//===- ARMInstrThumb2.td - Thumb2 support for ARM -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the Thumb2 instruction set. // //===----------------------------------------------------------------------===// // IT block predicate field def it_pred : Operand { let PrintMethod = "printPredicateOperand"; } // IT block condition mask def it_mask : Operand { let PrintMethod = "printThumbITMask"; } // Table branch address def tb_addrmode : Operand { let PrintMethod = "printTBAddrMode"; } // Shifted operands. No register controlled shifts for Thumb2. // Note: We do not support rrx shifted operands yet. def t2_so_reg : Operand, // reg imm ComplexPattern { let PrintMethod = "printT2SOOperand"; let MIOperandInfo = (ops GPR, i32imm); } // t2_so_imm_not_XFORM - Return the complement of a t2_so_imm value def t2_so_imm_not_XFORM : SDNodeXFormgetTargetConstant(~((uint32_t)N->getZExtValue()), MVT::i32); }]>; // t2_so_imm_neg_XFORM - Return the negation of a t2_so_imm value def t2_so_imm_neg_XFORM : SDNodeXFormgetTargetConstant(-((int)N->getZExtValue()), MVT::i32); }]>; // t2_so_imm - Match a 32-bit immediate operand, which is an // 8-bit immediate rotated by an arbitrary number of bits, or an 8-bit // immediate splatted into multiple bytes of the word. t2_so_imm values are // represented in the imm field in the same 12-bit form that they are encoded // into t2_so_imm instructions: the 8-bit immediate is the least significant bits // [bits 0-7], the 4-bit shift/splat amount is the next 4 bits [bits 8-11]. def t2_so_imm : Operand, PatLeaf<(imm), [{ return ARM_AM::getT2SOImmVal((uint32_t)N->getZExtValue()) != -1; }]>; // t2_so_imm_not - Match an immediate that is a complement // of a t2_so_imm. def t2_so_imm_not : Operand, PatLeaf<(imm), [{ return ARM_AM::getT2SOImmVal(~((uint32_t)N->getZExtValue())) != -1; }], t2_so_imm_not_XFORM>; // t2_so_imm_neg - Match an immediate that is a negation of a t2_so_imm. def t2_so_imm_neg : Operand, PatLeaf<(imm), [{ return ARM_AM::getT2SOImmVal(-((int)N->getZExtValue())) != -1; }], t2_so_imm_neg_XFORM>; /// imm1_31 predicate - True if the 32-bit immediate is in the range [1,31]. def imm1_31 : PatLeaf<(i32 imm), [{ return (int32_t)N->getZExtValue() >= 1 && (int32_t)N->getZExtValue() < 32; }]>; /// imm0_4095 predicate - True if the 32-bit immediate is in the range [0.4095]. def imm0_4095 : Operand, PatLeaf<(i32 imm), [{ return (uint32_t)N->getZExtValue() < 4096; }]>; def imm0_4095_neg : PatLeaf<(i32 imm), [{ return (uint32_t)(-N->getZExtValue()) < 4096; }], imm_neg_XFORM>; def imm0_255_neg : PatLeaf<(i32 imm), [{ return (uint32_t)(-N->getZExtValue()) < 255; }], imm_neg_XFORM>; /// imm0_65535 predicate - True if the 32-bit immediate is in the range /// [0.65535]. def imm0_65535 : PatLeaf<(i32 imm), [{ return (uint32_t)N->getZExtValue() < 65536; }]>; /// Split a 32-bit immediate into two 16 bit parts. def t2_lo16 : SDNodeXFormgetTargetConstant((uint32_t)N->getZExtValue() & 0xffff, MVT::i32); }]>; def t2_hi16 : SDNodeXFormgetTargetConstant((uint32_t)N->getZExtValue() >> 16, MVT::i32); }]>; def t2_lo16AllZero : PatLeaf<(i32 imm), [{ // Returns true if all low 16-bits are 0. return (((uint32_t)N->getZExtValue()) & 0xFFFFUL) == 0; }], t2_hi16>; // Define Thumb2 specific addressing modes. // t2addrmode_imm12 := reg + imm12 def t2addrmode_imm12 : Operand, ComplexPattern { let PrintMethod = "printT2AddrModeImm12Operand"; let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm); } // t2addrmode_imm8 := reg - imm8 def t2addrmode_imm8 : Operand, ComplexPattern { let PrintMethod = "printT2AddrModeImm8Operand"; let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm); } def t2am_imm8_offset : Operand, ComplexPattern{ let PrintMethod = "printT2AddrModeImm8OffsetOperand"; } // t2addrmode_imm8s4 := reg +/- (imm8 << 2) def t2addrmode_imm8s4 : Operand, ComplexPattern { let PrintMethod = "printT2AddrModeImm8s4Operand"; let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm); } // t2addrmode_so_reg := reg + (reg << imm2) def t2addrmode_so_reg : Operand, ComplexPattern { let PrintMethod = "printT2AddrModeSoRegOperand"; let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm); } //===----------------------------------------------------------------------===// // Multiclass helpers... // /// T2I_un_irs - Defines a set of (op reg, {so_imm|r|so_reg}) patterns for a /// unary operation that produces a value. These are predicable and can be /// changed to modify CPSR. multiclass T2I_un_irs{ // shifted imm def i : T2sI<(outs GPR:$dst), (ins t2_so_imm:$src), IIC_iALU, opc, " $dst, $src", [(set GPR:$dst, (opnode t2_so_imm:$src))]> { let isAsCheapAsAMove = Cheap; let isReMaterializable = ReMat; } // register def r : T2I<(outs GPR:$dst), (ins GPR:$src), IIC_iALU, opc, ".w $dst, $src", [(set GPR:$dst, (opnode GPR:$src))]>; // shifted register def s : T2I<(outs GPR:$dst), (ins t2_so_reg:$src), IIC_iALU, opc, ".w $dst, $src", [(set GPR:$dst, (opnode t2_so_reg:$src))]>; } /// T2I_bin_irs - Defines a set of (op reg, {so_imm|r|so_reg}) patterns for a // binary operation that produces a value. These are predicable and can be /// changed to