//===- SparcV9BurgISel.cpp - SparcV9 BURG-based Instruction Selector ------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // SparcV9 BURG-based instruction selector. It uses the SSA graph to // construct a forest of BURG instruction trees (class InstrForest) and then // uses the BURG-generated tree grammar (BURM) to find the optimal instruction // sequences for the SparcV9. // //===----------------------------------------------------------------------===// #include "MachineInstrAnnot.h" #include "SparcV9BurgISel.h" #include "SparcV9InstrForest.h" #include "SparcV9Internals.h" #include "SparcV9TmpInstr.h" #include "SparcV9FrameInfo.h" #include "SparcV9RegisterInfo.h" #include "MachineFunctionInfo.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Support/CFG.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Type.h" #include "llvm/Config/alloca.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/LeakDetector.h" #include "llvm/Support/MathExtras.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/hash_map" #include #include #include using namespace llvm; //==------------------------------------------------------------------------==// // InstrForest (V9ISel BURG instruction trees) implementation //==------------------------------------------------------------------------==// namespace llvm { class InstructionNode : public InstrTreeNode { bool codeIsFoldedIntoParent; public: InstructionNode(Instruction *_instr); Instruction *getInstruction() const { assert(treeNodeType == NTInstructionNode); return cast(val); } void markFoldedIntoParent() { codeIsFoldedIntoParent = true; } bool isFoldedIntoParent() { return codeIsFoldedIntoParent; } // Methods to support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const InstructionNode *N) { return true; } static inline bool classof(const InstrTreeNode *N) { return N->getNodeType() == InstrTreeNode::NTInstructionNode; } protected: virtual void dumpNode(int indent) const; }; class VRegListNode : public InstrTreeNode { public: VRegListNode() : InstrTreeNode(NTVRegListNode, 0) { opLabel = VRegListOp; } // Methods to support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const VRegListNode *N) { return true; } static inline bool classof(const InstrTreeNode *N) { return N->getNodeType() == InstrTreeNode::NTVRegListNode; } protected: virtual void dumpNode(int indent) const; }; class VRegNode : public InstrTreeNode { public: VRegNode(Value* _val) : InstrTreeNode(NTVRegNode, _val) { opLabel = VRegNodeOp; } // Methods to support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const VRegNode *N) { return true; } static inline bool classof(const InstrTreeNode *N) { return N->getNodeType() == InstrTreeNode::NTVRegNode; } protected: virtual void dumpNode(int indent) const; }; class ConstantNode : public InstrTreeNode { public: ConstantNode(Constant *constVal) : InstrTreeNode(NTConstNode, (Value*)constVal) { opLabel = ConstantNodeOp; } Constant *getConstVal() const { return (Constant*) val;} // Methods to support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantNode *N) { return true; } static inline bool classof(const InstrTreeNode *N) { return N->getNodeType() == InstrTreeNode::NTConstNode; } protected: virtual void dumpNode(int indent) const; }; class LabelNode : public InstrTreeNode { public: LabelNode(BasicBlock* BB) : InstrTreeNode(NTLabelNode, (Value*)BB) { opLabel = LabelNodeOp; } BasicBlock *getBasicBlock() const { return (BasicBlock*)val;} // Methods to support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const LabelNode *N) { return true; } static inline bool classof(const InstrTreeNode *N) { return N->getNodeType() == InstrTreeNode::NTLabelNode; } protected: virtual void dumpNode(int indent) const; }; /// InstrForest - A forest of instruction trees for a single function. /// The goal of InstrForest is to group instructions into a single /// tree if one or more of them might be potentially combined into a /// single complex instruction in the target machine. We group two /// instructions O and I if: (1) Instruction O computes an operand used /// by instruction I, and (2) O and I are part of the same basic block, /// and (3) O has only a single use, viz., I. /// class InstrForest : private hash_map { public: // Use a vector for the root set to get a deterministic iterator // for stable code generation. Even though we need to erase nodes // during forest construction, a vector should still be efficient // because the elements to erase are nearly always near the end. typedef std::vector RootSet; typedef RootSet:: iterator root_iterator; typedef RootSet::const_iterator const_root_iterator; private: RootSet treeRoots; public: /*ctor*/ InstrForest (Function *F); /*dtor*/ ~InstrForest (); /// getTreeNodeForInstr - Returns the tree node for an Instruction. /// inline InstructionNode *getTreeNodeForInstr(Instruction* instr) { return (*this)[instr]; } /// Iterators for the root nodes for all the trees. /// const_root_iterator roots_begin() const { return treeRoots.begin(); } root_iterator roots_begin() { return treeRoots.begin(); } const_root_iterator roots_end () const { return treeRoots.end(); } root_iterator roots_end () { return treeRoots.end(); } void dump() const; private: // Methods used to build the instruction forest. void eraseRoot (InstructionNode* node); void setLeftChild (InstrTreeNode* parent, InstrTreeNode* child); void setRightChild(InstrTreeNode* parent, InstrTreeNode* child); void setParent (InstrTreeNode* child, InstrTreeNode* parent); void noteTreeNodeForInstr(Instruction* instr, InstructionNode* treeNode); InstructionNode* buildTreeForInstruction(Instruction* instr); }; void InstrTreeNode::dump(int dumpChildren, int indent) const { dumpNode(indent); if (dumpChildren) { if (LeftChild) LeftChild->dump(dumpChildren, indent+1); if (RightChild) RightChild->dump(dumpChildren, indent+1); } } InstructionNode::InstructionNode(Instruction* I) : InstrTreeNode(NTInstructionNode, I), codeIsFoldedIntoParent(false) { opLabel = I->getOpcode(); // Distinguish special cases of some instructions such as Ret and Br // if (opLabel == Instruction::Ret && cast(I)->getReturnValue()) { opLabel = RetValueOp; // ret(value) operation } else if (opLabel ==Instruction::Br && !cast(I)->isUnconditional()) { opLabel = BrCondOp; // br(cond) operation } else if (opLabel >= Instruction::SetEQ && opLabel <= Instruction::SetGT) { opLabel = SetCCOp; // common label for all SetCC ops } else if (opLabel == Instruction::Alloca && I->getNumOperands() > 0) { opLabel = AllocaN; // Alloca(ptr, N) operation } else if (opLabel == Instruction::GetElementPtr && cast(I)->hasIndices()) { opLabel = opLabel + 100; // getElem with index vector } else if (opLabel == Instruction::Xor && BinaryOperator::isNot(I)) { opLabel = (I->getType() == Type::BoolTy)? NotOp // boolean Not operator : BNotOp; // bitwise Not operator } else if (opLabel == Instruction::And || opLabel == Instruction::Or || opLabel == Instruction::Xor) { // Distinguish bitwise operators from logical operators! if (I->getType() != Type::BoolTy) opLabel = opLabel + 100; // bitwise operator } else if (opLabel == Instruction::Cast) { const Type *ITy = I->getType(); switch(ITy->getTypeID()) { case Type::BoolTyID: opLabel = ToBoolTy; break; case Type::UByteTyID: opLabel = ToUByteTy; break; case Type::SByteTyID: opLabel = ToSByteTy; break; case Type::UShortTyID: opLabel = ToUShortTy; break; case Type::ShortTyID: opLabel = ToShortTy; break; case Type::UIntTyID: opLabel = ToUIntTy; break; case Type::IntTyID: opLabel = ToIntTy; break; case Type::ULongTyID: opLabel = ToULongTy; break; case Type::LongTyID: opLabel = ToLongTy; break; case Type::FloatTyID: opLabel = ToFloatTy; break; case Type::DoubleTyID: opLabel = ToDoubleTy; break; case Type::ArrayTyID: opLabel = ToArrayTy; break; case Type::PointerTyID: opLabel = ToPointerTy; break; default: // Just use `Cast' opcode otherwise. It's probably ignored. break; } } } void InstructionNode::dumpNode(int indent) const { for (int i=0; i < indent; i++) std::cerr << " "; std::cerr << getInstruction()->getOpcodeName() << " [label " << getOpLabel() << "]" << "\n"; } void VRegListNode::dumpNode(int indent) const { for (int i=0; i < indent; i++) std::cerr << " "; std::cerr << "List" << "\n"; } void VRegNode::dumpNode(int indent) const { for (int i=0; i < indent; i++) std::cerr << " "; std::cerr << "VReg " << *getValue() << "\n"; } void ConstantNode::dumpNode(int indent) const { for (int i=0; i < indent; i++) std::cerr << " "; std::cerr << "Constant " << *getValue() << "\n"; } void LabelNode::dumpNode(int indent) const { for (int i=0; i < indent; i++) std::cerr << " "; std::cerr << "Label " << *getValue() << "\n"; } /// InstrForest ctor - Create a forest of instruction trees for a /// single function. /// InstrForest::InstrForest(Function *F) { for (Function::iterator BB = F->begin(), FE = F->end(); BB != FE; ++BB) { for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) buildTreeForInstruction(I); } } InstrForest::~InstrForest() { for_each(treeRoots.begin(), treeRoots.end(), deleter); } void InstrForest::dump() const { for (const_root_iterator I = roots_begin(); I != roots_end(); ++I) (*I)->dump(/*dumpChildren*/ 1, /*indent*/ 0); } inline void InstrForest::eraseRoot(InstructionNode* node) { for (RootSet::reverse_iterator RI=treeRoots.rbegin(), RE=treeRoots.rend(); RI != RE; ++RI) if (*RI == node) treeRoots.erase(RI.base()-1); } inline void InstrForest::noteTreeNodeForInstr(Instruction *instr, InstructionNode *treeNode) { (*this)[instr] = treeNode; treeRoots.push_back(treeNode); // mark node as root of a new tree } inline void InstrForest::setLeftChild(InstrTreeNode *parent, InstrTreeNode *child) { parent->LeftChild = child; child->Parent = parent; if (InstructionNode* instrNode = dyn_cast(child)) eraseRoot(instrNode); // no longer a tree root } inline void InstrForest::setRightChild(InstrTreeNode *parent, InstrTreeNode *child) { parent->RightChild = child; child->Parent = parent; if (InstructionNode* instrNode = dyn_cast(child)) eraseRoot(instrNode); // no longer a tree root } InstructionNode* InstrForest::buildTreeForInstruction(Instruction *instr) { InstructionNode *treeNode = getTreeNodeForInstr(instr); if (treeNode) { // treeNode has already been constructed for this instruction assert(treeNode->getInstruction() == instr); return treeNode; } // Otherwise, create a new tree node for this instruction. treeNode = new InstructionNode(instr); noteTreeNodeForInstr(instr, treeNode); if (instr->getOpcode() == Instruction::Call) { // Operands of call instruction return treeNode; } // If the instruction has more than 2 instruction operands, // then we need to create artificial list nodes to hold them. // (Note that we only count operands that get tree nodes, and not // others such as branch labels for a branch or switch instruction.) // To do this efficiently, we'll walk all operands, build treeNodes // for all appropriate operands and save them in an array. We then // insert children at the end, creating list nodes where needed. // As a performance optimization, allocate a child array only // if a fixed array is too small. int numChildren = 0; InstrTreeNode** childArray = new InstrTreeNode*[instr->getNumOperands()]; // Walk the operands of the instruction for (Instruction::op_iterator O = instr->op_begin(); O!=instr->op_end(); ++O) { Value* operand = *O; // Check if the operand is a data value, not an branch label, type, // method or module. If the operand is an address type (i.e., label // or method) that is used in an non-branching operation, e.g., `add'. // that should be considered a data value. // Check latter condition here just to simplify the next IF. bool includeAddressOperand = (isa(operand) || isa(operand)) && !instr->isTerminator(); if (includeAddressOperand || isa(operand) || isa(operand) || isa(operand)) { // This operand is a data value. // An instruction that computes the incoming value is added as a // child of the current instruction if: // the value has only a single use // AND both instructions are in the same basic block. // AND the current instruction is not a PHI (because the incoming // value is conceptually in a predecessor block, // even though it may be in the same static block) // (Note that if the value has only a single use (viz., `instr'), // the def of the value can be safely moved just before instr // and therefore it is safe to combine these two instructions.) // In all other cases, the virtual register holding the value // is used directly, i.e., made a child of the instruction node. InstrTreeNode* opTreeNode; if (isa(operand) && operand->hasOneUse() && cast(operand)->getParent() == instr->getParent() && instr->getOpcode() != Instruction::PHI && instr->getOpcode() != Instruction::Call) { // Recursively create a treeNode for it. opTreeNode = buildTreeForInstruction((Instruction*)operand); } else if (Constant *CPV = dyn_cast(operand)) { if (isa(CPV)) opTreeNode = new VRegNode(operand); else if (isa(CPV)) { opTreeNode = new ConstantNode(Constant::getNullValue(CPV->getType())); } else { // Create a leaf node for a constant opTreeNode = new ConstantNode(CPV); } } else { // Create a leaf node for the virtual register opTreeNode = new VRegNode(operand); } childArray[numChildren++] = opTreeNode; } } // Add any selected operands as children in the tree. // Certain instructions can have more than 2 in some instances (viz., // a CALL or a memory access -- LOAD, STORE, and GetElemPtr -- to an // array or struct). Make the operands of every such instruction into // a right-leaning binary tree with the operand nodes at the leaves // and VRegList nodes as internal nodes. InstrTreeNode *parent = treeNode; if (numChildren > 2) { unsigned instrOpcode = treeNode->getInstruction()->getOpcode(); assert(instrOpcode == Instruction::PHI || instrOpcode == Instruction::Call || instrOpcode == Instruction::Load || instrOpcode == Instruction::Store || instrOpcode == Instruction::GetElementPtr); } // Insert the first child as a direct child if (numChildren >= 1) setLeftChild(parent, childArray[0]); int n; // Create a list node for children 2 .. N-1, if any for (n = numChildren-1; n >= 2; n--) { // We have more than two children InstrTreeNode *listNode = new VRegListNode(); setRightChild(parent, listNode); setLeftChild(listNode, childArray[numChildren - n]); parent = listNode; } // Now insert the last remaining child (if any). if (numChildren >= 2) { assert(n == 1); setRightChild(parent, childArray[numChildren - 1]); } delete [] childArray; return treeNode; } //==------------------------------------------------------------------------==// // V9ISel Command-line options and declarations //==------------------------------------------------------------------------==// namespace { /// Allow the user to select the amount of debugging information printed /// out by V9ISel. /// enum SelectDebugLevel_t { Select_NoDebugInfo, Select_PrintMachineCode, Select_DebugInstTrees, Select_DebugBurgTrees, }; cl::opt SelectDebugLevel("dselect", cl::Hidden, cl::desc("enable instruction selection debug information"), cl::values( clEnumValN(Select_NoDebugInfo, "n", "disable debug output"), clEnumValN(Select_PrintMachineCode, "y", "print generated machine code"), clEnumValN(Select_DebugInstTrees, "i", "print debugging info for instruction selection"), clEnumValN(Select_DebugBurgTrees, "b", "print burg