//===-- examples/HowToUseJIT/HowToUseJIT.cpp - An example use of the JIT --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This small program provides an example of how to quickly build a small // module with two functions and execute it with the JIT. // // Goal: // The goal of this snippet is to create in the memory // the LLVM module consisting of two functions as follow: // // int add1(int x) { // return x+1; // } // // int foo() { // return add1(10); // } // // then compile the module via JIT, then execute the `foo' // function and return result to a driver, i.e. to a "host program". // // Some remarks and questions: // // - could we invoke some code using noname functions too? // e.g. evaluate "foo()+foo()" without fears to introduce // conflict of temporary function name with some real // existing function name? // //===----------------------------------------------------------------------===// #include "llvm/Module.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/ModuleProvider.h" #include "llvm/ExecutionEngine/JIT.h" #include "llvm/ExecutionEngine/Interpreter.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/Target/TargetSelect.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; int main() { InitializeNativeTarget(); // Create some module to put our function into it. Module *M = new Module("test"); // Create the add1 function entry and insert this entry into module M. The // function will have a return type of "int" and take an argument of "int". // The '0' terminates the list of argument types. Function *Add1F = cast(M->getOrInsertFunction("add1", Type::Int32Ty, Type::Int32Ty, (Type *)0)); // Add a basic block to the function. As before, it automatically inserts // because of the last argument. BasicBlock *BB = BasicBlock::Create("EntryBlock", Add1F); // Get pointers to the constant `1'. Value *One = ConstantInt::get(Type::Int32Ty, 1); // Get pointers to the integer argument of the add1 function... assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg Argument *ArgX = Add1F->arg_begin(); // Get the arg ArgX->setName("AnArg"); // Give it a nice symbolic name for fun. // Create the add instruction, inserting it into the end of BB. Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB); // Create the return instruction and add it to the basic block ReturnInst::Create(Add, BB); // Now, function add1 is ready. // Now we going to create function `foo', which returns an int and takes no // arguments. Function *FooF = cast(M->getOrInsertFunction("foo", Type::Int32Ty, (Type *)0)); // Add a basic block to the FooF function. BB = BasicBlock::Create("EntryBlock", FooF); // Get pointers to the constant `10'. Value *Ten = ConstantInt::get(Type::Int32Ty, 10); // Pass Ten to the call call: CallInst *Add1CallRes = CallInst::Create(Add1F, Ten, "add1", BB); Add1CallRes->setTailCall(true); // Create the return instruction and add it to the basic block. ReturnInst::Create(Add1CallRes, BB); // Now we create the JIT. ExistingModuleProvider* MP = new ExistingModuleProvider(M); ExecutionEngine* EE = ExecutionEngine::create(MP, false); outs() << "We just constructed this LLVM module:\n\n" << *M; outs() << "\n\nRunning foo: "; outs().flush(); // Call the `foo' function with no arguments: std::vector noargs; GenericValue gv = EE->runFunction(FooF, noargs); // Import result of execution: outs() << "Result: " << gv.IntVal << "\n"; EE->freeMachineCodeForFunction(FooF); delete EE; llvm_shutdown(); return 0; }