modify CPSR. multiclass T2I_bin_irs { // shifted imm def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), IIC_iALU, opc, " $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>; // register def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALU, opc, !strconcat(wide, " $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]> { let isCommutable = Commutable; } // shifted register def rs : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), IIC_iALU, opc, !strconcat(wide, " $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>; } /// T2I_bin_w_irs - Same as T2I_bin_irs except these operations need // the ".w" prefix to indicate that they are wide. multiclass T2I_bin_w_irs : T2I_bin_irs; /// T2I_rbin_is - Same as T2I_bin_irs except the order of operands are /// reversed. It doesn't define the 'rr' form since it's handled by its /// T2I_bin_irs counterpart. multiclass T2I_rbin_is { // shifted imm def ri : T2I<(outs GPR:$dst), (ins GPR:$rhs, t2_so_imm:$lhs), IIC_iALU, opc, ".w $dst, $rhs, $lhs", [(set GPR:$dst, (opnode t2_so_imm:$lhs, GPR:$rhs))]>; // shifted register def rs : T2I<(outs GPR:$dst), (ins GPR:$rhs, t2_so_reg:$lhs), IIC_iALU, opc, " $dst, $rhs, $lhs", [(set GPR:$dst, (opnode t2_so_reg:$lhs, GPR:$rhs))]>; } /// T2I_bin_s_irs - Similar to T2I_bin_irs except it sets the 's' bit so the /// instruction modifies the CPSR register. let Defs = [CPSR] in { multiclass T2I_bin_s_irs { // shifted imm def ri : T2I<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), IIC_iALU, !strconcat(opc, "s"), ".w $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>; // register def rr : T2I<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALU, !strconcat(opc, "s"), ".w $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]> { let isCommutable = Commutable; } // shifted register def rs : T2I<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), IIC_iALU, !strconcat(opc, "s"), ".w $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>; } } /// T2I_bin_ii12rs - Defines a set of (op reg, {so_imm|imm0_4095|r|so_reg}) /// patterns for a binary operation that produces a value. multiclass T2I_bin_ii12rs { // shifted imm def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), IIC_iALU, opc, ".w $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>; // 12-bit imm def ri12 : T2sI<(outs GPR:$dst), (ins GPR:$lhs, imm0_4095:$rhs), IIC_iALU, !strconcat(opc, "w"), " $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, imm0_4095:$rhs))]>; // register def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALU, opc, ".w $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]> { let isCommutable = Commutable; } // shifted register def rs : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), IIC_iALU, opc, ".w $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>; } /// T2I_adde_sube_irs - Defines a set of (op reg, {so_imm|r|so_reg}) patterns for a /// binary operation that produces a value and use and define the carry bit. /// It's not predicable. let Uses = [CPSR] in { multiclass T2I_adde_sube_irs { // shifted imm def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), IIC_iALU, opc, " $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>, Requires<[IsThumb2, CarryDefIsUnused]>; // register def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALU, opc, ".w $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]>, Requires<[IsThumb2, CarryDefIsUnused]> { let isCommutable = Commutable; } // shifted register def rs : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), IIC_iALU, opc, ".w $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>, Requires<[IsThumb2, CarryDefIsUnused]>; // Carry setting variants // shifted imm def Sri : T2XI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), IIC_iALU, !strconcat(opc, "s $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>, Requires<[IsThumb2, CarryDefIsUsed]> { let Defs = [CPSR]; } // register def Srr : T2XI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALU, !strconcat(opc, "s.w $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]>, Requires<[IsThumb2, CarryDefIsUsed]> { let Defs = [CPSR]; let isCommutable = Commutable; } // shifted register def Srs : T2XI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), IIC_iALU, !strconcat(opc, "s.w $dst, $lhs, $rhs"), [(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>, Requires<[IsThumb2, CarryDefIsUsed]> { let Defs = [CPSR]; } } } /// T2I_rbin_s_is - Same as T2I_rbin_is except sets 's' bit. let Defs = [CPSR] in { multiclass T2I_rbin_s_is { // shifted imm def ri : T2XI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_imm:$lhs, cc_out:$s), IIC_iALU, !strconcat(opc, "${s}.w $dst, $rhs, $lhs"), [(set GPR:$dst, (opnode t2_so_imm:$lhs, GPR:$rhs))]>; // shifted register def rs : T2XI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_reg:$lhs, cc_out:$s), IIC_iALU, !strconcat(opc, "${s} $dst, $rhs, $lhs"), [(set GPR:$dst, (opnode t2_so_reg:$lhs, GPR:$rhs))]>; } } /// T2I_sh_ir - Defines a set of (op reg, {so_imm|r}) patterns for a shift / // rotate operation that produces a value. multiclass T2I_sh_ir { // 