trees"), clEnumValEnd)); /// V9ISel - This is the FunctionPass that drives the instruction selection /// process on the SparcV9 target. /// class V9ISel : public FunctionPass { TargetMachine &Target; void InsertCodeForPhis(Function &F); void InsertPhiElimInstructions(BasicBlock *BB, const std::vector& CpVec); void SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt); void PostprocessMachineCodeForTree(InstructionNode* instrNode, int ruleForNode, short* nts); public: V9ISel(TargetMachine &TM) : Target(TM) {} virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); } bool runOnFunction(Function &F); virtual const char *getPassName() const { return "SparcV9 BURG Instruction Selector"; } }; } //==------------------------------------------------------------------------==// // Various V9ISel helper functions //==------------------------------------------------------------------------==// static const uint32_t MAXLO = (1 << 10) - 1; // set bits set by %lo(*) static const uint32_t MAXSIMM = (1 << 12) - 1; // set bits in simm13 field of OR /// ConvertConstantToIntType - Function to get the value of an integral /// constant in the form that must be put into the machine register. The /// specified constant is interpreted as (i.e., converted if necessary to) the /// specified destination type. The result is always returned as an uint64_t, /// since the representation of int64_t and uint64_t are identical. The /// argument can be any known const. isValidConstant is set to true if a valid /// constant was found. /// uint64_t ConvertConstantToIntType(const TargetMachine &target, const Value *V, const Type *destType, bool &isValidConstant) { isValidConstant = false; uint64_t C = 0; if (! destType->isIntegral() && ! isa(destType)) return C; if (! isa(V) || isa(V)) return C; // GlobalValue: no conversions needed: get value and return it if (const GlobalValue* GV = dyn_cast(V)) { isValidConstant = true; // may be overwritten by recursive call return ConvertConstantToIntType(target, GV, destType, isValidConstant); } // ConstantBool: no conversions needed: get value and return it if (const ConstantBool *CB = dyn_cast(V)) { isValidConstant = true; return (uint64_t) CB->getValue(); } // ConstantPointerNull: it's really just a big, shiny version of zero. if (isa(V)) { isValidConstant = true; return 0; } // For other types of constants, some conversion may be needed. // First, extract the constant operand according to its own type if (const ConstantExpr *CE = dyn_cast(V)) switch(CE->getOpcode()) { case Instruction::Cast: // recursively get the value as cast C = ConvertConstantToIntType(target, CE->getOperand(0), CE->getType(), isValidConstant); break; default: // not simplifying other ConstantExprs break; } else if (const ConstantInt *CI = dyn_cast(V)) { isValidConstant = true; C = CI->getRawValue(); } else if (const ConstantFP *CFP = dyn_cast(V)) { isValidConstant = true; double fC = CFP->getValue(); C = (destType->isSigned()? (uint64_t) (int64_t) fC : (uint64_t) fC); } else if (isa(V)) { isValidConstant = true; C = 0; } // Now if a valid value was found, convert it to destType. if (isValidConstant) { unsigned opSize = target.getTargetData().getTypeSize(V->getType()); unsigned destSize = target.getTargetData().getTypeSize(destType); uint64_t maskHi = (destSize < 8)? (1U << 8*destSize) - 1 : ~0; assert(opSize <= 8 && destSize <= 8 && ">8-byte int type unexpected"); if (destType->isSigned()) { if (opSize > destSize) // operand is larger than dest: C = C & maskHi; // mask high bits if (opSize > destSize || (opSize == destSize && ! V->getType()->isSigned())) if (C & (1U << (8*destSize - 1))) C = C | ~maskHi; // sign-extend from destSize to 64 bits } else { if (opSize > destSize || (V->getType()->isSigned() && destSize < 8)) { // operand is larger than dest, // OR both are equal but smaller than the full register size // AND operand is signed, so it may have extra sign bits: // mask high bits C = C & maskHi; } } } return C; } /// CreateSETUWConst - Copy a 32-bit unsigned constant into the register /// `dest', using SETHI, OR in the worst case. This function correctly emulates /// the SETUW pseudo-op for SPARC v9 (if argument isSigned == false). The /// isSigned=true case is used to implement SETSW without duplicating code. It /// optimizes some common cases: /// (1) Small value that fits in simm13 field of OR: don't need SETHI. /// (2) isSigned = true and C is a small negative signed value, i.e., /// high bits are 1, and the remaining bits fit in simm13(OR). static inline void CreateSETUWConst(uint32_t C, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi, Value* val, bool isSigned = false) { MachineInstr *miSETHI = NULL, *miOR = NULL; // In order to get efficient code, we should not generate the SETHI if // all high bits are 1 (i.e., this is a small signed value that fits in // the simm13 field of OR). So we check for and handle that case specially. // NOTE: The value C = 0x80000000 is bad: sC < 0 *and* -sC < 0. // In fact, sC == -sC, so we have to check for this explicitly. int32_t sC = (int32_t) C; bool smallNegValue =isSigned && sC < 0 && sC != -sC && -sC < (int32_t)MAXSIMM; // Set the high 22 bits in dest if non-zero and simm13 field of OR not enough if (!smallNegValue && (C & ~MAXLO) && C > MAXSIMM) { miSETHI = BuildMI(V9::SETHI, 2).addZImm(C).addRegDef(dest); miSETHI->getOperand(0).markHi32(); mvec.push_back(miSETHI); } // Set the low 10 or 12 bits in dest. This is necessary if no SETHI // was generated, or if the low 10 bits are non-zero. if (miSETHI==NULL || C & MAXLO) { if (miSETHI) { // unsigned value with high-order bits set using SETHI miOR = BuildMI(V9::ORi,3).addReg(dest).addZImm(C).addRegDef(dest); miOR->getOperand(1).markLo32(); } else { // unsigned or small signed value that fits in simm13 field of OR assert(smallNegValue || (C & ~MAXSIMM) == 0); miOR = BuildMI(V9::ORi, 3).addMReg(SparcV9::g0) .addSImm(sC).addRegDef(dest); } mvec.push_back(miOR); } assert((miSETHI || miOR) && "Oops, no code was generated!"); } /// CreateSETSWConst - Set a 32-bit signed constant in the register `dest', /// with sign-extension to 64 bits. This uses SETHI, OR, SRA in the worst case. /// This function correctly emulates the SETSW pseudo-op for SPARC v9. It /// optimizes the same cases as SETUWConst, plus: /// (1) SRA is not needed for positive or small negative values. /// static inline void CreateSETSWConst(int32_t C, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi, Value* val) { // Set the low 32 bits of dest CreateSETUWConst((uint32_t) C, dest, mvec, mcfi, val, /*isSigned*/true); // Sign-extend to the high 32 bits if needed. // NOTE: The value C = 0x80000000 is bad: -C == C and so -C is < MAXSIMM if (C < 0 && (C == -C || -C > (int32_t) MAXSIMM)) mvec.push_back(BuildMI(V9::SRAi5,3).addReg(dest).addZImm(0).addRegDef(dest)); } /// CreateSETXConst - Set a 64-bit signed or unsigned constant in the /// register `dest'. Use SETUWConst for each 32 bit word, plus a /// left-shift-by-32 in between. This function correctly emulates the SETX /// pseudo-op for SPARC v9. It optimizes the same cases as SETUWConst for each /// 32 bit word. /// static inline void CreateSETXConst(uint64_t C, Instruction* tmpReg, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi, Value* val) { assert(C > (unsigned int) ~0 && "Use SETUW/SETSW for 32-bit values!"); MachineInstr* MI; // Code to set the upper 32 bits of the value in register `tmpReg' CreateSETUWConst((C >> 32), tmpReg, mvec, mcfi, val); // Shift tmpReg left by 32 bits mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32) .addRegDef(tmpReg)); // Code to set the low 32 bits of the value in register `dest' CreateSETUWConst(C, dest, mvec, mcfi, val); // dest = OR(tmpReg, dest) mvec.push_back(BuildMI(V9::ORr,3).addReg(dest).addReg(tmpReg).addRegDef(dest)); } /// CreateSETUWLabel - Set a 32-bit constant (given by a symbolic label) in /// the register `dest'. /// static inline void CreateSETUWLabel(Value* val, Instruction* dest, std::vector& mvec) { MachineInstr* MI; MachineCodeForInstruction &mcfi = MachineCodeForInstruction::get((Instruction*) val); TmpInstruction* tmpReg = new TmpInstruction(mcfi, val); // Set the high 22 bits in dest MI = BuildMI(V9::SETHI, 2).addReg(val).addRegDef(tmpReg); MI->getOperand(0).markHi32(); mvec.push_back(MI); // Set the low 10 bits in dest MI = BuildMI(V9::ORr, 3).addReg(tmpReg).addReg(val).addRegDef(dest); MI->getOperand(1).markLo32(); mvec.push_back(MI); } /// CreateSETXLabel - Set a 64-bit constant (given by a symbolic label) in the /// register `dest'. /// static inline void CreateSETXLabel(Value* val, Instruction* tmpReg, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi) { assert(isa(val) && "I only know about constant values and global addresses"); MachineInstr* MI; MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(tmpReg); MI->getOperand(0).markHi64(); mvec.push_back(MI); TmpInstruction* tmpReg2 = new TmpInstruction(mcfi, PointerType::get(val->getType()), val); MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addPCDisp(val).addRegDef(tmpReg2); MI->getOperand(1).markLo64(); mvec.push_back(MI); TmpInstruction* tmpReg3 = new TmpInstruction(mcfi, PointerType::get(val->getType()), val); mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg2).addZImm(32) .addRegDef(tmpReg3)); TmpInstruction* tmpReg4 = new TmpInstruction(mcfi, PointerType::get(val->getType()), val); MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(tmpReg4); MI->getOperand(0).markHi32(); mvec.push_back(MI); TmpInstruction* tmpReg5 = new TmpInstruction(mcfi, PointerType::get(val->getType()), val); MI = BuildMI(V9::ORr, 3).addReg(tmpReg4).addReg(tmpReg3).addRegDef(tmpReg5); mvec.push_back(MI); MI = BuildMI(V9::ORi, 3).addReg(tmpReg5).addPCDisp(val).addRegDef(dest); MI->getOperand(1).markLo32(); mvec.push_back(MI); } /// CreateUIntSetInstruction - Create code to Set an unsigned constant in the /// register `dest'. Uses CreateSETUWConst, CreateSETSWConst or CreateSETXConst /// as needed. CreateSETSWConst is an optimization for the case that the /// unsigned value has all ones in the 33 high bits (so that sign-extension sets /// them all). /// static inline void CreateUIntSetInstruction(uint64_t C, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi, Value* val) { static const uint64_t lo32 = (uint32_t) ~0; if (C <= lo32) // High 32 bits are 0. Set low 32 bits. CreateSETUWConst((uint32_t) C, dest, mvec, mcfi, val); else if ((C & ~lo32) == ~lo32 && (C & (1U << 31))) { // All high 33 (not 32) bits are 1s: sign-extension will take care // of high 32 bits, so use the sequence for signed int CreateSETSWConst((int32_t) C, dest, mvec, mcfi, val); } else if (C > lo32) { // C does not fit in 32 bits TmpInstruction* tmpReg = new TmpInstruction(mcfi, Type::IntTy); CreateSETXConst(C, tmpReg, dest, mvec, mcfi, val); } } /// CreateIntSetInstruction - Create code to Set a signed constant in the /// register `dest'. Really the same as CreateUIntSetInstruction. /// static inline void CreateIntSetInstruction(int64_t C, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi, Value* val) { CreateUIntSetInstruction((uint64_t) C, dest, mvec, mcfi, val); } /// MaxConstantsTableTy - Table mapping LLVM opcodes to the max. immediate /// constant usable for that operation in the SparcV9 backend. Used by /// ConstantMayNotFitInImmedField(). /// struct MaxConstantsTableTy { // Entry == 0 ==> no immediate constant field exists at all. // Entry > 0 ==> abs(immediate constant) <= Entry std::vector tbl; int getMaxConstantForInstr (unsigned llvmOpCode); MaxConstantsTableTy (); unsigned size() const { return tbl.size (); } int &operator[] (unsigned index) { return tbl[index]; } }; int MaxConstantsTableTy::getMaxConstantForInstr(unsigned llvmOpCode) { int modelOpCode = -1; if (llvmOpCode >= Instruction::BinaryOpsBegin && llvmOpCode < Instruction::BinaryOpsEnd) modelOpCode = V9::ADDi; else switch(llvmOpCode) { case Instruction::Ret: modelOpCode = V9::JMPLCALLi; break; case Instruction::Malloc: case Instruction::Alloca: case Instruction::GetElementPtr: case Instruction::PHI: case Instruction::Cast: case Instruction::Call: modelOpCode = V9::ADDi; break; case Instruction::Shl: case Instruction::Shr: modelOpCode = V9::SLLXi6; break; default: break; }; return (modelOpCode < 0)? 0: SparcV9MachineInstrDesc[modelOpCode].maxImmedConst; } MaxConstantsTableTy::MaxConstantsTableTy () : tbl (Instruction::OtherOpsEnd) { unsigned op; assert(tbl.size() == Instruction::OtherOpsEnd && "assignments below will be illegal!"); for (op = Instruction::TermOpsBegin; op < Instruction::TermOpsEnd; ++op) tbl[op] = getMaxConstantForInstr(op); for (op = Instruction::BinaryOpsBegin; op < Instruction::BinaryOpsEnd; ++op) tbl[op] = getMaxConstantForInstr(op); for (op = Instruction::MemoryOpsBegin; op < Instruction::MemoryOpsEnd; ++op) tbl[op] = getMaxConstantForInstr(op); for (op = Instruction::OtherOpsBegin; op < Instruction::OtherOpsEnd; ++op) tbl[op] = getMaxConstantForInstr(op); } bool ConstantMayNotFitInImmedField(const Constant* CV, const Instruction* I) { // The one and only MaxConstantsTable, used only by this function. static MaxConstantsTableTy MaxConstantsTable; if (I->getOpcode() >= MaxConstantsTable.size()) // user-defined op (or bug!) return true; // can always use %g0 if (isa(CV) || isa(CV)) return false; if (isa(I)) // Switch instructions will be lowered! return false; if (const ConstantInt* CI = dyn_cast(CV)) return labs((int64_t)CI->getRawValue()) > MaxConstantsTable[I->getOpcode()]; if (isa(CV)) return 1 > MaxConstantsTable[I->getOpcode()]; return true; } /// ChooseLoadInstruction - Return the appropriate load instruction opcode /// based on the given LLVM value type. /// static inline MachineOpCode ChooseLoadInstruction(const Type *DestTy) { switch (DestTy->getTypeID()) { case Type::BoolTyID: case Type::UByteTyID: return V9::LDUBr; case Type::SByteTyID: return V9::LDSBr; case Type::UShortTyID: return V9::LDUHr; case Type::ShortTyID: return V9::LDSHr; case Type::UIntTyID: return V9::LDUWr; case Type::IntTyID: return V9::LDSWr; case Type::PointerTyID: case Type::ULongTyID: case Type::LongTyID: return V9::LDXr; case Type::FloatTyID: return V9::LDFr; case Type::DoubleTyID: return V9::LDDFr; default: assert(0 && "Invalid type for Load instruction"); } return 0; } /// ChooseStoreInstruction - Return the appropriate store instruction opcode /// based on the given LLVM value type. /// static inline MachineOpCode ChooseStoreInstruction(const Type *DestTy) { switch (DestTy->getTypeID()) { case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: return V9::STBr; case Type::UShortTyID: case Type::ShortTyID: return V9::STHr; case Type::UIntTyID: case Type::IntTyID: return V9::STWr; case Type::PointerTyID: case Type::ULongTyID: case Type::LongTyID: return V9::STXr; case Type::FloatTyID: return V9::STFr; case Type::DoubleTyID: return V9::STDFr; default: assert(0 && "Invalid type for Store instruction"); } return 0; } static inline MachineOpCode ChooseAddInstructionByType(const Type* resultType) { MachineOpCode opCode = V9::INVALID_OPCODE; if (resultType->isIntegral() || isa(resultType) || isa(resultType) || resultType == Type::LabelTy) { opCode = V9::ADDr; } else switch(resultType->getTypeID()) { case Type::FloatTyID: opCode = V9::FADDS; break; case Type::DoubleTyID: opCode = V9::FADDD; break; default: assert(0 && "Invalid type for ADD