//===-- X86ATTAsmPrinter.cpp - Convert X86 LLVM code to Intel assembly ----===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to AT&T format assembly // language. This printer is the output mechanism used by `llc'. // //===----------------------------------------------------------------------===// #include "X86ATTAsmPrinter.h" #include "X86.h" #include "X86MachineFunctionInfo.h" #include "X86TargetMachine.h" #include "X86TargetAsmInfo.h" #include "llvm/CallingConv.h" #include "llvm/Module.h" #include "llvm/Support/Mangler.h" #include "llvm/Target/TargetAsmInfo.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; /// getSectionForFunction - Return the section that we should emit the /// specified function body into. std::string X86ATTAsmPrinter::getSectionForFunction(const Function &F) const { switch (F.getLinkage()) { default: assert(0 && "Unknown linkage type!"); case Function::InternalLinkage: case Function::DLLExportLinkage: case Function::ExternalLinkage: return TAI->getTextSection(); case Function::WeakLinkage: case Function::LinkOnceLinkage: if (Subtarget->isTargetDarwin()) { return ".section __TEXT,__textcoal_nt,coalesced,pure_instructions"; } else if (Subtarget->isTargetCygwin()) { return "\t.section\t.text$linkonce." + CurrentFnName + ",\"ax\"\n"; } else { return "\t.section\t.llvm.linkonce.t." + CurrentFnName + ",\"ax\",@progbits\n"; } } } /// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. /// bool X86ATTAsmPrinter::runOnMachineFunction(MachineFunction &MF) { if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF() || Subtarget->isTargetCygwin()) { // Let PassManager know we need debug information and relay // the MachineDebugInfo address on to DwarfWriter. DW.SetDebugInfo(&getAnalysis()); } SetupMachineFunction(MF); O << "\n\n"; // Print out constants referenced by the function EmitConstantPool(MF.getConstantPool()); // Print out labels for the function. const Function *F = MF.getFunction(); unsigned CC = F->getCallingConv(); // Populate function information map. Actually, We don't want to populate // non-stdcall or non-fastcall functions' information right now. if (CC == CallingConv::X86_StdCall || CC == CallingConv::X86_FastCall) FunctionInfoMap[F] = *MF.getInfo(); X86SharedAsmPrinter::decorateName(CurrentFnName, F); SwitchToTextSection(getSectionForFunction(*F).c_str(), F); switch (F->getLinkage()) { default: assert(0 && "Unknown linkage type!"); case Function::InternalLinkage: // Symbols default to internal. EmitAlignment(4, F); // FIXME: This should be parameterized somewhere. break; case Function::DLLExportLinkage: DLLExportedFns.insert(Mang->makeNameProper(F->getName(), "")); //FALLS THROUGH case Function::ExternalLinkage: EmitAlignment(4, F); // FIXME: This should be parameterized somewhere. O << "\t.globl\t" << CurrentFnName << "\n"; break; case Function::LinkOnceLinkage: case Function::WeakLinkage: if (Subtarget->isTargetDarwin()) { O << "\t.globl\t" << CurrentFnName << "\n"; O << "\t.weak_definition\t" << CurrentFnName << "\n"; } else if (Subtarget->isTargetCygwin()) { EmitAlignment(4, F); // FIXME: This should be parameterized somewhere. O << "\t.linkonce discard\n"; O << "\t.globl " << CurrentFnName << "\n"; } else { EmitAlignment(4, F); // FIXME: This should be parameterized somewhere. O << "\t.weak " << CurrentFnName << "\n"; } break; } O << CurrentFnName << ":\n"; // Add some workaround for linkonce linkage on Cygwin\MinGW if (Subtarget->isTargetCygwin() && (F->getLinkage() == Function::LinkOnceLinkage || F->getLinkage() == Function::WeakLinkage)) O << "_llvm$workaround$fake$stub_" << CurrentFnName << ":\n"; if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF() || Subtarget->isTargetCygwin()) { // Emit pre-function debug information. DW.BeginFunction(&MF); } // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block. if (I->pred_begin() != I->pred_end()) { printBasicBlockLabel(I, true); O << '\n'; } for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. O << "\t"; printMachineInstruction(II); } } // Print out jump tables referenced by the function. // Mac OS X requires that the jump table follow the function, so that the jump // table is part of the same atom that the function is in. EmitJumpTableInfo(MF.getJumpTableInfo(), MF); if (TAI->hasDotTypeDotSizeDirective()) O << "\t.size " << CurrentFnName << ", .