5-bit imm def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, i32imm:$rhs), IIC_iALU, opc, ".w $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, imm1_31:$rhs))]>; // register def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALU, opc, ".w $dst, $lhs, $rhs", [(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]>; } /// T21_cmp_irs - Defines a set of (op r, {so_imm|r|so_reg}) cmp / test /// patterns. Similar to T2I_bin_irs except the instruction does not produce /// a explicit result, only implicitly set CPSR. let Defs = [CPSR] in { multiclass T2I_cmp_is { // shifted imm def ri : T2I<(outs), (ins GPR:$lhs, t2_so_imm:$rhs), IIC_iALU, opc, ".w $lhs, $rhs", [(opnode GPR:$lhs, t2_so_imm:$rhs)]>; // register def rr : T2I<(outs), (ins GPR:$lhs, GPR:$rhs), IIC_iALU, opc, ".w $lhs, $rhs", [(opnode GPR:$lhs, GPR:$rhs)]>; // shifted register def rs : T2I<(outs), (ins GPR:$lhs, t2_so_reg:$rhs), IIC_iALU, opc, ".w $lhs, $rhs", [(opnode GPR:$lhs, t2_so_reg:$rhs)]>; } } /// T2I_ld - Defines a set of (op r, {imm12|imm8|so_reg}) load patterns. multiclass T2I_ld { def i12 : T2Ii12<(outs GPR:$dst), (ins t2addrmode_imm12:$addr), IIC_iLoad, opc, ".w $dst, $addr", [(set GPR:$dst, (opnode t2addrmode_imm12:$addr))]>; def i8 : T2Ii8 <(outs GPR:$dst), (ins t2addrmode_imm8:$addr), IIC_iLoad, opc, " $dst, $addr", [(set GPR:$dst, (opnode t2addrmode_imm8:$addr))]>; def s : T2Iso <(outs GPR:$dst), (ins t2addrmode_so_reg:$addr), IIC_iLoad, opc, ".w $dst, $addr", [(set GPR:$dst, (opnode t2addrmode_so_reg:$addr))]>; def pci : T2Ipc <(outs GPR:$dst), (ins i32imm:$addr), IIC_iLoad, opc, ".w $dst, $addr", [(set GPR:$dst, (opnode (ARMWrapper tconstpool:$addr)))]>; } /// T2I_st - Defines a set of (op r, {imm12|imm8|so_reg}) store patterns. multiclass T2I_st { def i12 : T2Ii12<(outs), (ins GPR:$src, t2addrmode_imm12:$addr), IIC_iStore, opc, ".w $src, $addr", [(opnode GPR:$src, t2addrmode_imm12:$addr)]>; def i8 : T2Ii8 <(outs), (ins GPR:$src, t2addrmode_imm8:$addr), IIC_iStore, opc, " $src, $addr", [(opnode GPR:$src, t2addrmode_imm8:$addr)]>; def s : T2Iso <(outs), (ins GPR:$src, t2addrmode_so_reg:$addr), IIC_iStore, opc, ".w $src, $addr", [(opnode GPR:$src, t2addrmode_so_reg:$addr)]>; } /// T2I_picld - Defines the PIC load pattern. class T2I_picld : T2I<(outs GPR:$dst), (ins addrmodepc:$addr), IIC_iLoad, !strconcat("${addr:label}:\n\t", opc), " $dst, $addr", [(set GPR:$dst, (opnode addrmodepc:$addr))]>; /// T2I_picst - Defines the PIC store pattern. class T2I_picst : T2I<(outs), (ins GPR:$src, addrmodepc:$addr), IIC_iStore, !strconcat("${addr:label}:\n\t", opc), " $src, $addr", [(opnode GPR:$src, addrmodepc:$addr)]>; /// T2I_unary_rrot - A unary operation with two forms: one whose operand is a /// register and one whose operand is a register rotated by 8/16/24. multiclass T2I_unary_rrot { def r : T2I<(outs GPR:$dst), (ins GPR:$Src), IIC_iALU, opc, ".w $dst, $Src", [(set GPR:$dst, (opnode GPR:$Src))]>; def r_rot : T2I<(outs GPR:$dst), (ins GPR:$Src, i32imm:$rot), IIC_iALU, opc, ".w $dst, $Src, ror $rot", [(set GPR:$dst, (opnode (rotr GPR:$Src, rot_imm:$rot)))]>; } /// T2I_bin_rrot - A binary operation with two forms: one whose operand is a /// register and one whose operand is a register rotated by 8/16/24. multiclass T2I_bin_rrot { def rr : T2I<(outs GPR:$dst), (ins GPR:$LHS, GPR:$RHS), IIC_iALU, opc, " $dst, $LHS, $RHS", [(set GPR:$dst, (opnode GPR:$LHS, GPR:$RHS))]>; def rr_rot : T2I<(outs GPR:$dst), (ins GPR:$LHS, GPR:$RHS, i32imm:$rot), IIC_iALU, opc, " $dst, $LHS, $RHS, ror $rot", [(set GPR:$dst, (opnode GPR:$LHS, (rotr GPR:$RHS, rot_imm:$rot)))]>; } //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Miscellaneous Instructions. // // LEApcrel - Load a pc-relative address into a register without offending the // assembler. def t2LEApcrel : T2XI<(outs GPR:$dst), (ins i32imm:$label, pred:$p), IIC_iALU, "adr$p.w $dst, #$label", []>; def t2LEApcrelJT : T2XI<(outs GPR:$dst), (ins i32imm:$label, lane_cst:$id, pred:$p), IIC_iALU, "adr$p.w $dst, #${label}_${id}", []>; // ADD r, sp, {so_imm|i12} def t2ADDrSPi : T2sI<(outs GPR:$dst), (ins GPR:$sp, t2_so_imm:$imm), IIC_iALU, "add", ".w $dst, $sp, $imm", []>; def t2ADDrSPi12 : T2I<(outs GPR:$dst), (ins GPR:$sp, imm0_4095:$imm), IIC_iALU, "addw", " $dst, $sp, $imm", []>; // ADD r, sp, so_reg def t2ADDrSPs : T2sI<(outs GPR:$dst), (ins GPR:$sp, t2_so_reg:$rhs), IIC_iALU, "add", ".w $dst, $sp, $rhs", []>; // SUB r, sp, {so_imm|i12} def t2SUBrSPi : T2sI<(outs GPR:$dst), (ins GPR:$sp, t2_so_imm:$imm), IIC_iALU, "sub", ".w $dst, $sp, $imm", []>; def t2SUBrSPi12 : T2I<(outs GPR:$dst), (ins GPR:$sp, imm0_4095:$imm), IIC_iALU, "subw", " $dst, $sp, $imm", []>; // SUB r, sp, so_reg def t2SUBrSPs : T2sI<(outs GPR:$dst), (ins GPR:$sp, t2_so_reg:$rhs), IIC_iALU, "sub", " $dst, $sp, $rhs", []>; // Pseudo instruction that will expand into a t2SUBrSPi + a copy. let usesCustomDAGSchedInserter = 1 in { // Expanded by the scheduler. def t2SUBrSPi_ : PseudoInst<(outs GPR:$dst), (ins GPR:$sp, t2_so_imm:$imm), NoItinerary, "@ sub.w $dst, $sp, $imm", []>; def t2SUBrSPi12_ : PseudoInst<(outs GPR:$dst), (ins GPR:$sp, imm0_4095:$imm), NoItinerary, "@ subw $dst, $sp, $imm", []>; def t2SUBrSPs_ : PseudoInst<(outs GPR:$dst), (ins GPR:$sp, t2_so_reg:$rhs), NoItinerary, "@ sub $dst, $sp, $rhs", []>; } // usesCustomDAGSchedInserter //===----------------------------------------------------------------------===// // Load / store Instructions. // // Load let canFoldAsLoad = 1 in defm t2LDR : T2I_ld<"ldr", UnOpFrag<(load node:$Src)>>; // Loads with zero extension defm t2LDRH : T2I_ld<"ldrh", UnOpFrag<(zextloadi16 node:$Src)>>; defm t2LDRB : T2I_ld<"ldrb", UnOpFrag<(zextloadi8 node:$Src)>>; // Loads with sign extension defm t2LDRSH : T2I_ld<"ldrsh", UnOpFrag<(sextloadi16 node:$Src)>>; defm t2LDRSB : T2I_ld<"ldrsb", UnOpFrag<(sextloadi8 node:$Src)>>; let mayLoad = 1 in { // Load doubleword def t2LDRDi8 : T2Ii8s4<(outs GPR:$dst), (ins t2addrmode_imm8s4:$addr), IIC_iLoad, "ldrd", " $dst, $addr", []>; def t2LDRDpci : T2Ii8s4<(outs GPR:$dst), (ins i32imm:$addr), IIC_iLoad, "ldrd", " $dst, $addr", []>; } // zextload i1 -> zextload i8 def : T2Pat<(zextloadi1 t2addrmode_imm12:$addr), (t2LDRBi12 t2addrmode_imm12:$addr)>; def : T2Pat<(zextloadi1 t2addrmode_imm8:$addr), (t2LDRBi8 t2addrmode_imm8:$addr)>; def : T2Pat<(zextloadi1 t2addrmode_so_reg:$addr), (t2LDRBs t2addrmode_so_reg:$addr)>; def : T2Pat<(zextloadi1 (ARMWrapper tconstpool:$addr)), (t2LDRBpci tconstpool:$addr)>; // extload -> zextload // FIXME: Reduce the number of patterns by legalizing extload to zextload // earlier? def : T2Pat<(extloadi1 t2addrmode_imm12:$addr), (t2LDRBi12 t2addrmode_imm12:$addr)>; def : T2Pat<(extloadi1 t2addrmode_imm8:$addr), (t2LDRBi8 t2addrmode_imm8:$addr)>; def : T2Pat<(extloadi1 t2addrmode_so_reg:$addr), (t2LDRBs t2addrmode_so_reg:$addr)>; def : T2Pat<(extloadi1 (ARMWrapper tconstpool:$addr)), (t2LDRBpci tconstpool:$addr)>; def : T2Pat<(extloadi8 t2addrmode_imm12:$addr), (t2LDRBi12 t2addrmode_imm12:$addr)>; def : T2Pat<(extloadi8 t2addrmode_imm8:$addr), (t2LDRBi8 t2addrmode_imm8:$addr)>; def : T2Pat<(extloadi8 t2addrmode_so_reg:$addr), (t2LDRBs t2addrmode_so_reg:$addr)>; def : T2Pat<(extloadi8 (ARMWrapper tconstpool:$addr)), (t2LDRBpci tconstpool:$addr)>; def : T2Pat<(extloadi16 t2addrmode_imm12:$addr), (t2LDRHi12 t2addrmode_imm12:$addr)>; def : T2Pat<(extloadi16 t2addrmode_imm8:$addr), (t2LDRHi8 t2addrmode_imm8:$addr)>; def : T2Pat<(extloadi16 t2addrmode_so_reg:$addr), (t2LDRHs t2addrmode_so_reg:$addr)>; def : T2Pat<(extloadi16 (ARMWrapper tconstpool:$addr)), (t2LDRHpci tconstpool:$addr)>; // Indexed loads let mayLoad = 1 in { def t2LDR_PRE : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb), (ins t2addrmode_imm8:$addr), AddrModeT2_i8, IndexModePre, IIC_iLoad, "ldr", " $dst, $addr!", "$addr.base = $base_wb", []>; def t2LDR_POST : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb), (ins GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePost, IIC_iLoad, "ldr", " $dst, [$base], $offset", "$base = $base_wb", []>; def t2LDRB_PRE : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb), (ins t2addrmode_imm8:$addr), AddrModeT2_i8, IndexModePre, IIC_iLoad, "ldrb", " $dst, $addr!", "$addr.base = $base_wb", []>; def t2LDRB_POST : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb), (ins GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePost, IIC_iLoad, "ldrb", " $dst, [$base], $offset", "$base = $base_wb", []>; def t2LDRH_PRE : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb), (ins t2addrmode_imm8:$addr), AddrModeT2_i8, IndexModePre, IIC_iLoad, "ldrh", " $dst, $addr!", "$addr.base = $base_wb", []>; def t2LDRH_POST : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb), (ins GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePost, IIC_iLoad, "ldrh", " $dst, [$base], $offset", "$base = $base_wb", []>; def t2LDRSB_PRE : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb), (ins t2addrmode_imm8:$addr), AddrModeT2_i8, IndexModePre, IIC_iLoad, "ldrsb", " $dst, $addr!", "$addr.base = $base_wb", []>; def t2LDRSB_POST : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb), (ins GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePost, IIC_iLoad, "ldrsb", " $dst, [$base], $offset", "$base = $base_wb", []>; def t2LDRSH_PRE : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb), (ins t2addrmode_imm8:$addr), AddrModeT2_i8, IndexModePre, IIC_iLoad, "ldrsh", " $dst, $addr!", "$addr.base = $base_wb", []>; def t2LDRSH_POST : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb), (ins GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePost, IIC_iLoad, "ldrsh", " $dst, [$base], $offset", "$base = $base_wb", []>; } // Store defm t2STR : T2I_st<"str", BinOpFrag<(store node:$LHS, node:$RHS)>>; defm t2STRB : T2I_st<"strb", BinOpFrag<(truncstorei8 node:$LHS, node:$RHS)>>; defm t2STRH : T2I_st<"strh", BinOpFrag<(truncstorei16 node:$LHS, node:$RHS)>>; // Store doubleword let mayLoad = 1 in def t2STRDi8 : T2Ii8s4<(outs), (ins GPR:$src, t2addrmode_imm8s4:$addr), IIC_iStore, "strd", " $src, $addr", []>; // Indexed stores def t2STR_PRE : T2Iidxldst<(outs GPR:$base_wb), (ins GPR:$src, GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePre, IIC_iStore, "str", " $src, [$base, $offset]!", "$base = $base_wb", [(set GPR:$base_wb, (pre_store GPR:$src, GPR:$base, t2am_imm8_offset:$offset))]>; def t2STR_POST : T2Iidxldst<(outs GPR:$base_wb), (ins GPR:$src, GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePost, IIC_iStore, "str", " $src, [$base], $offset", "$base = $base_wb", [(set GPR:$base_wb, (post_store GPR:$src, GPR:$base, t2am_imm8_offset:$offset))]>; def t2STRH_PRE : T2Iidxldst<(outs GPR:$base_wb), (ins GPR:$src, GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePre, IIC_iStore, "strh", " $src, [$base, $offset]!", "$base = $base_wb", [(set GPR:$base_wb, (pre_truncsti16 GPR:$src, GPR:$base, t2am_imm8_offset:$offset))]>; def t2STRH_POST : T2Iidxldst<(outs GPR:$base_wb), (ins GPR:$src, GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePost, IIC_iStore, "strh", " $src, [$base], $offset", "$base = $base_wb", [(set GPR:$base_wb, (post_truncsti16 GPR:$src, GPR:$base, t2am_imm8_offset:$offset))]>; def t2STRB_PRE : T2Iidxldst<(outs GPR:$base_wb), (ins GPR:$src, GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePre, IIC_iStore, "strb", " $src, [$base, $offset]!", "$base = $base_wb", [(set GPR:$base_wb, (pre_truncsti8 GPR:$src, GPR:$base, t2am_imm8_offset:$offset))]>; def t2STRB_POST : T2Iidxldst<(outs GPR:$base_wb), (ins GPR:$src, GPR:$base, t2am_imm8_offset:$offset), AddrModeT2_i8, IndexModePost, IIC_iStore, "strb", " $src, [$base], $offset", "$base = $base_wb", [(set GPR:$base_wb, (post_truncsti8 GPR:$src, GPR:$base, t2am_imm8_offset:$offset))]>; // FIXME: ldrd / strd pre / post variants //===----------------------------------------------------------------------===// // Load / store multiple Instructions. // let mayLoad = 1 in def t2LDM : T2XI<(outs), (ins addrmode4:$addr, pred:$p, reglist:$dst1, variable_ops), IIC_iLoad, "ldm${addr:submode}${p}${addr:wide} $addr, $dst1", []>; let mayStore = 1 in def t2STM : T2XI<(outs), (ins addrmode4:$addr, pred:$p, reglist:$src1, variable_ops), IIC_iStore, "stm${addr:submode}${p}${addr:wide} $addr, $src1", []>; //===----------------------------------------------------------------------===// // Move Instructions. // let neverHasSideEffects = 1 in def t2MOVr : T2sI<(outs GPR:$dst), (ins GPR:$src), IIC_iALU, "mov", ".w $dst, $src", []>; let isReMaterializable = 1, isAsCheapAsAMove = 1 in def t2MOVi : T2sI<(outs GPR:$dst), (ins t2_so_imm:$src), IIC_iALU, "mov", ".w $dst, $src", [(set GPR:$dst, t2_so_imm:$src)]>; let isReMaterializable = 1, isAsCheapAsAMove = 1 in def t2MOVi16 : T2I<(outs GPR:$dst), (ins i32imm:$src), IIC_iALU, "movw", " $dst, $src", [(set GPR:$dst, imm0_65535:$src)]>; // FIXME: Also available in ARM mode. let Constraints = "$src = $dst" in def t2MOVTi16 : T2sI<(outs GPR:$dst), (ins GPR:$src, i32imm:$imm), IIC_iALU, "movt", " $dst, $imm", [(set GPR:$dst, (or (and GPR:$src, 0xffff), t2_lo16AllZero:$imm))]>; //===----------------------------------------------------------------------===// // Extend Instructions. // // Sign extenders defm t2SXTB : T2I_unary_rrot<"sxtb", UnOpFrag<(sext_inreg node:$Src, i8)>>; defm t2SXTH : T2I_unary_rrot<"sxth", UnOpFrag<(sext_inreg node:$Src, i16)>>; defm t2SXTAB : T2I_bin_rrot<"sxtab", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS, i8))>>; defm t2SXTAH : T2I_bin_rrot<"sxtah", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS,i16))>>; // TODO: SXT(A){B|H}16 // Zero extenders let AddedComplexity = 16 in { defm t2UXTB : T2I_unary_rrot<"uxtb" , UnOpFrag<(and node:$Src, 0x000000FF)>>; defm t2UXTH : T2I_unary_rrot<"uxth" , UnOpFrag<(and node:$Src, 0x0000FFFF)>>; defm t2UXTB16 : T2I_unary_rrot<"uxtb16", UnOpFrag<(and node:$Src, 0x00FF00FF)>>; def : T2Pat<(and (shl GPR:$Src, (i32 8)), 0xFF00FF), (t2UXTB16r_rot GPR:$Src, 24)>; def : T2Pat<(and (srl GPR:$Src, (i32 8)), 0xFF00FF), (t2UXTB16r_rot GPR:$Src, 8)>; defm t2UXTAB : T2I_bin_rrot<"uxtab", BinOpFrag<(add node:$LHS, (and node:$RHS, 0x00FF))>>; defm t2UXTAH : T2I_bin_rrot<"uxtah", BinOpFrag<(add node:$LHS, (and node:$RHS, 0xFFFF))>>; } //===----------------------------------------------------------------------===// // Arithmetic Instructions. // defm t2ADD : T2I_bin_ii12rs<"add", BinOpFrag<(add node:$LHS, node:$RHS)>, 1>; defm t2SUB : T2I_bin_ii12rs<"sub", BinOpFrag<(sub node:$LHS, node:$RHS)>>; // ADD and SUB with 's' bit set. No 12-bit immediate (T4) variants. defm t2ADDS : T2I_bin_s_irs <"add", BinOpFrag<(addc node:$LHS, node:$RHS)>, 1>; defm t2SUBS : T2I_bin_s_irs <"sub", BinOpFrag<(subc node:$LHS, node:$RHS)>>; defm t2ADC : T2I_adde_sube_irs<"adc",BinOpFrag<(adde node:$LHS, node:$RHS)>,1>; defm t2SBC : T2I_adde_sube_irs<"sbc",BinOpFrag<(sube node:$LHS, node:$RHS)>>; // RSB defm t2RSB : T2I_rbin_is <"rsb", BinOpFrag<(sub node:$LHS, node:$RHS)>>; defm t2RSBS : T2I_rbin_s_is <"rsb", BinOpFrag<(subc node:$LHS, node:$RHS)>>; // (sub X, imm) gets canonicalized to (add X, -imm). Match this form. let AddedComplexity = 1 in def : T2Pat<(add GPR:$src, imm0_255_neg:$imm), (t2SUBri GPR:$src, imm0_255_neg:$imm)>; def : T2Pat<(add GPR:$src, t2_so_imm_neg:$imm), (t2SUBri GPR:$src, t2_so_imm_neg:$imm)>; def : T2Pat<(add GPR:$src, imm0_4095_neg:$imm), (t2SUBri12 