instruction"); break; } return opCode; } /// convertOpcodeFromRegToImm - Because the SparcV9 instruction selector likes /// to re-write operands to instructions, making them change from a Value* /// (virtual register) to a Constant* (making an immediate field), we need to /// change the opcode from a register-based instruction to an immediate-based /// instruction, hence this mapping. /// static unsigned convertOpcodeFromRegToImm(unsigned Opcode) { switch (Opcode) { /* arithmetic */ case V9::ADDr: return V9::ADDi; case V9::ADDccr: return V9::ADDcci; case V9::ADDCr: return V9::ADDCi; case V9::ADDCccr: return V9::ADDCcci; case V9::SUBr: return V9::SUBi; case V9::SUBccr: return V9::SUBcci; case V9::SUBCr: return V9::SUBCi; case V9::SUBCccr: return V9::SUBCcci; case V9::MULXr: return V9::MULXi; case V9::SDIVXr: return V9::SDIVXi; case V9::UDIVXr: return V9::UDIVXi; /* logical */ case V9::ANDr: return V9::ANDi; case V9::ANDccr: return V9::ANDcci; case V9::ANDNr: return V9::ANDNi; case V9::ANDNccr: return V9::ANDNcci; case V9::ORr: return V9::ORi; case V9::ORccr: return V9::ORcci; case V9::ORNr: return V9::ORNi; case V9::ORNccr: return V9::ORNcci; case V9::XORr: return V9::XORi; case V9::XORccr: return V9::XORcci; case V9::XNORr: return V9::XNORi; case V9::XNORccr: return V9::XNORcci; /* shift */ case V9::SLLr5: return V9::SLLi5; case V9::SRLr5: return V9::SRLi5; case V9::SRAr5: return V9::SRAi5; case V9::SLLXr6: return V9::SLLXi6; case V9::SRLXr6: return V9::SRLXi6; case V9::SRAXr6: return V9::SRAXi6; /* Conditional move on int comparison with zero */ case V9::MOVRZr: return V9::MOVRZi; case V9::MOVRLEZr: return V9::MOVRLEZi; case V9::MOVRLZr: return V9::MOVRLZi; case V9::MOVRNZr: return V9::MOVRNZi; case V9::MOVRGZr: return V9::MOVRGZi; case V9::MOVRGEZr: return V9::MOVRGEZi; /* Conditional move on int condition code */ case V9::MOVAr: return V9::MOVAi; case V9::MOVNr: return V9::MOVNi; case V9::MOVNEr: return V9::MOVNEi; case V9::MOVEr: return V9::MOVEi; case V9::MOVGr: return V9::MOVGi; case V9::MOVLEr: return V9::MOVLEi; case V9::MOVGEr: return V9::MOVGEi; case V9::MOVLr: return V9::MOVLi; case V9::MOVGUr: return V9::MOVGUi; case V9::MOVLEUr: return V9::MOVLEUi; case V9::MOVCCr: return V9::MOVCCi; case V9::MOVCSr: return V9::MOVCSi; case V9::MOVPOSr: return V9::MOVPOSi; case V9::MOVNEGr: return V9::MOVNEGi; case V9::MOVVCr: return V9::MOVVCi; case V9::MOVVSr: return V9::MOVVSi; /* Conditional move of int reg on fp condition code */ case V9::MOVFAr: return V9::MOVFAi; case V9::MOVFNr: return V9::MOVFNi; case V9::MOVFUr: return V9::MOVFUi; case V9::MOVFGr: return V9::MOVFGi; case V9::MOVFUGr: return V9::MOVFUGi; case V9::MOVFLr: return V9::MOVFLi; case V9::MOVFULr: return V9::MOVFULi; case V9::MOVFLGr: return V9::MOVFLGi; case V9::MOVFNEr: return V9::MOVFNEi; case V9::MOVFEr: return V9::MOVFEi; case V9::MOVFUEr: return V9::MOVFUEi; case V9::MOVFGEr: return V9::MOVFGEi; case V9::MOVFUGEr: return V9::MOVFUGEi; case V9::MOVFLEr: return V9::MOVFLEi; case V9::MOVFULEr: return V9::MOVFULEi; case V9::MOVFOr: return V9::MOVFOi; /* load */ case V9::LDSBr: return V9::LDSBi; case V9::LDSHr: return V9::LDSHi; case V9::LDSWr: return V9::LDSWi; case V9::LDUBr: return V9::LDUBi; case V9::LDUHr: return V9::LDUHi; case V9::LDUWr: return V9::LDUWi; case V9::LDXr: return V9::LDXi; case V9::LDFr: return V9::LDFi; case V9::LDDFr: return V9::LDDFi; case V9::LDQFr: return V9::LDQFi; case V9::LDFSRr: return V9::LDFSRi; case V9::LDXFSRr: return V9::LDXFSRi; /* store */ case V9::STBr: return V9::STBi; case V9::STHr: return V9::STHi; case V9::STWr: return V9::STWi; case V9::STXr: return V9::STXi; case V9::STFr: return V9::STFi; case V9::STDFr: return V9::STDFi; case V9::STFSRr: return V9::STFSRi; case V9::STXFSRr: return V9::STXFSRi; /* jump & return */ case V9::JMPLCALLr: return V9::JMPLCALLi; case V9::JMPLRETr: return V9::JMPLRETi; /* save and restore */ case V9::SAVEr: return V9::SAVEi; case V9::RESTOREr: return V9::RESTOREi; default: // It's already in correct format // Or, it's just not handled yet, but an assert() would break LLC #if 0 std::cerr << "Unhandled opcode in convertOpcodeFromRegToImm(): " << Opcode << "\n"; #endif return Opcode; } } /// CreateCodeToLoadConst - Create an instruction sequence to put the /// constant `val' into the virtual register `dest'. `val' may be a Constant or /// a GlobalValue, viz., the constant address of a global variable or function. /// The generated instructions are returned in `mvec'. Any temp. registers /// (TmpInstruction) created are recorded in mcfi. Any stack space required is /// allocated via MachineFunction. /// void CreateCodeToLoadConst(const TargetMachine& target, Function* F, Value* val, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi) { assert(isa(val) && "I only know about constant values and global addresses"); // Use a "set" instruction for known constants or symbolic constants (labels) // that can go in an integer reg. // We have to use a "load" instruction for all other constants, // in particular, floating point constants. const Type* valType = val->getType(); if (isa(val)) { TmpInstruction* tmpReg = new TmpInstruction(mcfi, PointerType::get(val->getType()), val); CreateSETXLabel(val, tmpReg, dest, mvec, mcfi); return; } bool isValid; uint64_t C = ConvertConstantToIntType(target, val, dest->getType(), isValid); if (isValid) { if (dest->getType()->isSigned()) CreateUIntSetInstruction(C, dest, mvec, mcfi, val); else CreateIntSetInstruction((int64_t) C, dest, mvec, mcfi, val); } else { // Make an instruction sequence to load the constant, viz: // SETX , tmpReg, addrReg // LOAD /*addr*/ addrReg, /*offset*/ 0, dest // First, create a tmp register to be used by the SETX sequence. TmpInstruction* tmpReg = new TmpInstruction(mcfi, PointerType::get(val->getType())); // Create another TmpInstruction for the address register TmpInstruction* addrReg = new TmpInstruction(mcfi, PointerType::get(val->getType())); // Get the constant pool index for this constant MachineConstantPool *CP = MachineFunction::get(F).getConstantPool(); Constant *C = cast(val); unsigned CPI = CP->getConstantPoolIndex(C); // Put the address of the constant into a register MachineInstr* MI; MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(tmpReg); MI->getOperand(0).markHi64(); mvec.push_back(MI); //Create another tmp register for the SETX sequence to preserve SSA TmpInstruction* tmpReg2 = new TmpInstruction(mcfi, PointerType::get(val->getType())); MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addConstantPoolIndex(CPI) .addRegDef(tmpReg2); MI->getOperand(1).markLo64(); mvec.push_back(MI); //Create another tmp register for the SETX sequence to preserve SSA TmpInstruction* tmpReg3 = new TmpInstruction(mcfi, PointerType::get(val->getType())); mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg2).addZImm(32) .addRegDef(tmpReg3)); MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(addrReg); MI->getOperand(0).markHi32(); mvec.push_back(MI); // Create another TmpInstruction for the address register TmpInstruction* addrReg2 = new TmpInstruction(mcfi, PointerType::get(val->getType())); MI = BuildMI(V9::ORr, 3).addReg(addrReg).addReg(tmpReg3).addRegDef(addrReg2); mvec.push_back(MI); // Create another TmpInstruction for the address register TmpInstruction* addrReg3 = new TmpInstruction(mcfi, PointerType::get(val->getType())); MI = BuildMI(V9::ORi, 3).addReg(addrReg2).addConstantPoolIndex(CPI) .addRegDef(addrReg3); MI->getOperand(1).markLo32(); mvec.push_back(MI); // Now load the constant from out ConstantPool label unsigned Opcode = ChooseLoadInstruction(val->getType()); Opcode = convertOpcodeFromRegToImm(Opcode); mvec.push_back(BuildMI(Opcode, 3) .addReg(addrReg3).addSImm((int64_t)0).addRegDef(dest)); } } /// CreateCodeToCopyFloatToInt - Similarly, create an instruction sequence /// to copy an FP register `val' to an integer register `dest' by copying to /// memory and back. The generated instructions are returned in `mvec'. Any /// temp. virtual registers (TmpInstruction) created are recorded in mcfi. /// Temporary stack space required is allocated via MachineFunction. /// void CreateCodeToCopyFloatToInt(const TargetMachine& target, Function* F, Value* val, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi) { const Type* opTy = val->getType(); const Type* destTy = dest->getType(); assert(opTy->isFloatingPoint() && "Source type must be float/double"); assert((destTy->isIntegral() || isa(destTy)) && "Dest type must be integer, bool or pointer"); // FIXME: For now, we allocate permanent space because the stack frame // manager does not allow locals to be allocated (e.g., for alloca) after // a temp is allocated! int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val); unsigned FPReg = target.getRegInfo()->getFramePointer(); // Store instruction stores `val' to [%fp+offset]. // The store opCode is based only the source value being copied. unsigned StoreOpcode = ChooseStoreInstruction(opTy); StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode); mvec.push_back(BuildMI(StoreOpcode, 3) .addReg(val).addMReg(FPReg).addSImm(offset)); // Load instruction loads [%fp+offset] to `dest'. // The type of the load opCode is the integer type that matches the // source type in size: // On SparcV9: int for float, long for double. // Note that we *must* use signed loads even for unsigned dest types, to // ensure correct sign-extension for UByte, UShort or UInt: const Type* loadTy = (opTy == Type::FloatTy)? Type::IntTy : Type::LongTy; unsigned LoadOpcode = ChooseLoadInstruction(loadTy); LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode); mvec.push_back(BuildMI(LoadOpcode, 3).addMReg(FPReg) .addSImm(offset).addRegDef(dest)); } /// CreateBitExtensionInstructions - Helper function for sign-extension and /// zero-extension. For SPARC v9, we sign-extend the given operand using SLL; /// SRA/SRL. /// inline void CreateBitExtensionInstructions(bool signExtend, const TargetMachine& target, Function* F, Value* srcVal, Value* destVal, unsigned int numLowBits, std::vector& mvec, MachineCodeForInstruction& mcfi) { MachineInstr* M; assert(numLowBits <= 32 && "Otherwise, nothing should be done here!"); if (numLowBits < 32) { // SLL is needed since operand size is < 32 bits. TmpInstruction *tmpI = new TmpInstruction(mcfi, destVal->getType(), srcVal, destVal, "make32"); mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(srcVal) .addZImm(32-numLowBits).addRegDef(tmpI)); srcVal = tmpI; } mvec.push_back(BuildMI(signExtend? V9::SRAi5 : V9::SRLi5, 3) .addReg(srcVal).addZImm(32-numLowBits).addRegDef(destVal)); } /// CreateSignExtensionInstructions - Create instruction sequence to produce /// a sign-extended register value from an arbitrary-sized integer value (sized /// in bits, not bytes). The generated instructions are returned in `mvec'. Any /// temp. registers (TmpInstruction) created are recorded in mcfi. Any stack /// space required is allocated via MachineFunction. /// void CreateSignExtensionInstructions(const TargetMachine& target, Function* F, Value* srcVal, Value* destVal, unsigned int numLowBits, std::vector& mvec, MachineCodeForInstruction& mcfi) { CreateBitExtensionInstructions(/*signExtend*/ true, target, F, srcVal, destVal, numLowBits, mvec, mcfi); } /// CreateZeroExtensionInstructions - Create instruction sequence to produce /// a zero-extended register value from an arbitrary-sized integer value (sized /// in bits, not bytes). For SPARC v9, we sign-extend the given operand using /// SLL; SRL. The generated instructions are returned in `mvec'. Any temp. /// registers (TmpInstruction) created are recorded in mcfi. Any stack space /// required is allocated via MachineFunction. /// void CreateZeroExtensionInstructions(const TargetMachine& target, Function* F, Value* srcVal, Value* destVal, unsigned int numLowBits, std::vector& mvec, MachineCodeForInstruction& mcfi) { CreateBitExtensionInstructions(/*signExtend*/ false, target, F, srcVal, destVal, numLowBits, mvec, mcfi); } /// CreateCodeToCopyIntToFloat - Create an instruction sequence to copy an /// integer register `val' to a floating point register `dest' by copying to /// memory and back. val must be an integral type. dest must be a Float or /// Double. The generated instructions are returned in `mvec'. Any temp. /// registers (TmpInstruction) created are recorded in mcfi. Any stack space /// required is allocated via MachineFunction. /// void CreateCodeToCopyIntToFloat(const TargetMachine& target, Function* F, Value* val, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi) { assert((val->getType()->isIntegral() || isa(val->getType())) && "Source type must be integral (integer or bool) or pointer"); assert(dest->getType()->isFloatingPoint() && "Dest type must be float/double"); // Get a stack slot to use for the copy int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val); // Get the size of the source value being copied. size_t srcSize = target.getTargetData().getTypeSize(val->getType()); // Store instruction stores `val' to [%fp+offset]. // The store and load opCodes are based on the size of the source value. // If the value is smaller than 32 bits, we must sign- or zero-extend it // to 32 bits since the load-float will load 32 bits. // Note that the store instruction is the same for signed and unsigned ints. const Type* storeType = (srcSize <= 4)? Type::IntTy : Type::LongTy; Value* storeVal = val; if (srcSize < target.getTargetData().getTypeSize(Type::FloatTy)) { // sign- or zero-extend respectively storeVal = new TmpInstruction(mcfi, storeType, val); if (val->getType()->isSigned()) CreateSignExtensionInstructions(target, F, val, storeVal, 8*srcSize, mvec, mcfi); else CreateZeroExtensionInstructions(target, F, val, storeVal, 8*srcSize, mvec, mcfi); } unsigned FPReg = target.getRegInfo()->getFramePointer(); unsigned StoreOpcode = ChooseStoreInstruction(storeType); StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode); mvec.push_back(BuildMI(StoreOpcode, 3) .addReg(storeVal).addMReg(FPReg).addSImm(offset)); // Load instruction loads [%fp+offset] to `dest'. // The type of the load opCode is the floating point type that matches the // stored type in size: // On SparcV9: float for int or smaller, double for long. const Type* loadType = (srcSize <= 4)? Type::FloatTy : Type::DoubleTy; unsigned LoadOpcode = ChooseLoadInstruction(loadType); LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode); mvec.push_back(BuildMI(LoadOpcode, 3) .addMReg(FPReg).addSImm(offset).addRegDef(dest)); } /// InsertCodeToLoadConstant - Generates code to load the constant /// into a TmpInstruction (virtual reg) and returns the virtual register. /// static TmpInstruction* InsertCodeToLoadConstant(Function *F, Value* opValue, Instruction* vmInstr, std::vector& loadConstVec, TargetMachine& target) { // Create a tmp virtual register to hold the constant. MachineCodeForInstruction &mcfi = MachineCodeForInstruction::get(vmInstr); TmpInstruction* tmpReg = new TmpInstruction(mcfi, opValue); CreateCodeToLoadConst(target, F, opValue, tmpReg, loadConstVec, mcfi); // Record the mapping from the tmp VM instruction to machine instruction. // Do this for all machine instructions that were not mapped to any // other temp values created by // tmpReg->addMachineInstruction(loadConstVec.back()); return tmpReg; } MachineOperand::MachineOperandType ChooseRegOrImmed(int64_t intValue, bool