *liRC->allocation_order_begin(*mf); } vrm->assignVirt2Phys(li->reg, physReg); } // Finally iterate over the basic blocks to compute and set the live-in sets. SmallVector liveInMBBs; MachineBasicBlock *entryMBB = &*mf->begin(); for (LIIterator liItr = lis->begin(), liEnd = lis->end(); liItr != liEnd; ++liItr) { const LiveInterval *li = liItr->second; unsigned reg = 0; // Get the physical register for this interval if (TargetRegisterInfo::isPhysicalRegister(li->reg)) { reg = li->reg; } else if (vrm->isAssignedReg(li->reg)) { reg = vrm->getPhys(li->reg); } else { // Ranges which are assigned a stack slot only are ignored. continue; } // Iterate over the ranges of the current interval... for (LRIterator lrItr = li->begin(), lrEnd = li->end(); lrItr != lrEnd; ++lrItr) { // Find the set of basic blocks which this range is live into... if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) { // And add the physreg for this interval to their live-in sets. for (unsigned i = 0; i < liveInMBBs.size(); ++i) { if (liveInMBBs[i] != entryMBB) { if (!liveInMBBs[i]->isLiveIn(reg)) { liveInMBBs[i]->addLiveIn(reg); } } } liveInMBBs.clear(); } } } } bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) { mf = &MF; tm = &mf->getTarget(); tri = tm->getRegisterInfo(); tii = tm->getInstrInfo(); mri = &mf->getRegInfo(); lis = &getAnalysis(); lss = &getAnalysis(); loopInfo = &getAnalysis(); std::auto_ptr vrmAutoPtr(new VirtRegMap(*mf)); vrm = vrmAutoPtr.get(); DOUT << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n"; // Allocator main loop: // // * Map current regalloc problem to a PBQP problem // * Solve the PBQP problem // * Map the solution back to a register allocation // * Spill if necessary // // This process is continued till no more spills are generated. // Find the vreg intervals in need of allocation. findVRegIntervalsToAlloc(); // If there aren't any then we're done here. if (vregIntervalsToAlloc.empty() && emptyVRegIntervals.empty()) return true; // If there are non-empty intervals allocate them using pbqp. if (!vregIntervalsToAlloc.empty()) { bool pbqpAllocComplete = false; unsigned round = 0; while (!pbqpAllocComplete) { DOUT << " PBQP Regalloc round " << round << ":\n"; pbqp *problem = constructPBQPProblem(); solve_pbqp(problem); pbqpAllocComplete = mapPBQPToRegAlloc(problem); free_pbqp(problem); ++round; } } // Finalise allocation, allocate empty ranges. finalizeAlloc(); vregIntervalsToAlloc.clear(); emptyVRegIntervals.clear(); li2Node.clear(); node2LI.clear(); allowedSets.clear(); DOUT << "Post alloc VirtRegMap:\n" << *vrm << "\n"; // Run spiller std::auto_ptr spiller(createSpiller()); spiller->runOnMachineFunction(*mf, *vrm); return true; } FunctionPass* llvm::createPBQPRegisterAllocator() { return new PBQPRegAlloc(); } #undef DEBUG_TYPE