GPR:$src, imm0_4095_neg:$imm)>; //===----------------------------------------------------------------------===// // Shift and rotate Instructions. // defm t2LSL : T2I_sh_ir<"lsl", BinOpFrag<(shl node:$LHS, node:$RHS)>>; defm t2LSR : T2I_sh_ir<"lsr", BinOpFrag<(srl node:$LHS, node:$RHS)>>; defm t2ASR : T2I_sh_ir<"asr", BinOpFrag<(sra node:$LHS, node:$RHS)>>; defm t2ROR : T2I_sh_ir<"ror", BinOpFrag<(rotr node:$LHS, node:$RHS)>>; def t2MOVrx : T2sI<(outs GPR:$dst), (ins GPR:$src), IIC_iALU, "rrx", ".w $dst, $src", [(set GPR:$dst, (ARMrrx GPR:$src))]>; let Defs = [CPSR] in { def t2MOVsrl_flag : T2XI<(outs GPR:$dst), (ins GPR:$src), IIC_iALU, "lsrs.w $dst, $src, #1", [(set GPR:$dst, (ARMsrl_flag GPR:$src))]>; def t2MOVsra_flag : T2XI<(outs GPR:$dst), (ins GPR:$src), IIC_iALU, "asrs.w $dst, $src, #1", [(set GPR:$dst, (ARMsra_flag GPR:$src))]>; } //===----------------------------------------------------------------------===// // Bitwise Instructions. // defm t2AND : T2I_bin_w_irs<"and", BinOpFrag<(and node:$LHS, node:$RHS)>, 1>; defm t2ORR : T2I_bin_w_irs<"orr", BinOpFrag<(or node:$LHS, node:$RHS)>, 1>; defm t2EOR : T2I_bin_w_irs<"eor", BinOpFrag<(xor node:$LHS, node:$RHS)>, 1>; defm t2BIC : T2I_bin_w_irs<"bic", BinOpFrag<(and node:$LHS, (not node:$RHS))>>; let Constraints = "$src = $dst" in def t2BFC : T2I<(outs GPR:$dst), (ins GPR:$src, bf_inv_mask_imm:$imm), IIC_iALU, "bfc", " $dst, $imm", [(set GPR:$dst, (and GPR:$src, bf_inv_mask_imm:$imm))]>; // FIXME: A8.6.18 BFI - Bitfield insert (Encoding T1) /* defm t2ORN : T2I_bin_irs<"orn", BinOpFrag<(or node:$LHS, (not node:$RHS))>>; */ // FIXME: Disable this pattern on Darwin to workaround an assembler bug. def t2ORNri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), IIC_iALU, "orn", " $dst, $lhs, $rhs", [(set GPR:$dst, (or GPR:$lhs, (not t2_so_imm:$rhs)))]>, Requires<[IsThumb2, IsNotDarwin]>; def t2ORNrr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALU, "orn", " $dst, $lhs, $rhs", [(set GPR:$dst, (or GPR:$lhs, (not GPR:$rhs)))]>; def t2ORNrs : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), IIC_iALU, "orn", " $dst, $lhs, $rhs", [(set GPR:$dst, (or GPR:$lhs, (not t2_so_reg:$rhs)))]>; // Prefer over of t2EORri ra, rb, -1 because mvn has 16-bit version let AddedComplexity = 1 in defm t2MVN : T2I_un_irs <"mvn", UnOpFrag<(not node:$Src)>, 1, 1>; def : T2Pat<(and GPR:$src, t2_so_imm_not:$imm), (t2BICri GPR:$src, t2_so_imm_not:$imm)>; // FIXME: Disable this pattern on Darwin to workaround an assembler bug. def : T2Pat<(or GPR:$src, t2_so_imm_not:$imm), (t2ORNri GPR:$src, t2_so_imm_not:$imm)>, Requires<[IsThumb2, IsNotDarwin]>; def : T2Pat<(t2_so_imm_not:$src), (t2MVNi t2_so_imm_not:$src)>; //===----------------------------------------------------------------------===// // Multiply Instructions. // let isCommutable = 1 in def t2MUL: T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iALU, "mul", " $dst, $a, $b", [(set GPR:$dst, (mul GPR:$a, GPR:$b))]>; def t2MLA: T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), IIC_iALU, "mla", " $dst, $a, $b, $c", [(set GPR:$dst, (add (mul GPR:$a, GPR:$b), GPR:$c))]>; def t2MLS: T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), IIC_iALU, "mls", " $dst, $a, $b, $c", [(set GPR:$dst, (sub GPR:$c, (mul GPR:$a, GPR:$b)))]>; // Extra precision multiplies with low / high results let neverHasSideEffects = 1 in { let isCommutable = 1 in { def t2SMULL : T2I<(outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), IIC_iALU, "smull", " $ldst, $hdst, $a, $b", []>; def t2UMULL : T2I<(outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), IIC_iALU, "umull", " $ldst, $hdst, $a, $b", []>; } // Multiply + accumulate def t2SMLAL : T2I<(outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), IIC_iALU, "smlal", " $ldst, $hdst, $a, $b", []>; def t2UMLAL : T2I<(outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), IIC_iALU, "umlal", " $ldst, $hdst, $a, $b", []>; def t2UMAAL : T2I<(outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), IIC_iALU, "umaal", " $ldst, $hdst, $a, $b", []>; } // neverHasSideEffects // Most significant word multiply def t2SMMUL : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iALU, "smmul", " $dst, $a, $b", [(set GPR:$dst, (mulhs GPR:$a, GPR:$b))]>; def t2SMMLA : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), IIC_iALU, "smmla", " $dst, $a, $b, $c", [(set GPR:$dst, (add (mulhs GPR:$a, GPR:$b), GPR:$c))]>; def t2SMMLS : T2I <(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), IIC_iALU, "smmls", " $dst, $a, $b, $c", [(set GPR:$dst, (sub GPR:$c, (mulhs GPR:$a, GPR:$b)))]>; multiclass T2I_smul { def BB : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iALU, !strconcat(opc, "bb"), " $dst, $a, $b", [(set GPR:$dst, (opnode (sext_inreg GPR:$a, i16), (sext_inreg GPR:$b, i16)))]>; def BT : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iALU, !strconcat(opc, "bt"), " $dst, $a, $b", [(set GPR:$dst, (opnode (sext_inreg GPR:$a, i16), (sra GPR:$b, (i32 16))))]>; def TB : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iALU, !strconcat(opc, "tb"), " $dst, $a, $b", [(set GPR:$dst, (opnode (sra GPR:$a, (i32 