isSigned, MachineOpCode opCode, const TargetMachine& target, bool canUseImmed, unsigned int& getMachineRegNum, int64_t& getImmedValue) { MachineOperand::MachineOperandType opType=MachineOperand::MO_VirtualRegister; getMachineRegNum = 0; getImmedValue = 0; if (canUseImmed && target.getInstrInfo()->constantFitsInImmedField(opCode, intValue)) { opType = isSigned? MachineOperand::MO_SignExtendedImmed : MachineOperand::MO_UnextendedImmed; getImmedValue = intValue; } else if (intValue == 0 && target.getRegInfo()->getZeroRegNum() != (unsigned)-1) { opType = MachineOperand::MO_MachineRegister; getMachineRegNum = target.getRegInfo()->getZeroRegNum(); } return opType; } MachineOperand::MachineOperandType ChooseRegOrImmed(Value* val, MachineOpCode opCode, const TargetMachine& target, bool canUseImmed, unsigned int& getMachineRegNum, int64_t& getImmedValue) { getMachineRegNum = 0; getImmedValue = 0; // To use reg or immed, constant needs to be integer, bool, or a NULL pointer. // ConvertConstantToIntType() does the right conversions. bool isValidConstant; uint64_t valueToUse = ConvertConstantToIntType(target, val, val->getType(), isValidConstant); if (! isValidConstant) return MachineOperand::MO_VirtualRegister; // Now check if the constant value fits in the IMMED field. return ChooseRegOrImmed((int64_t) valueToUse, val->getType()->isSigned(), opCode, target, canUseImmed, getMachineRegNum, getImmedValue); } /// CreateCopyInstructionsByType - Create instruction(s) to copy src to dest, /// for arbitrary types. The generated instructions are returned in `mvec'. Any /// temp. registers (TmpInstruction) created are recorded in mcfi. Any stack /// space required is allocated via MachineFunction. /// void CreateCopyInstructionsByType(const TargetMachine& target, Function *F, Value* src, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi) { bool loadConstantToReg = false; const Type* resultType = dest->getType(); MachineOpCode opCode = ChooseAddInstructionByType(resultType); assert (opCode != V9::INVALID_OPCODE && "Unsupported result type in CreateCopyInstructionsByType()"); // If `src' is a constant that doesn't fit in the immed field or if it is // a global variable (i.e., a constant address), generate a load // instruction instead of an add. if (isa(src)) loadConstantToReg = true; else if (isa(src)) { unsigned int machineRegNum; int64_t immedValue; MachineOperand::MachineOperandType opType = ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true, machineRegNum, immedValue); if (opType == MachineOperand::MO_VirtualRegister) loadConstantToReg = true; } if (loadConstantToReg) { // `src' is constant and cannot fit in immed field for the ADD. // Insert instructions to "load" the constant into a register. CreateCodeToLoadConst(target, F, src, dest, mvec, mcfi); } else { // Create a reg-to-reg copy instruction for the given type: // -- For FP values, create a FMOVS or FMOVD instruction // -- For non-FP values, create an add-with-0 instruction (opCode as above) // Make `src' the second operand, in case it is a small constant! MachineInstr* MI; if (resultType->isFloatingPoint()) MI = (BuildMI(resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD, 2) .addReg(src).addRegDef(dest)); else { const Type* Ty =isa(resultType)? Type::ULongTy :resultType; MI = (BuildMI(opCode, 3) .addSImm((int64_t) 0).addReg(src).addRegDef(dest)); } mvec.push_back(MI); } } /// FixConstantOperandsForInstr - Make a machine instruction use its constant /// operands more efficiently. If the constant is 0, then use the hardwired 0 /// register, if any. Else, if the constant fits in the IMMEDIATE field, then /// use that field. Otherwise, else create instructions to put the constant /// into a register, either directly or by loading explicitly from the constant /// pool. In the first 2 cases, the operand of `minstr' is modified in place. /// Returns a vector of machine instructions generated for operands that fall /// under case 3; these must be inserted before `minstr'. /// std::vector FixConstantOperandsForInstr(Instruction* vmInstr, MachineInstr* minstr, TargetMachine& target) { std::vector MVec; MachineOpCode opCode = minstr->getOpcode(); const TargetInstrInfo& instrInfo = *target.getInstrInfo(); int resultPos = instrInfo.get(opCode).resultPos; int immedPos = instrInfo.getImmedConstantPos(opCode); Function *F = vmInstr->getParent()->getParent(); for (unsigned op=0; op < minstr->getNumOperands(); op++) { const MachineOperand& mop = minstr->getOperand(op); // Skip the result position, preallocated machine registers, or operands // that cannot be constants (CC regs or PC-relative displacements) if (resultPos == (int)op || mop.getType() == MachineOperand::MO_MachineRegister || mop.getType() == MachineOperand::MO_CCRegister || mop.getType() == MachineOperand::MO_PCRelativeDisp) continue; bool constantThatMustBeLoaded = false; unsigned int machineRegNum = 0; int64_t immedValue = 0; Value* opValue = NULL; MachineOperand::MachineOperandType opType = MachineOperand::MO_VirtualRegister; // Operand may be a virtual register or a compile-time constant if (mop.getType() == MachineOperand::MO_VirtualRegister) { assert(mop.getVRegValue() != NULL); opValue = mop.getVRegValue(); if (Constant *opConst = dyn_cast(opValue)) if (!isa(opConst)) { opType = ChooseRegOrImmed(opConst, opCode, target, (immedPos == (int)op), machineRegNum, immedValue); if (opType == MachineOperand::MO_VirtualRegister) constantThatMustBeLoaded = true; } } else { // If the operand is from the constant pool, don't try to change it. if (mop.getType() == MachineOperand::MO_ConstantPoolIndex) { continue; } assert(mop.isImmediate()); bool isSigned = mop.getType() == MachineOperand::MO_SignExtendedImmed; // Bit-selection flags indicate an instruction that is extracting // bits from its operand so ignore this even if it is a big constant. if (mop.isHiBits32() || mop.isLoBits32() || mop.isHiBits64() || mop.isLoBits64()) continue; opType = ChooseRegOrImmed(mop.getImmedValue(), isSigned, opCode, target, (immedPos == (int)op), machineRegNum, immedValue); if (opType == MachineOperand::MO_SignExtendedImmed || opType == MachineOperand::MO_UnextendedImmed) { // The optype is an immediate value // This means we need to change the opcode, e.g. ADDr -> ADDi unsigned newOpcode = convertOpcodeFromRegToImm(opCode); minstr->setOpcode(newOpcode); } if (opType == mop.getType()) continue; // no change: this is the most common case if (opType == MachineOperand::MO_VirtualRegister) { constantThatMustBeLoaded = true; opValue = isSigned ? (Value*)ConstantSInt::get(Type::LongTy, immedValue) : (Value*)ConstantUInt::get(Type::ULongTy,(uint64_t)immedValue); } } if (opType == MachineOperand::MO_MachineRegister) minstr->SetMachineOperandReg(op, machineRegNum); else if (opType == MachineOperand::MO_SignExtendedImmed || opType == MachineOperand::MO_UnextendedImmed) { minstr->SetMachineOperandConst(op, opType, immedValue); // The optype is or has become an immediate // This means we need to change the opcode, e.g. ADDr -> ADDi unsigned newOpcode = convertOpcodeFromRegToImm(opCode); minstr->setOpcode(newOpcode); } else if (constantThatMustBeLoaded || (opValue && isa(opValue))) { // opValue is a constant that must be explicitly loaded into a reg assert(opValue); TmpInstruction* tmpReg = InsertCodeToLoadConstant(F, opValue, vmInstr, MVec, target); minstr->SetMachineOperandVal(op, MachineOperand::MO_VirtualRegister, tmpReg); } } // Also, check for implicit operands used by the machine instruction // (no need to check those defined since they cannot be constants). // These include: // -- arguments to a Call // -- return value of a Return // Any such operand that is a constant value needs to be fixed also. // The current instructions with implicit refs (viz., Call and Return) // have no immediate fields, so the constant always needs to be loaded // into a register. bool isCall = instrInfo.isCall(opCode); unsigned lastCallArgNum = 0; // unused if not a call CallArgsDescriptor* argDesc = NULL; // unused if not a call if (isCall) argDesc = CallArgsDescriptor::get(minstr); for (unsigned i=0, N=minstr->getNumImplicitRefs(); i < N; ++i) if (isa(minstr->getImplicitRef(i))) { Value* oldVal = minstr->getImplicitRef(i); TmpInstruction* tmpReg = InsertCodeToLoadConstant(F, oldVal, vmInstr, MVec, target); minstr->setImplicitRef(i, tmpReg); if (isCall) { // find and replace the argument in the CallArgsDescriptor unsigned i=lastCallArgNum; while (argDesc->getArgInfo(i).getArgVal() != oldVal) ++i; assert(i < argDesc->getNumArgs() && "Constant operands to a call *must* be in the arg list"); lastCallArgNum = i; argDesc->getArgInfo(i).replaceArgVal(tmpReg); } } return MVec; } static inline void Add3OperandInstr(unsigned Opcode, InstructionNode* Node, std::vector& mvec) { mvec.push_back(BuildMI(Opcode, 3).addReg(Node->leftChild()->getValue()) .addReg(Node->rightChild()->getValue()) .addRegDef(Node->getValue())); } /// IsZero - Check for a constant 0. /// static inline bool IsZero(Value* idx) { return (isa(idx) && cast(idx)->isNullValue()) || isa(idx); } /// FoldGetElemChain - Fold a chain of GetElementPtr instructions containing /// only constant offsets into an equivalent (Pointer, IndexVector) pair. /// Returns the pointer Value, and stores the resulting IndexVector in argument /// chainIdxVec. This is a helper function for FoldConstantIndices that does the /// actual folding. // static Value* FoldGetElemChain(InstrTreeNode* ptrNode, std::vector& chainIdxVec, bool lastInstHasLeadingNonZero) { InstructionNode* gepNode = dyn_cast(ptrNode); GetElementPtrInst* gepInst = dyn_cast_or_null(gepNode ? gepNode->getInstruction() :0); // ptr value is not computed in this tree or ptr value does not come from GEP // instruction if (gepInst == NULL) return NULL; // Return NULL if we don't fold any instructions in. Value* ptrVal = NULL; // Now chase the chain of getElementInstr instructions, if any. // Check for any non-constant indices and stop there. // Also, stop if the first index of child is a non-zero array index // and the last index of the current node is a non-array index: // in that case, a non-array declared type is being accessed as an array // which is not type-safe, but could be legal. InstructionNode* ptrChild = gepNode; while (ptrChild && (ptrChild->getOpLabel() == Instruction::GetElementPtr || ptrChild->getOpLabel() == GetElemPtrIdx)) { // Child is a GetElemPtr instruction gepInst = cast(ptrChild->getValue()); User::op_iterator OI, firstIdx = gepInst->idx_begin(); User::op_iterator lastIdx = gepInst->idx_end(); bool allConstantOffsets = true; // The first index of every GEP must be an array index. assert((*firstIdx)->getType() == Type::LongTy && "INTERNAL ERROR: Structure index for a pointer type!"); // If the last instruction had a leading non-zero index, check if the // current one references a sequential (i.e., indexable) type. // If not, the code is not type-safe and we would create an illegal GEP // by folding them, so don't fold any more instructions. if (lastInstHasLeadingNonZero) if (! isa(gepInst->getType()->getElementType())) break; // cannot fold in any preceding getElementPtr instrs. // Check that all offsets are constant for this instruction for (OI = firstIdx; allConstantOffsets && OI != lastIdx; ++OI) allConstantOffsets = isa(*OI); if (allConstantOffsets) { // Get pointer value out of ptrChild. ptrVal = gepInst->getPointerOperand(); // Insert its index vector at the start, skipping any leading [0] // Remember the old size to check if anything was inserted. unsigned oldSize = chainIdxVec.size(); int firstIsZero = IsZero(*firstIdx); chainIdxVec.insert(chainIdxVec.begin(), firstIdx + firstIsZero, lastIdx); // Remember if it has leading zero index: it will be discarded later. if (oldSize < chainIdxVec.size()) lastInstHasLeadingNonZero = !firstIsZero; // Mark the folded node so no code is generated for it. ((InstructionNode*) ptrChild)->markFoldedIntoParent(); // Get the previous GEP instruction and continue trying to fold ptrChild = dyn_cast(ptrChild->leftChild()); } else // cannot fold this getElementPtr instr. or any preceding ones break; } // If the first getElementPtr instruction had a leading [0], add it back. // Note that this instruction is the *last* one that was successfully // folded *and* contributed any indices, in the loop above. if (ptrVal && ! lastInstHasLeadingNonZero) chainIdxVec.insert(chainIdxVec.begin(), ConstantSInt::get(Type::LongTy,0)); return ptrVal; } /// GetGEPInstArgs - Helper function for GetMemInstArgs that handles the /// final getElementPtr instruction used by (or same as) the memory operation. /// Extracts the indices of the current instruction and tries to fold in /// preceding ones if all indices of the current one are constant. /// static Value *GetGEPInstArgs(InstructionNode *gepNode, std::vector &idxVec, bool &allConstantIndices) { allConstantIndices = true; GetElementPtrInst* gepI = cast(gepNode->getInstruction()); // Default pointer is the one from the current instruction. Value* ptrVal = gepI->getPointerOperand(); InstrTreeNode* ptrChild = gepNode->leftChild(); // Extract the index vector of the GEP instruction. // If all indices are constant and first index is zero, try to fold // in preceding GEPs with all constant indices. for (User::op_iterator OI=gepI->idx_begin(), OE=gepI->idx_end(); allConstantIndices && OI != OE; ++OI) if (! isa(*OI)) allConstantIndices = false; // note: this also terminates loop! // If we have only constant indices, fold chains of constant indices // in this and any preceding GetElemPtr instructions. bool foldedGEPs = false; bool leadingNonZeroIdx = gepI && ! IsZero(*gepI->idx_begin()); if (allConstantIndices) if (Value* newPtr = FoldGetElemChain(ptrChild, idxVec, leadingNonZeroIdx)) { ptrVal = newPtr; foldedGEPs = true; } // Append the index vector of the current instruction. // Skip the leading [0] index if preceding GEPs were folded into this. idxVec.insert(idxVec.end(), gepI->idx_begin() + (foldedGEPs && !leadingNonZeroIdx), gepI->idx_end()); return ptrVal; } /// GetMemInstArgs - Get the pointer value and the index vector for a memory /// operation (GetElementPtr, Load, or Store). If all indices of the given /// memory operation are constant, fold in constant indices in a chain of /// preceding GetElementPtr instructions (if any), and return the pointer value /// of the first instruction in the chain. All folded instructions are marked so /// no code is generated for them. Returns the pointer Value to use, and /// returns the resulting IndexVector in idxVec. Sets allConstantIndices /// to true/false if all indices are/aren't const. /// static Value *GetMemInstArgs(InstructionNode *memInstrNode, std::vector &idxVec, bool& allConstantIndices) { allConstantIndices = false; Instruction* memInst = memInstrNode->getInstruction(); assert(idxVec.size() == 0 && "Need empty vector to return indices"); // If there is a GetElemPtr instruction to fold in to this instr, // it must be in the left child for Load and GetElemPtr, and in the // right child for Store instructions. InstrTreeNode* ptrChild = (memInst->getOpcode() == Instruction::Store ? memInstrNode->rightChild() : memInstrNode->leftChild()); // Default pointer is the one from the current instruction. Value* ptrVal = ptrChild->getValue(); // Find the "last" GetElemPtr instruction: this one or the immediate child. // There