-" << CurrentFnName << "\n"; if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF() || Subtarget->isTargetCygwin()) { // Emit post-function debug information. DW.EndFunction(); } // We didn't modify anything. return false; } void X86ATTAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo, const char *Modifier, bool NotRIPRel) { const MachineOperand &MO = MI->getOperand(OpNo); const MRegisterInfo &RI = *TM.getRegisterInfo(); switch (MO.getType()) { case MachineOperand::MO_Register: { assert(MRegisterInfo::isPhysicalRegister(MO.getReg()) && "Virtual registers should not make it this far!"); O << '%'; unsigned Reg = MO.getReg(); if (Modifier && strncmp(Modifier, "subreg", strlen("subreg")) == 0) { MVT::ValueType VT = (strcmp(Modifier+6,"64") == 0) ? MVT::i64 : ((strcmp(Modifier+6, "32") == 0) ? MVT::i32 : ((strcmp(Modifier+6,"16") == 0) ? MVT::i16 : MVT::i8)); Reg = getX86SubSuperRegister(Reg, VT); } for (const char *Name = RI.get(Reg).Name; *Name; ++Name) O << (char)tolower(*Name); return; } case MachineOperand::MO_Immediate: if (!Modifier || strcmp(Modifier, "debug") != 0) O << '$'; O << MO.getImmedValue(); return; case MachineOperand::MO_MachineBasicBlock: printBasicBlockLabel(MO.getMachineBasicBlock()); return; case MachineOperand::MO_JumpTableIndex: { bool isMemOp = Modifier && !strcmp(Modifier, "mem"); if (!isMemOp) O << '$'; O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << "_" << MO.getJumpTableIndex(); if (X86PICStyle == PICStyle::Stub && TM.getRelocationModel() == Reloc::PIC_) O << "-\"L" << getFunctionNumber() << "$pb\""; if (isMemOp && Subtarget->is64Bit() && !NotRIPRel) O << "(%rip)"; return; } case MachineOperand::MO_ConstantPoolIndex: { bool isMemOp = Modifier && !strcmp(Modifier, "mem"); if (!isMemOp) O << '$'; O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << "_" << MO.getConstantPoolIndex(); if (X86PICStyle == PICStyle::Stub && TM.getRelocationModel() == Reloc::PIC_) O << "-\"L" << getFunctionNumber() << "$pb\""; int Offset = MO.getOffset(); if (Offset > 0) O << "+" << Offset; else if (Offset < 0) O << Offset; if (isMemOp && Subtarget->is64Bit() && !NotRIPRel) O << "(%rip)"; return; } case MachineOperand::MO_GlobalAddress: { bool isCallOp = Modifier && !strcmp(Modifier, "call"); bool isMemOp = Modifier && !strcmp(Modifier, "mem"); if (!isMemOp && !isCallOp) O << '$'; GlobalValue *GV = MO.getGlobal(); std::string Name = Mang->getValueName(GV); bool isExt = (GV->isExternal() || GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()); X86SharedAsmPrinter::decorateName(Name, GV); if (X86PICStyle == PICStyle::Stub && TM.getRelocationModel() != Reloc::Static) { // Link-once, External, or Weakly-linked global variables need // non-lazily-resolved stubs if (isExt) { // Dynamically-resolved functions need a stub for the function. if (isCallOp && isa(GV)) { FnStubs.insert(Name); O << "L" << Name << "$stub"; } else { GVStubs.insert(Name); O << "L" << Name << "$non_lazy_ptr"; } } else { if (GV->hasDLLImportLinkage()) { O << "__imp_"; } O << Name; } if (!isCallOp && TM.getRelocationModel() == Reloc::PIC_) O << "-\"L" << getFunctionNumber() << "$pb\""; } else { if (GV->hasDLLImportLinkage()) { O << "__imp_"; } O << Name; } if (GV->hasExternalWeakLinkage()) ExtWeakSymbols.insert(Name); int Offset = MO.getOffset(); if (Offset > 0) O << "+" << Offset; else if (Offset < 0) O << Offset; if (isMemOp && Subtarget->is64Bit()) { if (isExt && TM.getRelocationModel() != Reloc::Static) O << "@GOTPCREL(%rip)"; else if (!NotRIPRel) // Use rip when possible to reduce code size, except when index or // base register are also part of the address. e.g. // foo(%rip)(%rcx,%rax,4) is not legal O << "(%rip)"; } return; } case MachineOperand::MO_ExternalSymbol: { bool isCallOp = Modifier && !strcmp(Modifier, "call"); if (isCallOp && X86PICStyle == PICStyle::Stub && TM.getRelocationModel() != Reloc::Static) { std::string Name(TAI->getGlobalPrefix()); Name += MO.getSymbolName(); FnStubs.insert(Name); O << "L" << Name << "$stub"; return; } if (!isCallOp) O << '$'; O << TAI->getGlobalPrefix() << MO.getSymbolName(); if (!isCallOp && Subtarget->is64Bit()) O << "(%rip)"; return; } default: O << ""; return; } } void X86ATTAsmPrinter::printSSECC(const MachineInstr *MI, unsigned Op) { unsigned char value = MI->getOperand(Op).getImmedValue(); assert(value <= 7 && "Invalid ssecc argument!"); switch (value) { case 0: O << "eq"; break; case 1: O << "lt"; break; case 2: O << "le"; break; case 3: O << "unord"; break; case 4: O << "neq"; break; case 5: O << "nlt"; break; case 6: O << "nle"; break; case 7: O << "ord"; break; } } void X86ATTAsmPrinter::printMemReference(const MachineInstr *MI, unsigned Op, const char *Modifier){ assert(isMem(MI, Op) && "Invalid memory reference!"); const MachineOperand &BaseReg = MI->getOperand(Op); int ScaleVal = MI->getOperand(Op+1).getImmedValue(); const MachineOperand &IndexReg = MI->getOperand(Op+2); const MachineOperand &DispSpec = MI->getOperand(Op+3); if (BaseReg.isFrameIndex()) { O << "[frame slot #" << BaseReg.getFrameIndex(); if (DispSpec.getImmedValue()) O << " + " << DispSpec.getImmedValue(); O << "]"; return; } bool NotRIPRel = IndexReg.getReg() || BaseReg.getReg(); if (DispSpec.isGlobalAddress() || DispSpec.isConstantPoolIndex() || DispSpec.isJumpTableIndex()) { printOperand(MI, Op+3, "mem", NotRIPRel); } else { int DispVal = DispSpec.getImmedValue(); if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg())) O << DispVal; } if (IndexReg.getReg() || BaseReg.getReg()) { O << "("; if (BaseReg.getReg()) { printOperand(MI, Op, Modifier); } if (IndexReg.getReg()) { O << ","; printOperand(MI, Op+2, Modifier); if (ScaleVal != 1) O << "," << ScaleVal; } O << ")"; } } void X86ATTAsmPrinter::printPICLabel(const MachineInstr *MI, unsigned Op) { O << "\"L" << getFunctionNumber() << "$pb\"\n"; O << "\"L" << getFunctionNumber() << "$pb\":"; } bool X86ATTAsmPrinter::printAsmMRegister(const MachineOperand &MO, const char Mode) { const MRegisterInfo &RI = *TM.getRegisterInfo(); unsigned Reg = MO.getReg(); switch (Mode) { default: return true; // Unknown mode. case 'b': // Print QImode register Reg = getX86SubSuperRegister(Reg, MVT::i8); break; case 'h': // Print QImode high register Reg = getX86SubSuperRegister(Reg, MVT::i8, true); break; case 'w': // Print HImode register Reg = getX86SubSuperRegister(Reg, MVT::i16); break; case 'k': // Print SImode register Reg = getX86SubSuperRegister(Reg, MVT::i32); break; } O << '%'; for (const char *Name = RI.get(Reg).Name; *Name; ++Name) O << (char)tolower(*Name); return false; } /// PrintAsmOperand - Print out an operand for an inline asm expression. /// bool X86ATTAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode) { // Does this asm operand have a single letter operand modifier? if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { default: return true; // Unknown modifier. case 'c': // Don't print "$" before a global var name. printOperand(MI, OpNo, "mem"); return false; case 'b': // Print QImode register case 'h': // Print QImode high register case 'w': // Print HImode register case 'k': // Print SImode register return printAsmMRegister(MI->getOperand(OpNo), ExtraCode[0]); } } printOperand(MI, OpNo); return false; } bool X86ATTAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode) { if (ExtraCode && ExtraCode[0]) return true; // Unknown modifier. printMemReference(MI, OpNo); return false; } /// printMachineInstruction -- Print out a single X86 LLVM instruction /// MI in Intel syntax to the current output stream. /// void X86ATTAsmPrinter::printMachineInstruction(const MachineInstr *MI) { ++EmittedInsts; // See if a truncate instruction can be turned into a nop. switch (MI->getOpcode()) { default: break; case X86::TRUNC_64to32: case X86::TRUNC_64to16: case X86::TRUNC_32to16: case X86::TRUNC_32to8: case X86::TRUNC_16to8: case X86::TRUNC_32_to8: case X86::TRUNC_16_to8: { const MachineOperand &MO0 = MI->getOperand(0); const MachineOperand &MO1 = MI->getOperand(1); unsigned Reg0 = MO0.getReg(); unsigned Reg1 = MO1.getReg(); unsigned Opc = MI->getOpcode(); if (Opc == X86::TRUNC_64to32) Reg1 = getX86SubSuperRegister(Reg1, MVT::i32); else if (Opc == X86::TRUNC_32to16 || Opc == X86::TRUNC_64to16) Reg1 = getX86SubSuperRegister(Reg1, MVT::i16); else Reg1 = getX86SubSuperRegister(Reg1, MVT::i8); O << TAI->getCommentString() << " TRUNCATE "; if (Reg0 != Reg1) O << "\n\t"; break; } case X86::PsMOVZX64rr32: O << TAI->getCommentString() << " ZERO-EXTEND " << "\n\t"; break; } // Call the autogenerated instruction printer routines. printInstruction(MI); } // Include the auto-generated portion of the assembly writer. #include "X86GenAsmWriter.inc"