16)), (sext_inreg GPR:$b, i16)))]>; def TT : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iALU, !strconcat(opc, "tt"), " $dst, $a, $b", [(set GPR:$dst, (opnode (sra GPR:$a, (i32 16)), (sra GPR:$b, (i32 16))))]>; def WB : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iALU, !strconcat(opc, "wb"), " $dst, $a, $b", [(set GPR:$dst, (sra (opnode GPR:$a, (sext_inreg GPR:$b, i16)), (i32 16)))]>; def WT : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iALU, !strconcat(opc, "wt"), " $dst, $a, $b", [(set GPR:$dst, (sra (opnode GPR:$a, (sra GPR:$b, (i32 16))), (i32 16)))]>; } multiclass T2I_smla { def BB : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iALU, !strconcat(opc, "bb"), " $dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (opnode (sext_inreg GPR:$a, i16), (sext_inreg GPR:$b, i16))))]>; def BT : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iALU, !strconcat(opc, "bt"), " $dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (opnode (sext_inreg GPR:$a, i16), (sra GPR:$b, (i32 16)))))]>; def TB : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iALU, !strconcat(opc, "tb"), " $dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (opnode (sra GPR:$a, (i32 16)), (sext_inreg GPR:$b, i16))))]>; def TT : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iALU, !strconcat(opc, "tt"), " $dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (opnode (sra GPR:$a, (i32 16)), (sra GPR:$b, (i32 16)))))]>; def WB : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iALU, !strconcat(opc, "wb"), " $dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (sra (opnode GPR:$a, (sext_inreg GPR:$b, i16)), (i32 16))))]>; def WT : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iALU, !strconcat(opc, "wt"), " $dst, $a, $b, $acc", [(set GPR:$dst, (add GPR:$acc, (sra (opnode GPR:$a, (sra GPR:$b, (i32 16))), (i32 16))))]>; } defm t2SMUL : T2I_smul<"smul", BinOpFrag<(mul node:$LHS, node:$RHS)>>; defm t2SMLA : T2I_smla<"smla", BinOpFrag<(mul node:$LHS, node:$RHS)>>; // TODO: Halfword multiple accumulate long: SMLAL // TODO: Dual halfword multiple: SMUAD, SMUSD, SMLAD, SMLSD, SMLALD, SMLSLD //===----------------------------------------------------------------------===// // Misc. Arithmetic Instructions. // def t2CLZ : T2I<(outs GPR:$dst), (ins GPR:$src), IIC_iALU, "clz", " $dst, $src", [(set GPR:$dst, (ctlz GPR:$src))]>; def t2REV : T2I<(outs GPR:$dst), (ins GPR:$src), IIC_iALU, "rev", ".w $dst, $src", [(set GPR:$dst, (bswap GPR:$src))]>; def t2REV16 : T2I<(outs GPR:$dst), (ins GPR:$src), IIC_iALU, "rev16", ".w $dst, $src", [(set GPR:$dst, (or (and (srl GPR:$src, (i32 8)), 0xFF), (or (and (shl GPR:$src, (i32 8)), 0xFF00), (or (and (srl GPR:$src, (i32 8)), 0xFF0000), (and (shl GPR:$src, (i32 8)), 0xFF000000)))))]>; def t2REVSH : T2I<(outs GPR:$dst), (ins GPR:$src), IIC_iALU, "revsh", ".w $dst, $src", [(set GPR:$dst, (sext_inreg (or (srl (and GPR:$src, 0xFFFF), (i32 8)), (shl GPR:$src, (i32 8))), i16))]>; def t2PKHBT : T2I<(outs GPR:$dst), (ins GPR:$src1, GPR:$src2, i32imm:$shamt), IIC_iALU, "pkhbt", " $dst, $src1, $src2, LSL $shamt", [(set GPR:$dst, (or (and GPR:$src1, 0xFFFF), (and (shl GPR:$src2, (i32 imm:$shamt)), 0xFFFF0000)))]>; // Alternate cases for PKHBT where identities eliminate some nodes. def : T2Pat<(or (and GPR:$src1, 0xFFFF), (and GPR:$src2, 0xFFFF0000)), (t2PKHBT GPR:$src1, GPR:$src2, 0)>; def : T2Pat<(or (and GPR:$src1, 0xFFFF), (shl GPR:$src2, imm16_31:$shamt)), (t2PKHBT GPR:$src1, GPR:$src2, imm16_31:$shamt)>; def t2PKHTB : T2I<(outs GPR:$dst), (ins GPR:$src1, GPR:$src2, i32imm:$shamt), IIC_iALU, "pkhtb", " $dst, $src1, $src2, ASR $shamt", [(set GPR:$dst, (or (and GPR:$src1, 0xFFFF0000), (and (sra GPR:$src2, imm16_31:$shamt), 0xFFFF)))]>; // Alternate cases for PKHTB where identities eliminate some nodes. Note that // a shift amount of 0 is *not legal* here, it is PKHBT instead. def : T2Pat<(or (and GPR:$src1, 0xFFFF0000), (srl GPR:$src2, (i32 16))), (t2PKHTB GPR:$src1, GPR:$src2, 16)>; def : T2Pat<(or (and GPR:$src1, 0xFFFF0000), (and (srl GPR:$src2, imm1_15:$shamt), 0xFFFF)), (t2PKHTB GPR:$src1, GPR:$src2, imm1_15:$shamt)>; //===----------------------------------------------------------------------===// // Comparison Instructions... // defm t2CMP : T2I_cmp_is<"cmp", BinOpFrag<(ARMcmp node:$LHS, node:$RHS)>>; defm t2CMPz : T2I_cmp_is<"cmp", BinOpFrag<(ARMcmpZ node:$LHS, node:$RHS)>>; defm t2CMN : T2I_cmp_is<"cmn", BinOpFrag<(ARMcmp node:$LHS,(ineg node:$RHS))>>; defm t2CMNz : T2I_cmp_is<"cmn", BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>>; def : T2Pat<(ARMcmp GPR:$src, t2_so_imm_neg:$imm), (t2CMNri GPR:$src, t2_so_imm_neg:$imm)>; def : T2Pat<(ARMcmpZ GPR:$src, t2_so_imm_neg:$imm), (t2CMNri GPR:$src, t2_so_imm_neg:$imm)>; defm t2TST : T2I_cmp_is<"tst", BinOpFrag<(ARMcmpZ (and node:$LHS, node:$RHS), 0)>>; defm t2TEQ : T2I_cmp_is<"teq", BinOpFrag<(ARMcmpZ (xor node:$LHS, node:$RHS), 0)>>; // A8.6.27 CBNZ, CBZ - Compare and branch on (non)zero. // Short range conditional branch. Looks awesome for loops. Need to figure // out how to use this one. // Conditional moves // FIXME: should be able to