will be none if this is a load or a store from a scalar pointer. InstructionNode* gepNode = NULL; if (isa(memInst)) gepNode = memInstrNode; else if (isa(ptrChild) && isa(ptrVal)) { // Child of load/store is a GEP and memInst is its only use. // Use its indices and mark it as folded. gepNode = cast(ptrChild); gepNode->markFoldedIntoParent(); } // If there are no indices, return the current pointer. // Else extract the pointer from the GEP and fold the indices. return gepNode ? GetGEPInstArgs(gepNode, idxVec, allConstantIndices) : ptrVal; } static inline MachineOpCode ChooseBprInstruction(const InstructionNode* instrNode) { MachineOpCode opCode; Instruction* setCCInstr = ((InstructionNode*) instrNode->leftChild())->getInstruction(); switch(setCCInstr->getOpcode()) { case Instruction::SetEQ: opCode = V9::BRZ; break; case Instruction::SetNE: opCode = V9::BRNZ; break; case Instruction::SetLE: opCode = V9::BRLEZ; break; case Instruction::SetGE: opCode = V9::BRGEZ; break; case Instruction::SetLT: opCode = V9::BRLZ; break; case Instruction::SetGT: opCode = V9::BRGZ; break; default: assert(0 && "Unrecognized VM instruction!"); opCode = V9::INVALID_OPCODE; break; } return opCode; } static inline MachineOpCode ChooseBpccInstruction(const InstructionNode* instrNode, const BinaryOperator* setCCInstr) { MachineOpCode opCode = V9::INVALID_OPCODE; bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned(); if (isSigned) { switch(setCCInstr->getOpcode()) { case Instruction::SetEQ: opCode = V9::BE; break; case Instruction::SetNE: opCode = V9::BNE; break; case Instruction::SetLE: opCode = V9::BLE; break; case Instruction::SetGE: opCode = V9::BGE; break; case Instruction::SetLT: opCode = V9::BL; break; case Instruction::SetGT: opCode = V9::BG; break; default: assert(0 && "Unrecognized VM instruction!"); break; } } else { switch(setCCInstr->getOpcode()) { case Instruction::SetEQ: opCode = V9::BE; break; case Instruction::SetNE: opCode = V9::BNE; break; case Instruction::SetLE: opCode = V9::BLEU; break; case Instruction::SetGE: opCode = V9::BCC; break; case Instruction::SetLT: opCode = V9::BCS; break; case Instruction::SetGT: opCode = V9::BGU; break; default: assert(0 && "Unrecognized VM instruction!"); break; } } return opCode; } static inline MachineOpCode ChooseBFpccInstruction(const InstructionNode* instrNode, const BinaryOperator* setCCInstr) { MachineOpCode opCode = V9::INVALID_OPCODE; switch(setCCInstr->getOpcode()) { case Instruction::SetEQ: opCode = V9::FBE; break; case Instruction::SetNE: opCode = V9::FBNE; break; case Instruction::SetLE: opCode = V9::FBLE; break; case Instruction::SetGE: opCode = V9::FBGE; break; case Instruction::SetLT: opCode = V9::FBL; break; case Instruction::SetGT: opCode = V9::FBG; break; default: assert(0 && "Unrecognized VM instruction!"); break; } return opCode; } // GetTmpForCC - Create a unique TmpInstruction for a boolean value, // representing the CC register used by a branch on that value. // For now, hack this using a little static cache of TmpInstructions. // Eventually the entire BURG instruction selection should be put // into a separate class that can hold such information. // The static cache is not too bad because the memory for these // TmpInstructions will be freed along with the rest of the Function anyway. // static TmpInstruction *GetTmpForCC (Value* boolVal, const Function *F, const Type* ccType, MachineCodeForInstruction& mcfi) { typedef hash_map BoolTmpCache; static BoolTmpCache boolToTmpCache; // Map boolVal -> TmpInstruction* static const Function *lastFunction = 0;// Use to flush cache between funcs assert(boolVal->getType() == Type::BoolTy && "Weird but ok! Delete assert"); if (lastFunction != F) { lastFunction = F; boolToTmpCache.clear(); } // Look for tmpI and create a new one otherwise. The new value is // directly written to map using the ref returned by operator[]. TmpInstruction*& tmpI = boolToTmpCache[boolVal]; if (tmpI == NULL) tmpI = new TmpInstruction(mcfi, ccType, boolVal); return tmpI; } static inline MachineOpCode ChooseBccInstruction(const InstructionNode* instrNode, const Type*& setCCType) { InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild(); assert(setCCNode->getOpLabel() == SetCCOp); BinaryOperator* setCCInstr =cast(setCCNode->getInstruction()); setCCType = setCCInstr->getOperand(0)->getType(); if (setCCType->isFloatingPoint()) return ChooseBFpccInstruction(instrNode, setCCInstr); else return ChooseBpccInstruction(instrNode, setCCInstr); } /// ChooseMovFpcciInstruction - WARNING: since this function has only one /// caller, it always returns the opcode that expects an immediate and a /// register. If this function is ever used in cases where an opcode that takes /// two registers is required, then modify this function and use /// convertOpcodeFromRegToImm() where required. It will be necessary to expand /// convertOpcodeFromRegToImm() to handle the new cases of opcodes. /// static inline MachineOpCode ChooseMovFpcciInstruction(const InstructionNode* instrNode) { MachineOpCode opCode = V9::INVALID_OPCODE; switch(instrNode->getInstruction()->getOpcode()) { case Instruction::SetEQ: opCode = V9::MOVFEi; break; case Instruction::SetNE: opCode = V9::MOVFNEi; break; case Instruction::SetLE: opCode = V9::MOVFLEi; break; case Instruction::SetGE: opCode = V9::MOVFGEi; break; case Instruction::SetLT: opCode = V9::MOVFLi; break; case Instruction::SetGT: opCode = V9::MOVFGi; break; default: assert(0 && "Unrecognized VM instruction!"); break; } return opCode; } /// ChooseMovpcciForSetCC -- Choose a conditional-move instruction /// based on the type of SetCC operation. /// /// WARNING: like the previous function, this function always returns /// the opcode that expects an immediate and a register. See above. /// static MachineOpCode ChooseMovpcciForSetCC(const InstructionNode* instrNode) { MachineOpCode opCode = V9::INVALID_OPCODE; const Type* opType = instrNode->leftChild()->getValue()->getType(); assert(opType->isIntegral() || isa(opType)); bool noSign = opType->isUnsigned() || isa(opType); switch(instrNode->getInstruction()->getOpcode()) { case Instruction::SetEQ: opCode = V9::MOVEi; break; case Instruction::SetLE: opCode = noSign? V9::MOVLEUi : V9::MOVLEi; break; case Instruction::SetGE: opCode = noSign? V9::MOVCCi : V9::MOVGEi; break; case Instruction::SetLT: opCode = noSign? V9::MOVCSi : V9::MOVLi; break; case Instruction::SetGT: opCode = noSign? V9::MOVGUi : V9::MOVGi; break; case Instruction::SetNE: opCode = V9::MOVNEi; break; default: assert(0 && "Unrecognized LLVM instr!"); break; } return opCode; } /// ChooseMovpregiForSetCC -- Choose a conditional-move-on-register-value /// instruction based on the type of SetCC operation. These instructions /// compare a register with 0 and perform the move is the comparison is true. /// /// WARNING: like the previous function, this function it always returns /// the opcode that expects an immediate and a register. See above. /// static MachineOpCode ChooseMovpregiForSetCC(const InstructionNode* instrNode) { MachineOpCode opCode = V9::INVALID_OPCODE; switch(instrNode->getInstruction()->getOpcode()) { case Instruction::SetEQ: opCode = V9::MOVRZi; break; case Instruction::SetLE: opCode = V9::MOVRLEZi; break; case Instruction::SetGE: opCode = V9::MOVRGEZi; break; case Instruction::SetLT: opCode = V9::MOVRLZi; break; case Instruction::SetGT: opCode = V9::MOVRGZi; break; case Instruction::SetNE: opCode = V9::MOVRNZi; break; default: assert(0 && "Unrecognized VM instr!"); break; } return opCode; } static inline MachineOpCode ChooseConvertToFloatInstr(const TargetMachine& target, OpLabel vopCode, const Type* opType) { assert((vopCode == ToFloatTy || vopCode == ToDoubleTy) && "Unrecognized convert-to-float opcode!"); assert((opType->isIntegral() || opType->isFloatingPoint() || isa(opType)) && "Trying to convert a non-scalar type to FLOAT/DOUBLE?"); MachineOpCode opCode = V9::INVALID_OPCODE; unsigned opSize = target.getTargetData().getTypeSize(opType); if (opType == Type::FloatTy) opCode = (vopCode == ToFloatTy? V9::NOP : V9::FSTOD); else if (opType == Type::DoubleTy) opCode = (vopCode == ToFloatTy? V9::FDTOS : V9::NOP); else if (opSize <= 4) opCode = (vopCode == ToFloatTy? V9::FITOS : V9::FITOD); else { assert(opSize == 8 && "Unrecognized type size > 4 and < 8!"); opCode = (vopCode == ToFloatTy? V9::FXTOS : V9::FXTOD); } return opCode; } static inline MachineOpCode ChooseConvertFPToIntInstr(const TargetMachine& target, const Type* destType, const Type* opType) { assert((opType == Type::FloatTy || opType == Type::DoubleTy) && "This function should only be called for FLOAT or DOUBLE"); assert((destType->isIntegral() || isa(destType)) && "Trying to convert FLOAT/DOUBLE to a non-scalar type?"); MachineOpCode opCode = V9::INVALID_OPCODE; unsigned destSize = target.getTargetData().getTypeSize(destType); if (destType == Type::UIntTy) assert(destType != Type::UIntTy && "Expand FP-to-uint beforehand."); else if (destSize <= 4) opCode = (opType == Type::FloatTy)? V9::FSTOI : V9::FDTOI; else { assert(destSize == 8 && "Unrecognized type size > 4 and < 8!"); opCode = (opType == Type::FloatTy)? V9::FSTOX : V9::FDTOX; } return opCode; } static MachineInstr* CreateConvertFPToIntInstr(const TargetMachine& target, Value* srcVal, Value* destVal, const Type* destType) { MachineOpCode opCode = ChooseConvertFPToIntInstr(target, destType, srcVal->getType()); assert(opCode != V9::INVALID_OPCODE && "Expected to need conversion!"); return BuildMI(opCode, 2).addReg(srcVal).addRegDef(destVal); } /// CreateCodeToConvertFloatToInt: Convert FP value to signed or unsigned /// integer. The FP value must be converted to the dest type in an FP register, /// and the result is then copied from FP to int register via memory. SPARC /// does not have a float-to-uint conversion, only a float-to-int (fdtoi). /// Since fdtoi converts to signed integers, any FP value V between MAXINT+1 and /// MAXUNSIGNED (i.e., 2^31 <= V <= 2^32-1) would be converted incorrectly. /// Therefore, for converting an FP value to uint32_t, we first need to convert /// to uint64_t and then to uint32_t. /// static void CreateCodeToConvertFloatToInt(const TargetMachine& target, Value* opVal, Instruction* destI, std::vector& mvec, MachineCodeForInstruction& mcfi) { Function* F = destI->getParent()->getParent(); // Create a temporary to represent the FP register into which the // int value will placed after conversion. The type of this temporary // depends on the type of FP register to use: single-prec for a 32-bit // int or smaller; double-prec for a 64-bit int. size_t destSize = target.getTargetData().getTypeSize(destI->getType()); const Type* castDestType = destI->getType(); // type for the cast instr result const Type* castDestRegType; // type for cast instruction result reg TmpInstruction* destForCast; // dest for cast instruction Instruction* fpToIntCopyDest = destI; // dest for fp-reg-to-int-reg copy instr // For converting an FP value to uint32_t, we first need to convert to // uint64_t and then to uint32_t, as explained above. if (destI->getType() == Type::UIntTy) { castDestType = Type::ULongTy; // use this instead of type of destI castDestRegType = Type::DoubleTy; // uint64_t needs 64-bit FP register. destForCast = new TmpInstruction(mcfi, castDestRegType, opVal); fpToIntCopyDest = new TmpInstruction(mcfi, castDestType, destForCast); } else { castDestRegType = (destSize > 4)? Type::DoubleTy : Type::FloatTy; destForCast = new TmpInstruction(mcfi, castDestRegType, opVal); } // Create the fp-to-int conversion instruction (src and dest regs are FP regs) mvec.push_back(CreateConvertFPToIntInstr(target, opVal, destForCast, castDestType)); // Create the fpreg-to-intreg copy code CreateCodeToCopyFloatToInt(target, F, destForCast, fpToIntCopyDest, mvec, mcfi); // Create the uint64_t to uint32_t conversion, if needed if (destI->getType() == Type::UIntTy) CreateZeroExtensionInstructions(target, F, fpToIntCopyDest, destI, /*numLowBits*/ 32, mvec, mcfi); } static inline MachineOpCode ChooseAddInstruction(const InstructionNode* instrNode) { return ChooseAddInstructionByType(instrNode->getInstruction()->getType()); } static inline MachineInstr* CreateMovFloatInstruction(const InstructionNode* instrNode, const Type* resultType) { return BuildMI((resultType == Type::FloatTy) ? V9::FMOVS : V9::FMOVD, 2) .addReg(instrNode->leftChild()->getValue()) .addRegDef(instrNode->getValue()); } static inline MachineInstr* CreateAddConstInstruction(const InstructionNode* instrNode) { MachineInstr* minstr = NULL; Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); assert(isa(constOp)); // Cases worth optimizing are: // (1) Add with 0 for float or double: use an FMOV of appropriate type, // instead of an FADD (1 vs 3 cycles). There is no integer MOV. if (ConstantFP *FPC = dyn_cast(constOp)) { double dval = FPC->getValue(); if (dval == 0.0) minstr = CreateMovFloatInstruction(instrNode, instrNode->getInstruction()->getType()); } return minstr; } static inline MachineOpCode ChooseSubInstructionByType(const Type* resultType) { MachineOpCode opCode = V9::INVALID_OPCODE; if (resultType->isInteger() || isa(resultType)) { opCode = V9::SUBr; } else { switch(resultType->getTypeID()) { case Type::FloatTyID: opCode = V9::FSUBS; break; case Type::DoubleTyID: opCode = V9::FSUBD; break; default: assert(0 && "Invalid type for SUB instruction"); break; } } return opCode; } static inline MachineInstr* CreateSubConstInstruction(const InstructionNode* instrNode) { MachineInstr* minstr = NULL; Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); assert(isa(constOp)); // Cases worth optimizing are: // (1) Sub with 0 for float or double: use an FMOV of appropriate type, // instead of an FSUB (1 vs 3 cycles). There is no integer MOV. if (ConstantFP *FPC = dyn_cast(constOp)) { double dval = FPC->getValue(); if (dval == 0.0) minstr = CreateMovFloatInstruction(instrNode, instrNode->getInstruction()->getType()); } return minstr; } static inline MachineOpCode ChooseFcmpInstruction(const InstructionNode* instrNode) { MachineOpCode opCode = V9::INVALID_OPCODE; Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); switch(operand->getType()->getTypeID()) { case Type::FloatTyID: opCode = V9::FCMPS; break; case Type::DoubleTyID: opCode = V9::FCMPD; break; default: assert(0 && "Invalid type for FCMP instruction"); break; } return opCode; } /// BothFloatToDouble - Assumes that leftArg and rightArg of instrNode are both /// cast instructions. Returns true if both are floats cast to double. /// static inline bool BothFloatToDouble(const InstructionNode* instrNode) { InstrTreeNode* leftArg = instrNode->leftChild(); InstrTreeNode* rightArg = instrNode->rightChild(); InstrTreeNode* leftArgArg = leftArg->leftChild(); InstrTreeNode* rightArgArg = rightArg->leftChild(); assert(leftArg->getValue()->getType() == rightArg->getValue()->getType()); return (leftArg->getValue()->getType() == Type::DoubleTy && leftArgArg->getValue()->getType() == Type::FloatTy && rightArgArg->getValue()->getType() == Type::FloatTy); } static inline MachineOpCode ChooseMulInstructionByType(const Type* resultType) { MachineOpCode opCode = V9::INVALID_OPCODE; if (resultType->isInteger()) opCode = V9::MULXr; else switch(resultType->getTypeID()) { case Type::FloatTyID: opCode = V9::FMULS; break; case Type::DoubleTyID: opCode = V9::FMULD; break; default: assert(0 && "Invalid