//===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the classes used to generate code from scalar expressions. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_EXPANDER_H #define LLVM_ANALYSIS_SCALAREVOLUTION_EXPANDER_H #include "llvm/Instructions.h" #include "llvm/Type.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" namespace llvm { /// SCEVExpander - This class uses information about analyze scalars to /// rewrite expressions in canonical form. /// /// Clients should create an instance of this class when rewriting is needed, /// and destroy it when finished to allow the release of the associated /// memory. struct SCEVExpander : public SCEVVisitor { ScalarEvolution &SE; std::map > InsertedExpressions; std::set InsertedValues; BasicBlock::iterator InsertPt; friend struct SCEVVisitor; public: explicit SCEVExpander(ScalarEvolution &se) : SE(se) {} /// clear - Erase the contents of the InsertedExpressions map so that users /// trying to expand the same expression into multiple BasicBlocks or /// different places within the same BasicBlock can do so. void clear() { InsertedExpressions.clear(); } /// isInsertedInstruction - Return true if the specified instruction was /// inserted by the code rewriter. If so, the client should not modify the /// instruction. bool isInsertedInstruction(Instruction *I) const { return InsertedValues.count(I); } /// isInsertedExpression - Return true if the the code rewriter has a /// Value* recorded for the given expression. bool isInsertedExpression(const SCEV *S) const { return InsertedExpressions.count(S); } /// getOrInsertCanonicalInductionVariable - This method returns the /// canonical induction variable of the specified type for the specified /// loop (inserting one if there is none). A canonical induction variable /// starts at zero and steps by one on each iteration. Value *getOrInsertCanonicalInductionVariable(const Loop *L, const Type *Ty); /// addInsertedValue - Remember the specified instruction as being the /// canonical form for the specified SCEV. void addInsertedValue(Value *V, const SCEV *S) { InsertedExpressions[S] = V; InsertedValues.insert(V); } void setInsertionPoint(BasicBlock::iterator NewIP) { InsertPt = NewIP; } BasicBlock::iterator getInsertionPoint() const { return InsertPt; } /// expandCodeFor - Insert code to directly compute the specified SCEV /// expression into the program. The inserted code is inserted into the /// SCEVExpander's current insertion point. If a type is specified, the /// result will be expanded to have that type, with a cast if necessary. Value *expandCodeFor(SCEVHandle SH, const Type *Ty = 0); /// expandCodeFor - Insert code to directly compute the specified SCEV /// expression into the program. The inserted code is inserted into the /// specified block. Value *expandCodeFor(SCEVHandle SH, const Type *Ty, BasicBlock::iterator IP) { setInsertionPoint(IP); return expandCodeFor(SH, Ty); } /// InsertCastOfTo - Insert a cast of V to the specified type, doing what /// we can to share the casts. Value *InsertCastOfTo(Instruction::CastOps opcode, Value *V, const Type *Ty); /// InsertNoopCastOfTo - Insert a cast of V to the specified type, /// which must be possible with a noop cast. Value *InsertNoopCastOfTo(Value *V, const Type *Ty); /// InsertBinop - Insert the specified binary operator, doing a small amount /// of work to avoid inserting an obviously redundant operation. Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, BasicBlock::iterator InsertPt); private: /// expandAddToGEP - Expand a SCEVAddExpr with a pointer type into a GEP /// instead of using ptrtoint+arithmetic+inttoptr. Value *expandAddToGEP(const SCEVHandle *op_begin, const SCEVHandle *op_end, const PointerType *PTy, const Type *Ty, Value *V); Value *expand(const SCEV *S); Value *visitConstant(const SCEVConstant *S) { return S->getValue(); } Value *visitTruncateExpr(const SCEVTruncateExpr *S); Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S); Value *visitSignExtendExpr(const SCEVSignExtendExpr *S); Value *visitAddExpr(const SCEVAddExpr *S); Value *visitMulExpr(const SCEVMulExpr *S); Value *visitUDivExpr(const SCEVUDivExpr *S); Value *visitAddRecExpr(const SCEVAddRecExpr *S); Value *visitSMaxExpr(const SCEVSMaxExpr *S); Value *visitUMaxExpr(const SCEVUMaxExpr *S); Value *visitUnknown(const SCEVUnknown *S) { return S->getValue(); } }; } #endif