write a pattern for ARMcmov, but can't use // a two-value operand where a dag node expects two operands. :( def t2MOVCCr : T2I<(outs GPR:$dst), (ins GPR:$false, GPR:$true), IIC_iALU, "mov", ".w $dst, $true", [/*(set GPR:$dst, (ARMcmov GPR:$false, GPR:$true, imm:$cc, CCR:$ccr))*/]>, RegConstraint<"$false = $dst">; def t2MOVCCi : T2I<(outs GPR:$dst), (ins GPR:$false, t2_so_imm:$true), IIC_iALU, "mov", ".w $dst, $true", [/*(set GPR:$dst, (ARMcmov GPR:$false, t2_so_imm:$true, imm:$cc, CCR:$ccr))*/]>, RegConstraint<"$false = $dst">; def t2MOVCClsl : T2I<(outs GPR:$dst), (ins GPR:$false, GPR:$true, i32imm:$rhs), IIC_iALU, "lsl", ".w $dst, $true, $rhs", []>, RegConstraint<"$false = $dst">; def t2MOVCClsr : T2I<(outs GPR:$dst), (ins GPR:$false, GPR:$true, i32imm:$rhs), IIC_iALU, "lsr", ".w $dst, $true, $rhs", []>, RegConstraint<"$false = $dst">; def t2MOVCCasr : T2I<(outs GPR:$dst), (ins GPR:$false, GPR:$true, i32imm:$rhs), IIC_iALU, "asr", ".w $dst, $true, $rhs", []>, RegConstraint<"$false = $dst">; def t2MOVCCror : T2I<(outs GPR:$dst), (ins GPR:$false, GPR:$true, i32imm:$rhs), IIC_iALU, "ror", ".w $dst, $true, $rhs", []>, RegConstraint<"$false = $dst">; //===----------------------------------------------------------------------===// // TLS Instructions // // __aeabi_read_tp preserves the registers r1-r3. let isCall = 1, Defs = [R0, R12, LR, CPSR] in { def t2TPsoft : T2XI<(outs), (ins), IIC_Br, "bl __aeabi_read_tp", [(set R0, ARMthread_pointer)]>; } //===----------------------------------------------------------------------===// // SJLJ Exception handling intrinsics // eh_sjlj_setjmp() is a three instruction sequence to store the return // address and save #0 in R0 for the non-longjmp case. // Since by its nature we may be coming from some other function to get // here, and we're using the stack frame for the containing function to // save/restore registers, we can't keep anything live in regs across // the eh_sjlj_setjmp(), else it will almost certainly have been tromped upon // when we get here from a longjmp(). We force everthing out of registers // except for our own input by listing the relevant registers in Defs. By // doing so, we also cause the prologue/epilogue code to actively preserve // all of the callee-saved resgisters, which is exactly what we want. let Defs = [ R0, R1, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, D0, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15, D16, D17, D18, D19, D20, D21, D22, D23, D24, D25, D26, D27, D28, D29, D30, D31 ] in { def t2Int_eh_sjlj_setjmp : Thumb2XI<(outs), (ins GPR:$src), AddrModeNone, SizeSpecial, NoItinerary, "str.w sp, [$src, #+8] @ eh_setjmp begin\n" "\tadr ip, 0f\n" "\torr ip, #1\n" "\tstr.w ip, [$src, #+4]\n" "\tmovs r0, #0\n" "\tb 1f\n" "0:\tmovs r0, #1 @ eh_setjmp end\n" "1:\n", "", [(set R0, (ARMeh_sjlj_setjmp GPR:$src))]>; } //===----------------------------------------------------------------------===// // Control-Flow Instructions // // FIXME: remove when we have a way to marking a MI with these properties. // FIXME: $dst1 should be a def. But the extra ops must be in the end of the // operand list. // FIXME: Should pc be an implicit operand like PICADD, etc? let isReturn = 1, isTerminator = 1, mayLoad = 1 in def t2LDM_RET : T2XI<(outs), (ins addrmode4:$addr, pred:$p, reglist:$dst1, variable_ops), IIC_Br, "ldm${addr:submode}${p}${addr:wide} $addr, $dst1", []>; let isBranch = 1, isTerminator = 1, isBarrier = 1 in { let isPredicable = 1 in def t2B : T2XI<(outs), (ins brtarget:$target), IIC_Br, "b.w $target", [(br bb:$target)]>; let isNotDuplicable = 1, isIndirectBranch = 1 in { def t2BR_JT : T2JTI<(outs), (ins GPR:$target, GPR:$index, jt2block_operand:$jt, i32imm:$id), IIC_Br, "mov pc, $target\n$jt", [(ARMbr2jt GPR:$target, GPR:$index, tjumptable:$jt, imm:$id)]>; // FIXME: Add a non-pc based case that can be predicated. def t2TBB : T2JTI<(outs), (ins tb_addrmode:$index, jt2block_operand:$jt, i32imm:$id), IIC_Br, "tbb $index\n$jt", []>; def t2TBH : T2JTI<(outs), (ins tb_addrmode:$index, jt2block_operand:$jt, i32imm:$id), IIC_Br, "tbh $index\n$jt", []>; } // isNotDuplicable, isIndirectBranch } // isBranch, isTerminator, isBarrier // FIXME: should be able to write a pattern for ARMBrcond, but can't use // a two-value operand where a dag node expects two operands. :( let isBranch = 1, isTerminator = 1 in def t2Bcc : T2I<(outs), (ins brtarget:$target), IIC_Br, "b", ".w $target", [/*(ARMbrcond bb:$target, imm:$cc)*/]>; // IT block def t2IT : Thumb2XI<(outs), (ins it_pred:$cc, it_mask:$mask), AddrModeNone, Size2Bytes, IIC_iALU, "it$mask $cc", "", []>; //===----------------------------------------------------------------------===// // Non-Instruction Patterns // // ConstantPool, GlobalAddress, and JumpTable def : T2Pat<(ARMWrapper tglobaladdr :$dst), (t2LEApcrel tglobaladdr :$dst)>; def : T2Pat<(ARMWrapper tconstpool :$dst), (t2LEApcrel tconstpool :$dst)>; def : T2Pat<(ARMWrapperJT tjumptable:$dst, imm:$id), (t2LEApcrelJT tjumptable:$dst, imm:$id)>; // Large immediate handling. def : T2Pat<(i32 imm:$src), (t2MOVTi16 (t2MOVi16 (t2_lo16 imm:$src)), (t2_hi16 imm:$src))>;