type for MUL instruction"); break; } return opCode; } static inline MachineInstr* CreateIntNegInstruction(const TargetMachine& target, Value* vreg) { return BuildMI(V9::SUBr, 3).addMReg(target.getRegInfo()->getZeroRegNum()) .addReg(vreg).addRegDef(vreg); } /// CreateShiftInstructions - Create instruction sequence for any shift /// operation. SLL or SLLX on an operand smaller than the integer reg. size /// (64bits) requires a second instruction for explicit sign-extension. Note /// that we only have to worry about a sign-bit appearing in the most /// significant bit of the operand after shifting (e.g., bit 32 of Int or bit 16 /// of Short), so we do not have to worry about results that are as large as a /// normal integer register. /// static inline void CreateShiftInstructions(const TargetMachine& target, Function* F, MachineOpCode shiftOpCode, Value* argVal1, Value* optArgVal2, /* Use optArgVal2 if not NULL */ unsigned optShiftNum, /* else use optShiftNum */ Instruction* destVal, std::vector& mvec, MachineCodeForInstruction& mcfi) { assert((optArgVal2 != NULL || optShiftNum <= 64) && "Large shift sizes unexpected, but can be handled below: " "You need to check whether or not it fits in immed field below"); // If this is a logical left shift of a type smaller than the standard // integer reg. size, we have to extend the sign-bit into upper bits // of dest, so we need to put the result of the SLL into a temporary. Value* shiftDest = destVal; unsigned opSize = target.getTargetData().getTypeSize(argVal1->getType()); if ((shiftOpCode == V9::SLLr5 || shiftOpCode == V9::SLLXr6) && opSize < 8) { // put SLL result into a temporary shiftDest = new TmpInstruction(mcfi, argVal1, optArgVal2, "sllTmp"); } MachineInstr* M = (optArgVal2 != NULL) ? BuildMI(shiftOpCode, 3).addReg(argVal1).addReg(optArgVal2) .addReg(shiftDest, MachineOperand::Def) : BuildMI(shiftOpCode, 3).addReg(argVal1).addZImm(optShiftNum) .addReg(shiftDest, MachineOperand::Def); mvec.push_back(M); if (shiftDest != destVal) { // extend the sign-bit of the result into all upper bits of dest assert(8*opSize <= 32 && "Unexpected type size > 4 and < IntRegSize?"); CreateSignExtensionInstructions(target, F, shiftDest, destVal, 8*opSize, mvec, mcfi); } } /// CreateMulConstInstruction - Does not create any instructions if we /// cannot exploit constant to create a cheaper instruction. This returns the /// approximate cost of the instructions generated, which is used to pick the /// cheapest when both operands are constant. /// static unsigned CreateMulConstInstruction(const TargetMachine &target, Function* F, Value* lval, Value* rval, Instruction* destVal, std::vector& mvec, MachineCodeForInstruction& mcfi) { // Use max. multiply cost, viz., cost of MULX unsigned cost = target.getInstrInfo()->minLatency(V9::MULXr); unsigned firstNewInstr = mvec.size(); Value* constOp = rval; if (! isa(constOp)) return cost; // Cases worth optimizing are: // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV) // (2) Multiply by 2^x for integer types: replace with Shift const Type* resultType = destVal->getType(); if (resultType->isInteger() || isa(resultType)) { bool isValidConst; int64_t C = (int64_t) ConvertConstantToIntType(target, constOp, constOp->getType(), isValidConst); if (isValidConst) { unsigned pow; bool needNeg = false; if (C < 0) { needNeg = true; C = -C; } if (C == 0 || C == 1) { cost = target.getInstrInfo()->minLatency(V9::ADDr); unsigned Zero = target.getRegInfo()->getZeroRegNum(); MachineInstr* M; if (C == 0) M =BuildMI(V9::ADDr,3).addMReg(Zero).addMReg(Zero).addRegDef(destVal); else M = BuildMI(V9::ADDr,3).addReg(lval).addMReg(Zero).addRegDef(destVal); mvec.push_back(M); } else if (isPowerOf2(C, pow)) { unsigned opSize = target.getTargetData().getTypeSize(resultType); MachineOpCode opCode = (opSize <= 32)? V9::SLLr5 : V9::SLLXr6; CreateShiftInstructions(target, F, opCode, lval, NULL, pow, destVal, mvec, mcfi); } if (mvec.size() > 0 && needNeg) { // insert after the instr to flip the sign MachineInstr* M = CreateIntNegInstruction(target, destVal); mvec.push_back(M); } } } else { if (ConstantFP *FPC = dyn_cast(constOp)) { double dval = FPC->getValue(); if (fabs(dval) == 1) { MachineOpCode opCode = (dval < 0) ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD) : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD); mvec.push_back(BuildMI(opCode,2).addReg(lval).addRegDef(destVal)); } } } if (firstNewInstr < mvec.size()) { cost = 0; for (unsigned i=firstNewInstr; i < mvec.size(); ++i) cost += target.getInstrInfo()->minLatency(mvec[i]->getOpcode()); } return cost; } /// CreateCheapestMulConstInstruction - Does not create any instructions /// if we cannot exploit constant to create a cheaper instruction. /// static inline void CreateCheapestMulConstInstruction(const TargetMachine &target, Function* F, Value* lval, Value* rval, Instruction* destVal, std::vector& mvec, MachineCodeForInstruction& mcfi) { Value* constOp; if (isa(lval) && isa(rval)) { // both operands are constant: evaluate and "set" in dest Constant* P = ConstantExpr::get(Instruction::Mul, cast(lval), cast(rval)); CreateCodeToLoadConst (target, F, P, destVal, mvec, mcfi); } else if (isa(rval)) // rval is constant, but not lval CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi); else if (isa(lval)) // lval is constant, but not rval CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi); // else neither is constant return; } /// CreateMulInstruction - Returns NULL if we cannot exploit constant /// to create a cheaper instruction. /// static inline void CreateMulInstruction(const TargetMachine &target, Function* F, Value* lval, Value* rval, Instruction* destVal, std::vector& mvec, MachineCodeForInstruction& mcfi, MachineOpCode forceMulOp = -1) { unsigned L = mvec.size(); CreateCheapestMulConstInstruction(target,F, lval, rval, destVal, mvec, mcfi); if (mvec.size() == L) { // no instructions were added so create MUL reg, reg, reg. // Use FSMULD if both operands are actually floats cast to doubles. // Otherwise, use the default opcode for the appropriate type. MachineOpCode mulOp = ((forceMulOp != -1) ? forceMulOp : ChooseMulInstructionByType(destVal->getType())); mvec.push_back(BuildMI(mulOp, 3).addReg(lval).addReg(rval) .addRegDef(destVal)); } } /// ChooseDivInstruction - Generate a divide instruction for Div or Rem. /// For Rem, this assumes that the operand type will be signed if the result /// type is signed. This is correct because they must have the same sign. /// static inline MachineOpCode ChooseDivInstruction(TargetMachine &target, const InstructionNode* instrNode) { MachineOpCode opCode = V9::INVALID_OPCODE; const Type* resultType = instrNode->getInstruction()->getType(); if (resultType->isInteger()) opCode = resultType->isSigned()? V9::SDIVXr : V9::UDIVXr; else switch(resultType->getTypeID()) { case Type::FloatTyID: opCode = V9::FDIVS; break; case Type::DoubleTyID: opCode = V9::FDIVD; break; default: assert(0 && "Invalid type for DIV instruction"); break; } return opCode; } /// CreateDivConstInstruction - Return if we cannot exploit constant to create /// a cheaper instruction. /// static void CreateDivConstInstruction(TargetMachine &target, const InstructionNode* instrNode, std::vector& mvec) { Value* LHS = instrNode->leftChild()->getValue(); Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); if (!isa(constOp)) return; Instruction* destVal = instrNode->getInstruction(); unsigned ZeroReg = target.getRegInfo()->getZeroRegNum(); // Cases worth optimizing are: // (1) Divide by 1 for any type: replace with copy (ADD or FMOV) // (2) Divide by 2^x for integer types: replace with SR[L or A]{X} const Type* resultType = instrNode->getInstruction()->getType(); if (resultType->isInteger()) { unsigned pow; bool isValidConst; int64_t C = (int64_t) ConvertConstantToIntType(target, constOp, constOp->getType(), isValidConst); if (isValidConst) { bool needNeg = false; if (C < 0) { needNeg = true; C = -C; } if (C == 1) { mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addMReg(ZeroReg) .addRegDef(destVal)); } else if (isPowerOf2(C, pow)) { unsigned opCode; Value* shiftOperand; unsigned opSize = target.getTargetData().getTypeSize(resultType); if (resultType->isSigned()) { // For N / 2^k, if the operand N is negative, // we need to add (2^k - 1) before right-shifting by k, i.e., // // (N / 2^k) = N >> k, if N >= 0; // (N + 2^k - 1) >> k, if N < 0 // // If N is <= 32 bits, use: // sra N, 31, t1 // t1 = ~0, if N < 0, 0 else // srl t1, 32-k, t2 // t2 = 2^k - 1, if N < 0, 0 else // add t2, N, t3 // t3 = N + 2^k -1, if N < 0, N else // sra t3, k, result // result = N / 2^k // // If N is 64 bits, use: // srax N, k-1, t1 // t1 = sign bit in high k positions // srlx t1, 64-k, t2 // t2 = 2^k - 1, if N < 0, 0 else // add t2, N, t3 // t3 = N + 2^k -1, if N < 0, N else // sra t3, k, result // result = N / 2^k TmpInstruction *sraTmp, *srlTmp, *addTmp; MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(destVal); sraTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getSign"); srlTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getPlus2km1"); addTmp = new TmpInstruction(mcfi, resultType, LHS, srlTmp,"incIfNeg"); // Create the SRA or SRAX instruction to get the sign bit mvec.push_back(BuildMI((opSize > 4)? V9::SRAXi6 : V9::SRAi5, 3) .addReg(LHS) .addSImm((resultType==Type::LongTy)? pow-1 : 31) .addRegDef(sraTmp)); // Create the SRL or SRLX instruction to get the sign bit mvec.push_back(BuildMI((opSize > 4)? V9::SRLXi6 : V9::SRLi5, 3) .addReg(sraTmp) .addSImm((resultType==Type::LongTy)? 64-pow : 32-pow) .addRegDef(srlTmp)); // Create the ADD instruction to add 2^pow-1 for negative values mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addReg(srlTmp) .addRegDef(addTmp)); // Get the shift operand and "right-shift" opcode to do the divide shiftOperand = addTmp; opCode = (opSize > 4)? V9::SRAXi6 : V9::SRAi5; } else { // Get the shift operand and "right-shift" opcode to do the divide shiftOperand = LHS; opCode = (opSize > 4)? V9::SRLXi6 : V9::SRLi5; } // Now do the actual shift! mvec.push_back(BuildMI(opCode, 3).addReg(shiftOperand).addZImm(pow) .addRegDef(destVal)); } if (needNeg && (C == 1 || isPowerOf2(C, pow))) { // insert after the instr to flip the sign mvec.push_back(CreateIntNegInstruction(target, destVal)); } } } else { if (ConstantFP *FPC = dyn_cast(constOp)) { double dval = FPC->getValue(); if (fabs(dval) == 1) { unsigned opCode = (dval < 0) ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD) : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD); mvec.push_back(BuildMI(opCode, 2).addReg(LHS).addRegDef(destVal)); } } } } static void CreateCodeForVariableSizeAlloca(const TargetMachine& target, Instruction* result, unsigned tsize, Value* numElementsVal, std::vector& getMvec) { Value* totalSizeVal; MachineInstr* M; MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(result); Function *F = result->getParent()->getParent(); // Enforce the alignment constraints on the stack pointer at // compile time if the total size is a known constant. if (isa(numElementsVal)) { bool isValid; int64_t numElem = (int64_t) ConvertConstantToIntType(target, numElementsVal, numElementsVal->getType(), isValid); assert(isValid && "Unexpectedly large array dimension in alloca!"); int64_t total = numElem * tsize; if (int extra= total % SparcV9FrameInfo::StackFrameSizeAlignment) total += SparcV9FrameInfo::StackFrameSizeAlignment - extra; totalSizeVal = ConstantSInt::get(Type::IntTy, total); } else { // The size is not a constant. Generate code to compute it and // code to pad the size for stack alignment. // Create a Value to hold the (constant) element size Value* tsizeVal = ConstantSInt::get(Type::IntTy, tsize); // Create temporary values to hold the result of MUL, SLL, SRL // To pad `size' to next smallest multiple of 16: // size = (size + 15) & (-16 = 0xfffffffffffffff0) TmpInstruction* tmpProd = new TmpInstruction(mcfi,numElementsVal, tsizeVal); TmpInstruction* tmpAdd15= new TmpInstruction(mcfi,numElementsVal, tmpProd); TmpInstruction* tmpAndf0= new TmpInstruction(mcfi,numElementsVal, tmpAdd15); // Instruction 1: mul numElements, typeSize -> tmpProd // This will optimize the MUL as far as possible. CreateMulInstruction(target, F, numElementsVal, tsizeVal, tmpProd, getMvec, mcfi, -1); // Instruction 2: andn tmpProd, 0x0f -> tmpAndn getMvec.push_back(BuildMI(V9::ADDi, 3).addReg(tmpProd).addSImm(15) .addReg(tmpAdd15, MachineOperand::Def)); // Instruction 3: add tmpAndn, 0x10 -> tmpAdd16 getMvec.push_back(BuildMI(V9::ANDi, 3).addReg(tmpAdd15).addSImm(-16) .addReg(tmpAndf0, MachineOperand::Def)); totalSizeVal = tmpAndf0; } // Get the constant offset from SP for dynamically allocated storage // and create a temporary Value to hold it. MachineFunction& mcInfo = MachineFunction::get(F); bool growUp; ConstantSInt* dynamicAreaOffset = ConstantSInt::get(Type::IntTy, target.getFrameInfo()->getDynamicAreaOffset(mcInfo,growUp)); assert(! growUp && "Has SPARC v9 stack frame convention changed?"); unsigned SPReg = target.getRegInfo()->getStackPointer(); // Instruction 2: sub %sp, totalSizeVal -> %sp getMvec.push_back(BuildMI(V9::SUBr, 3).addMReg(SPReg).addReg(totalSizeVal) .addMReg(SPReg,MachineOperand::Def)); // Instruction 3: add %sp, frameSizeBelowDynamicArea -> result getMvec.push_back(BuildMI(V9::ADDr,3).addMReg(SPReg).addReg(dynamicAreaOffset) .addRegDef(result)); } static void CreateCodeForFixedSizeAlloca(const TargetMachine& target, Instruction* result, unsigned tsize, unsigned numElements, std::vector& getMvec) { assert(result && result->getParent() && "Result value is not part of a function?"); Function *F = result->getParent()->getParent(); MachineFunction &mcInfo = MachineFunction::get(F); // If the alloca is of zero bytes (which is perfectly legal) we bump it up to // one byte. This is unnecessary, but I really don't want to break any // fragile logic in this code. FIXME. if (tsize == 0) tsize = 1; // Put the variable in the dynamically sized area of the frame if either: // (a) The offset is too large to use as an immediate in load/stores // (check LDX because all load/stores have the same-size immed. field). // (b) The object is "large", so it could cause many other locals, // spills, and temporaries to have large offsets. // NOTE: We use LARGE = 8 * argSlotSize = 64 bytes. // You've gotta love having only 13 bits for constant offset values :-|. // unsigned paddedSize; int offsetFromFP = mcInfo.getInfo()->computeOffsetforLocalVar(result, paddedSize, tsize * numElements); if (((int)paddedSize) > 8 * SparcV9FrameInfo::SizeOfEachArgOnStack || !target.getInstrInfo()->constantFitsInImmedField(V9::LDXi,offsetFromFP)) { CreateCodeForVariableSizeAlloca(target, result, tsize, ConstantSInt::get(Type::IntTy,numElements), getMvec); return; } // else offset fits in immediate field so go ahead and allocate it. offsetFromFP = mcInfo.getInfo()->allocateLocalVar(result, tsize *numElements); // Create a temporary Value to hold the constant offset. // This is needed because it may not fit in the immediate field. ConstantSInt* offsetVal = ConstantSInt::get(Type::IntTy, offsetFromFP); // Instruction 1: add %fp, offsetFromFP -> result unsigned FPReg = target.getRegInfo()->getFramePointer(); getMvec.push_back(BuildMI(V9::ADDr, 3).addMReg(FPReg).addReg(offsetVal) .addRegDef(result)); } /// SetOperandsForMemInstr - Choose addressing mode for the given load or store /// instruction. Use [reg+reg] if it is an indexed reference, and the index /// offset is not a constant or if it cannot fit in the offset field. Use /// [reg+offset] in all other cases. This assumes that all array refs are /// "lowered" to one of these forms: /// %x = load (subarray*) ptr, constant ; single constant offset /// %x = load (subarray*) ptr, offsetVal ; single non-constant offset /// Generally, this should happen via strength reduction + LICM. Also, strength /// reduction should take care of using the same register for the loop index /// variable and an array index, when that is profitable. /// static void SetOperandsForMemInstr(unsigned Opcode, std::vector& mvec, InstructionNode* vmInstrNode, const TargetMachine& target) { Instruction* memInst = vmInstrNode->getInstruction(); // Index vector, ptr value, and flag if all indices are const. std::vector idxVec; bool allConstantIndices; Value* ptrVal = GetMemInstArgs(vmInstrNode, idxVec, allConstantIndices); // Now create the appropriate operands for the machine instruction. // First, initialize so we default to storing the offset in a register. int64_t smallConstOffset = 0; Value* valueForRegOffset = NULL; MachineOperand::MachineOperandType offsetOpType = MachineOperand::MO_VirtualRegister; // Check if there is an index vector and if so, compute the // right offset for structures and for arrays if (!idxVec.empty()) { const PointerType* ptrType = cast(ptrVal->getType()); // If all indices are constant, compute the combined offset directly. if (allConstantIndices) { // Compute the offset value using the index vector. Create a // virtual reg. for it since it may not fit in the immed field. uint64_t offset = target.getTargetData().getIndexedOffset(ptrType,idxVec); valueForRegOffset = ConstantSInt::get(Type::LongTy, offset); } else { // There is at least one non-constant offset. Therefore, this must // be an array ref, and must have been lowered to a single non-zero // offset. (An extra leading zero offset, if any, can be ignored.) // Generate code sequence to compute address from index. bool firstIdxIsZero = IsZero(idxVec[0]); assert(idxVec.size() == 1U + firstIdxIsZero && "Array refs must be lowered before Instruction Selection"); Value* idxVal = idxVec[firstIdxIsZero]; std::vector mulVec; Instruction* addr = new TmpInstruction(MachineCodeForInstruction::get(memInst), Type::ULongTy, memInst); // Get the array type indexed by idxVal, and compute its element size. // The call to getTypeSize() will fail if size is not constant. const Type* vecType = (firstIdxIsZero ? GetElementPtrInst::getIndexedType(ptrType, std::vector(1U, idxVec[0]), /*AllowCompositeLeaf*/ true) : ptrType); const Type* eltType = cast(vecType)->getElementType(); ConstantUInt* eltSizeVal = ConstantUInt::get(Type::ULongTy, target.getTargetData().getTypeSize(eltType)); // CreateMulInstruction() folds constants intelligently enough. CreateMulInstruction(target, memInst->getParent()->getParent(), idxVal, /* lval, not likely to be const*/ eltSizeVal, /* rval, likely to be constant */ addr, /* result */ mulVec, MachineCodeForInstruction::get(memInst), -1); assert(mulVec.size() > 0 && "No multiply code created?"); mvec.insert(mvec.end(), mulVec.begin(), mulVec.end()); valueForRegOffset = addr; } } else { offsetOpType = MachineOperand::MO_SignExtendedImmed; smallConstOffset = 0; } // For STORE: // Operand 0 is value, operand 1 is ptr, operand 2 is offset // For LOAD or GET_ELEMENT_PTR, // Operand 0 is ptr, operand 1 is offset, operand 2 is result. unsigned offsetOpNum, ptrOpNum; MachineInstr *MI; if (memInst->getOpcode() == Instruction::Store) { if (offsetOpType == MachineOperand::MO_VirtualRegister) { MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue()) .addReg(ptrVal).addReg(valueForRegOffset); } else { Opcode = convertOpcodeFromRegToImm(Opcode); MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue()) .addReg(ptrVal).addSImm(smallConstOffset); } } else { if (offsetOpType == MachineOperand::MO_VirtualRegister) { MI = BuildMI(Opcode, 3).addReg(ptrVal).addReg(valueForRegOffset) .addRegDef(memInst); } else { Opcode = convertOpcodeFromRegToImm(Opcode); MI = BuildMI(Opcode, 3).addReg(ptrVal).addSImm(smallConstOffset) .addRegDef(memInst); } } mvec.push_back(MI); } /// ForwardOperand - Substitute operand `operandNum' of the instruction in /// node `treeNode' in place of the use(s) of that instruction in node `parent'. /// Check both explicit and implicit operands! Also make sure to skip over a /// parent who: (1) is a list node in the Burg tree, or (2) itself had its /// results forwarded to its parent. /// static void ForwardOperand (InstructionNode *treeNode, InstrTreeNode *parent, int operandNum) { assert(treeNode && parent && "Invalid invocation of ForwardOperand"); Instruction* unusedOp = treeNode->getInstruction(); Value* fwdOp = unusedOp->getOperand(operandNum); // The parent itself may be a list node, so find the real parent instruction while (parent->getNodeType() != InstrTreeNode::NTInstructionNode) { parent = parent->parent(); assert(parent && "ERROR: Non-instruction node has no parent in tree."); } InstructionNode* parentInstrNode = (InstructionNode*) parent; Instruction* userInstr = parentInstrNode->getInstruction(); MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(userInstr); // The parent's mvec would be empty if it was itself forwarded. // Recursively call ForwardOperand in that case... // if (mvec.size() == 0) { assert(parent->parent() != NULL && "Parent could not have been forwarded, yet has no instructions?"); ForwardOperand(treeNode, parent->parent(), operandNum); } else { for (unsigned i=0, N=mvec.size(); i < N; i++) { MachineInstr* minstr = mvec[i]; for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i) { const MachineOperand& mop = minstr->getOperand(i); if (mop.getType() == MachineOperand::MO_VirtualRegister && mop.getVRegValue() == unusedOp) { minstr->SetMachineOperandVal(i, MachineOperand::MO_VirtualRegister, fwdOp); } } for (unsigned i=0,numOps=minstr->getNumImplicitRefs(); igetImplicitRef(i) == unusedOp) minstr->setImplicitRef(i, fwdOp); } } } /// AllUsesAreBranches - Returns true if all the uses of I are /// Branch instructions, false otherwise. /// inline bool AllUsesAreBranches(const Instruction* I) { for (Value::use_const_iterator UI=I->use_begin(), UE=I->use_end(); UI != UE; ++UI) if (! isa(*UI) // ignore tmp instructions here && cast(*UI)->getOpcode() != Instruction::Br) return false; return true; } /// CodeGenIntrinsic - Generate code for any intrinsic that needs a special /// code sequence instead of a regular call. If not that kind of intrinsic, do /// nothing. Returns true if code was generated, otherwise false. /// static bool CodeGenIntrinsic(Intrinsic::ID iid, CallInst &callInstr, TargetMachine &target, std::vector& mvec) { switch (iid) { default: assert(0 && "Unknown intrinsic function call should have been lowered!"); case Intrinsic::vastart: { // Get the address of the first incoming vararg argument on the stack Function* func = cast(callInstr.getParent()->getParent()); int numFixedArgs = func->getFunctionType()->getNumParams(); int fpReg = SparcV9::i6; int firstVarArgOff = numFixedArgs * 8 + SparcV9FrameInfo::FirstIncomingArgOffsetFromFP; mvec.push_back(BuildMI(V9::ADDi, 3).addMReg(fpReg).addSImm(firstVarArgOff). addRegDef(&callInstr)); return true; } case Intrinsic::vaend: return true; // no-op on SparcV9 case Intrinsic::vacopy: // Simple copy of current va_list (arg1) to new va_list (result) mvec.push_back(BuildMI(V9::ORr, 3). addMReg(target.getRegInfo()->getZeroRegNum()). addReg(callInstr.getOperand(1)). addRegDef(&callInstr)); return true; } } /// ThisIsAChainRule - returns true if the given BURG rule is a chain rule. /// extern bool ThisIsAChainRule(int eruleno) { switch(eruleno) { case 111: // stmt: reg case 123: case 124: case 125: case 126: case 127: case 128: case 129: case 130: case 131: case 132: case 133: case 155: case 221: case 222: case 241: case 242: case 243: case 244: case 245: case 321: return true; break; default: return false; break; } } /// GetInstructionsByRule - Choose machine instructions for the /// SPARC V9 according to the patterns chosen by the BURG-generated parser. /// This is where most of the work in the V9 instruction selector gets done. /// void GetInstructionsByRule(InstructionNode* subtreeRoot, int ruleForNode, short* nts, TargetMachine &target, std::vector& mvec) { bool checkCast = false; // initialize here to use fall-through bool maskUnsignedResult = false; int nextRule; int forwardOperandNum = -1; unsigned allocaSize = 0; MachineInstr* M, *M2; unsigned L; bool foldCase = false; mvec.clear(); // If the code for this instruction was folded into the parent (user), // then do nothing! if (subtreeRoot->isFoldedIntoParent()) return; // Let's check for chain rules outside the switch so that we don't have // to duplicate the list of chain rule production numbers here again if (ThisIsAChainRule(ruleForNode)) { // Chain rules have a single nonterminal on the RHS. // Get the rule that matches the RHS non-terminal and use that instead. assert(nts[0] && ! nts[1] && "A chain rule should have only one RHS non-terminal!"); nextRule = burm_rule(subtreeRoot->state, nts[0]); nts = burm_nts[nextRule]; GetInstructionsByRule(subtreeRoot, nextRule, nts, target, mvec); } else { switch(ruleForNode) { case 1: // stmt: Ret case 2: // stmt: RetValue(reg) { // NOTE: Prepass of register allocation is responsible // for moving return value to appropriate register. // Copy the return value to the required return register. // Mark the return Value as an implicit ref of the RET instr.. // Mark the return-address register as a hidden virtual reg. // Finally put a NOP in the delay slot. ReturnInst *returnInstr=cast(subtreeRoot->getInstruction()); Value* retVal = returnInstr->getReturnValue(); MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(returnInstr); // Create a hidden virtual reg to represent the return address register // used by the machine instruction but not represented in LLVM. Instruction* returnAddrTmp = new TmpInstruction(mcfi, returnInstr); MachineInstr* retMI = BuildMI(V9::JMPLRETi, 3).addReg(returnAddrTmp).addSImm(8) .addMReg(target.getRegInfo()->getZeroRegNum(), MachineOperand::Def); // If there is a value to return, we need to: // (a) Sign-extend the value if it is smaller than 8 bytes (reg size) // (b) Insert a copy to copy the return value to the appropriate reg. // -- For FP values, create a FMOVS or FMOVD instruction // -- For non-FP values, create an add-with-0 instruction if (retVal != NULL) { const SparcV9RegInfo& regInfo = (SparcV9RegInfo&) *target.getRegInfo(); const Type* retType = retVal->getType(); unsigned regClassID = regInfo.getRegClassIDOfType(retType); unsigned retRegNum = (retType->isFloatingPoint() ? (unsigned) SparcV9FloatRegClass::f0 : (unsigned) SparcV9IntRegClass::i0); retRegNum = regInfo.getUnifiedRegNum(regClassID, retRegNum); // Insert sign-extension instructions for small signed values. Value* retValToUse = retVal; if (retType->isIntegral() && retType->isSigned()) { unsigned retSize = target.getTargetData().getTypeSize(retType); if (retSize <= 4) { // Create a temporary virtual reg. to hold the sign-extension. retValToUse = new TmpInstruction(mcfi, retVal); // Sign-extend retVal and put the result in the temporary reg. CreateSignExtensionInstructions (target, returnInstr->getParent()->getParent(), retVal, retValToUse, 8*retSize, mvec, mcfi); } } // (b) Now, insert a copy to to the appropriate register: // -- For FP values, create a FMOVS or FMOVD instruction // -- For non-FP values, create an add-with-0 instruction // First, create a virtual register to represent the register and // mark this vreg as being an implicit operand of the ret MI. TmpInstruction* retVReg = new TmpInstruction(mcfi, retValToUse, NULL, "argReg"); retMI->addImplicitRef(retVReg); if (retType->isFloatingPoint()) M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2) .addReg(retValToUse).addReg(retVReg, MachineOperand::Def)); else M = (BuildMI(ChooseAddInstructionByType(retType), 3) .addReg(retValToUse).addSImm((int64_t) 0) .addReg(retVReg, MachineOperand::Def)); // Mark the operand with the register it should be assigned M->SetRegForOperand(M->getNumOperands()-1, retRegNum); retMI->SetRegForImplicitRef(retMI->getNumImplicitRefs()-1, retRegNum); mvec.push_back(M); } // Now insert the RET instruction and a NOP for the delay slot mvec.push_back(retMI); mvec.push_back(BuildMI(V9::NOP, 0)); break; } case 3: // stmt: Store(reg,reg) case 4: // stmt: Store(reg,ptrreg) SetOperandsForMemInstr(ChooseStoreInstruction( subtreeRoot->leftChild()->getValue()->getType()), mvec, subtreeRoot, target); break; case 5: // stmt: BrUncond { BranchInst *BI = cast(subtreeRoot->getInstruction()); mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(0))); // delay slot mvec.push_back(BuildMI(V9::NOP, 0)); break; } case 206: // stmt: BrCond(setCCconst) { // setCCconst => boolean was computed with `%b = setCC type reg1 const' // If the constant is ZERO, we can use the branch-on-integer-register // instructions and avoid the SUBcc instruction entirely. // Otherwise this is just the same as case 5, so just fall through. // InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild(); assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode); Constant *constVal = cast(constNode->getValue()); bool isValidConst; if ((constVal->getType()->isInteger() || isa(constVal->getType())) && ConvertConstantToIntType(target, constVal, constVal->getType(), isValidConst) == 0 && isValidConst) { // That constant is a zero after all... // Use the left child of setCC as the first argument! // Mark the setCC node so that no code is generated for it. InstructionNode* setCCNode = (InstructionNode*) subtreeRoot->leftChild(); assert(setCCNode->getOpLabel() == SetCCOp); setCCNode->markFoldedIntoParent(); BranchInst* brInst=cast(subtreeRoot->getInstruction()); M = BuildMI(ChooseBprInstruction(subtreeRoot), 2) .addReg(setCCNode->leftChild()->getValue()) .addPCDisp(brInst->getSuccessor(0)); mvec.push_back(M); // delay slot mvec.push_back(BuildMI(V9::NOP, 0)); // false branch mvec.push_back(BuildMI(V9::BA, 1) .addPCDisp(brInst->getSuccessor(1))); // delay slot mvec.push_back(BuildMI(V9::NOP, 0)); break; } // ELSE FALL THROUGH } case 6: // stmt: BrCond(setCC) { // bool => boolean was computed with SetCC. // The branch to use depends on whether it is FP, signed, or unsigned. // If it is an integer CC, we also need to find the unique // TmpInstruction representing that CC. // BranchInst* brInst = cast(subtreeRoot->getInstruction()); const Type* setCCType; unsigned Opcode = ChooseBccInstruction(subtreeRoot, setCCType); Value* ccValue = GetTmpForCC(subtreeRoot->leftChild()->getValue(), brInst->getParent()->getParent(), setCCType, MachineCodeForInstruction::get(brInst)); M = BuildMI(Opcode, 2).addCCReg(ccValue) .addPCDisp(brInst->getSuccessor(0)); mvec.push_back(M); // delay slot mvec.push_back(BuildMI(V9::NOP, 0)); // false branch mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(brInst->getSuccessor(1))); // delay slot mvec.push_back(BuildMI(V9::NOP, 0)); break; } case 208: // stmt: BrCond(boolconst) { // boolconst => boolean is a constant; use BA to first or second label Constant* constVal = cast(subtreeRoot->leftChild()->getValue()); unsigned dest = cast(constVal)->getValue()? 0 : 1; M = BuildMI(V9::BA, 1).addPCDisp( cast(subtreeRoot->getInstruction())->getSuccessor(dest)); mvec.push_back(M); // delay slot mvec.push_back(BuildMI(V9::NOP, 0)); break; } case 8: // stmt: BrCond(boolreg) { // boolreg => boolean is recorded in an integer register. // Use branch-on-integer-register instruction. // BranchInst *BI = cast(subtreeRoot->getInstruction()); M = BuildMI(V9::BRNZ, 2).addReg(subtreeRoot->leftChild()->getValue()) .addPCDisp(BI->getSuccessor(0)); mvec.push_back(M); // delay slot mvec.push_back(BuildMI(V9::NOP, 0)); // false branch mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(1))); // delay slot mvec.push_back(BuildMI(V9::NOP, 0)); break; } case 9: // stmt: Switch(reg) assert(0 && "*** SWITCH instruction is not implemented yet."); break; case 10: // reg: VRegList(reg, reg) assert(0 && "VRegList should never be the topmost non-chain rule"); break; case 21: // bool: Not(bool,reg): Compute with a conditional-move-on-reg { // First find the unary operand. It may be left or right, usually right. Instruction* notI = subtreeRoot->getInstruction(); Value* notArg = BinaryOperator::getNotArgument( cast(subtreeRoot->getInstruction())); unsigned ZeroReg = target.getRegInfo()->getZeroRegNum(); // Unconditionally set register to 0 mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(notI)); // Now conditionally move 1 into the register. // Mark the register as a use (as well as a def) because the old // value will be retained if the condition is false. mvec.push_back(BuildMI(V9::MOVRZi, 3).addReg(notArg).addZImm(1) .addReg(notI, MachineOperand::UseAndDef)); break; } case 421: // reg: BNot(reg,reg): Compute as reg = reg XOR-NOT 0 { // First find the unary operand. It may be left or right, usually right. Value* notArg = BinaryOperator::getNotArgument( cast(subtreeRoot->getInstruction())); unsigned ZeroReg = target.getRegInfo()->getZeroRegNum(); mvec.push_back(BuildMI(V9::XNORr, 3).addReg(notArg).addMReg(ZeroReg) .addRegDef(subtreeRoot->getValue())); break; } case 322: // reg: Not(tobool, reg): // Fold CAST-TO-BOOL with NOT by inverting the sense of cast-to-bool foldCase = true; // Just fall through! case 22: // reg: ToBoolTy(reg): { Instruction* castI = subtreeRoot->getInstruction(); Value* opVal = subtreeRoot->leftChild()->getValue(); MachineCodeForInstruction &mcfi = MachineCodeForInstruction::get(castI); TmpInstruction* tempReg = new TmpInstruction(mcfi, opVal); assert(opVal->getType()->isIntegral() || isa(opVal->getType())); // Unconditionally set register to 0 mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(castI)); // Now conditionally move 1 into the register. // Mark the register as a use (as well as a def) because the old // value will be retained if the condition is false. MachineOpCode opCode = foldCase? V9::MOVRZi : V9::MOVRNZi; mvec.push_back(BuildMI(opCode, 3).addReg(opVal).addZImm(1) .addReg(castI, MachineOperand::UseAndDef)); break; } case 23: // reg: ToUByteTy(reg) case 24: // reg: ToSByteTy(reg) case 25: // reg: ToUShortTy(reg) case 26: // reg: ToShortTy(reg) case 27: // reg: ToUIntTy(reg) case 28: // reg: ToIntTy(reg) case 29: // reg: ToULongTy(reg) case 30: // reg: ToLongTy(reg) { //====================================================================== // Rules for integer conversions: // //-------- // From ISO 1998 C++ Standard, Sec. 4.7: // // 2. If the destination type is unsigned, the resulting value is // the least unsigned integer congruent to the source integer // (modulo 2n where n is the number of bits used to represent the // unsigned type). [Note: In a two s complement representation, // this conversion is conceptual and there is no change in the // bit pattern (if there is no truncation). ] // // 3. If the destination type is signed, the value is unchanged if // it can be represented in the destination type (and bitfield width); // otherwise, the value is implementation-defined. //-------- // // Since we assume 2s complement representations, this implies: // // -- If operand is smaller than destination, zero-extend or sign-extend // according to the signedness of the *operand*: source decides: // (1) If operand is signed, sign-extend it. // If dest is unsigned, zero-ext the result! // (2) If operand is unsigned, our current invariant is that // it's high bits are correct, so zero-extension is not needed. // // -- If operand is same size as or larger than destination, // zero-extend or sign-extend according to the signedness of // the *destination*: destination decides: // (1) If destination is signed, sign-extend (truncating if needed) // This choice is implementation defined. We sign-extend the // operand, which matches both Sun's cc and gcc3.2. // (2) If destination is unsigned, zero-extend (truncating if needed) //====================================================================== Instruction* destI = subtreeRoot->getInstruction(); Function* currentFunc = destI->getParent()->getParent(); MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(destI); Value* opVal = subtreeRoot->leftChild()->getValue(); const Type* opType = opVal->getType(); const Type* destType = destI->getType(); unsigned opSize = target.getTargetData().getTypeSize(opType); unsigned destSize = target.getTargetData().getTypeSize(destType); bool isIntegral = opType->isIntegral() || isa(opType); if (opType == Type::BoolTy || opType == destType || isIntegral && opSize == destSize && opSize == 8) { // nothing to do in all these cases forwardOperandNum = 0; // forward first operand to user } else if (opType->isFloatingPoint()) { CreateCodeToConvertFloatToInt(target, opVal, destI, mvec, mcfi); if (destI->getType()->isUnsigned() && destI->getType() !=Type::UIntTy) maskUnsignedResult = true; // not handled by fp->int code } else if (isIntegral) { bool opSigned = opType->isSigned(); bool destSigned = destType->isSigned(); unsigned extSourceInBits = 8 * std::min(opSize, destSize); assert(! (opSize == destSize && opSigned == destSigned) && "How can different int types have same size and signedness?"); bool signExtend = (opSize < destSize && opSigned || opSize >= destSize && destSigned); bool signAndZeroExtend = (opSize < destSize && destSize < 8u && opSigned && !destSigned); assert(!signAndZeroExtend || signExtend); bool zeroExtendOnly = opSize >= destSize && !destSigned; assert(!zeroExtendOnly || !signExtend); if (signExtend) { Value* signExtDest = (signAndZeroExtend ? new TmpInstruction(mcfi, destType, opVal) : destI); CreateSignExtensionInstructions (target, currentFunc,opVal,signExtDest,extSourceInBits,mvec,mcfi); if (signAndZeroExtend) CreateZeroExtensionInstructions (target, currentFunc, signExtDest, destI, 8*destSize, mvec, mcfi); } else if (zeroExtendOnly) { CreateZeroExtensionInstructions (target, currentFunc, opVal, destI, extSourceInBits, mvec, mcfi); } else forwardOperandNum = 0; // forward first operand to user } else assert(0 && "Unrecognized operand type for convert-to-integer"); break; } case 31: // reg: ToFloatTy(reg): case 32: // reg: ToDoubleTy(reg): case 232: // reg: ToDoubleTy(Constant): // If this instruction has a parent (a user) in the tree // and the user is translated as an FsMULd instruction, // then the cast is unnecessary. So check that first. // In the future, we'll want to do the same for the FdMULq instruction, // so do the check here instead of only for ToFloatTy(reg). // if (subtreeRoot->parent() != NULL) { const MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get( cast(subtreeRoot->parent())->getInstruction()); if (mcfi.size() == 0 || mcfi.front()->getOpcode() == V9::FSMULD) forwardOperandNum = 0; // forward first operand to user } if (forwardOperandNum != 0) { // we do need the cast Value* leftVal = subtreeRoot->leftChild()->getValue(); const Type* opType = leftVal->getType(); MachineOpCode opCode=ChooseConvertToFloatInstr(target, subtreeRoot->getOpLabel(), opType); if (opCode == V9::NOP) { // no conversion needed forwardOperandNum = 0; // forward first operand to user } else { // If the source operand is a non-FP type it must be // first copied from int to float register via memory! Instruction *dest = subtreeRoot->getInstruction(); Value* srcForCast; int n = 0; if (! opType->isFloatingPoint()) { // Create a temporary to represent the FP register // into which the integer will be copied via memory. // The type of this temporary will determine the FP // register used: single-prec for a 32-bit int or smaller, // double-prec for a 64-bit int. // uint64_t srcSize = target.getTargetData().getTypeSize(leftVal->getType()); Type* tmpTypeToUse = (srcSize <= 4)? Type::FloatTy : Type::DoubleTy; MachineCodeForInstruction &destMCFI = MachineCodeForInstruction::get(dest); srcForCast = new TmpInstruction(destMCFI, tmpTypeToUse, dest); CreateCodeToCopyIntToFloat(target, dest->getParent()->getParent(), leftVal, cast(srcForCast), mvec, destMCFI); } else srcForCast = leftVal; M = BuildMI(opCode, 2).addReg(srcForCast).addRegDef(dest); mvec.push_back(M); } } break; case 19: // reg: ToArrayTy(reg): case 20: // reg: ToPointerTy(reg): forwardOperandNum = 0; // forward first operand to user break; case 233: // reg: Add(reg, Constant) maskUnsignedResult = true; M = CreateAddConstInstruction(subtreeRoot); if (M != NULL) { mvec.push_back(M); break; } // ELSE FALL THROUGH case 33: // reg: Add(reg, reg) maskUnsignedResult = true; Add3OperandInstr(ChooseAddInstruction(subtreeRoot), subtreeRoot, mvec); break; case 234: // reg: Sub(reg, Constant) maskUnsignedResult = true; M = CreateSubConstInstruction(subtreeRoot); if (M != NULL) { mvec.push_back(M); break; } // ELSE FALL THROUGH case 34: // reg: Sub(reg, reg) maskUnsignedResult = true; Add3OperandInstr(ChooseSubInstructionByType( subtreeRoot->getInstruction()->getType()), subtreeRoot, mvec); break; case 135: // reg: Mul(todouble, todouble) checkCast = true; // FALL THROUGH case 35: // reg: Mul(reg, reg) { maskUnsignedResult = true; MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot)) ? (MachineOpCode)V9::FSMULD : -1); Instruction* mulInstr = subtreeRoot->getInstruction(); CreateMulInstruction(target, mulInstr->getParent()->getParent(), subtreeRoot->leftChild()->getValue(), subtreeRoot->rightChild()->getValue(), mulInstr, mvec, MachineCodeForInstruction::get(mulInstr),forceOp); break; } case 335: // reg: Mul(todouble, todoubleConst) checkCast = true; // FALL THROUGH case 235: // reg: Mul(reg, Constant) { maskUnsignedResult = true; MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot)) ? (MachineOpCode)V9::FSMULD : -1); Instruction* mulInstr = subtreeRoot->getInstruction(); CreateMulInstruction(target, mulInstr->getParent()->getParent(), subtreeRoot->leftChild()->getValue(), subtreeRoot->rightChild()->getValue(), mulInstr, mvec, MachineCodeForInstruction::get(mulInstr), forceOp); break; } case 236: // reg: Div(reg, Constant) maskUnsignedResult = true; L = mvec.size(); CreateDivConstInstruction(target, subtreeRoot, mvec); if (mvec.size() > L) break; // ELSE FALL THROUGH case 36: // reg: Div(reg, reg) { maskUnsignedResult = true; // If either operand of divide is smaller than 64 bits, we have // to make sure the unused top bits are correct because they affect // the result. These bits are already correct for unsigned values. // They may be incorrect for signed values, so sign extend to fill in. Instruction* divI = subtreeRoot->getInstruction(); Value* divOp1 = subtreeRoot->leftChild()->getValue(); Value* divOp2 = subtreeRoot->rightChild()->getValue(); Value* divOp1ToUse = divOp1; Value* divOp2ToUse = divOp2; if (divI->getType()->isSigned()) { unsigned opSize=target.getTargetData().getTypeSize(divI->getType()); if (opSize < 8) { MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(divI); divOp1ToUse = new TmpInstruction(mcfi, divOp1); divOp2ToUse = new TmpInstruction(mcfi, divOp2); CreateSignExtensionInstructions(target, divI->getParent()->getParent(), divOp1, divOp1ToUse, 8*opSize, mvec, mcfi); CreateSignExtensionInstructions(target, divI->getParent()->getParent(), divOp2, divOp2ToUse, 8*opSize, mvec, mcfi); } } mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3) .addReg(divOp1ToUse) .addReg(divOp2ToUse) .addRegDef(divI)); break; } case 37: // reg: Rem(reg, reg) case 237: // reg: Rem(reg, Constant) { maskUnsignedResult = true; Instruction* remI = subtreeRoot->getInstruction(); Value* divOp1 = subtreeRoot->leftChild()->getValue(); Value* divOp2 = subtreeRoot->rightChild()->getValue(); MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(remI); // If second operand of divide is smaller than 64 bits, we have // to make sure the unused top bits are correct because they affect // the result. These bits are already correct for unsigned values. // They may be incorrect for signed values, so sign extend to fill in. // Value* divOpToUse = divOp2; if (divOp2->getType()->isSigned()) { unsigned opSize=target.getTargetData().getTypeSize(divOp2->getType()); if (opSize < 8) { divOpToUse = new TmpInstruction(mcfi, divOp2); CreateSignExtensionInstructions(target, remI->getParent()->getParent(), divOp2, divOpToUse, 8*opSize, mvec, mcfi); } } // Now compute: result = rem V1, V2 as: // result = V1 - (V1 / signExtend(V2)) * signExtend(V2) // TmpInstruction* quot = new TmpInstruction(mcfi, divOp1, divOpToUse); TmpInstruction* prod = new TmpInstruction(mcfi, quot, divOpToUse); mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3) .addReg(divOp1).addReg(divOpToUse).addRegDef(quot)); mvec.push_back(BuildMI(ChooseMulInstructionByType(remI->getType()), 3) .addReg(quot).addReg(divOpToUse).addRegDef(prod)); mvec.push_back(BuildMI(ChooseSubInstructionByType(remI->getType()), 3) .addReg(divOp1).addReg(prod).addRegDef(remI)); break; } case 38: // bool: And(bool, bool) case 138: // bool: And(bool, not) case 238: // bool: And(bool, boolconst) case 338: // reg : BAnd(reg, reg) case 538: // reg : BAnd(reg, Constant) Add3OperandInstr(V9::ANDr, subtreeRoot, mvec); break; case 438: // bool: BAnd(bool, bnot) { // Use the argument of NOT as the second argument! // Mark the NOT node so that no code is generated for it. // If the type is boolean, set 1 or 0 in the result register. InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild(); Value* notArg = BinaryOperator::getNotArgument( cast(notNode->getInstruction())); notNode->markFoldedIntoParent(); Value *lhs = subtreeRoot->leftChild()->getValue(); Value *dest = subtreeRoot->getValue(); mvec.push_back(BuildMI(V9::ANDNr, 3).addReg(lhs).addReg(notArg) .addReg(dest, MachineOperand::Def)); if (notArg->getType() == Type::BoolTy) { // set 1 in result register if result of above is non-zero mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1) .addReg(dest, MachineOperand::UseAndDef)); } break; } case 39: // bool: Or(bool, bool) case 139: // bool: Or(bool, not) case 239: // bool: Or(bool, boolconst) case 339: // reg : BOr(reg, reg) case 539: // reg : BOr(reg, Constant) Add3OperandInstr(V9::ORr, subtreeRoot, mvec); break; case 439: // bool: BOr(bool, bnot) { // Use the argument of NOT as the second argument! // Mark the NOT node so that no code is generated for it. // If the type is boolean, set 1 or 0 in the result register. InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild(); Value* notArg = BinaryOperator::getNotArgument( cast(notNode->getInstruction())); notNode->markFoldedIntoParent(); Value *lhs = subtreeRoot->leftChild()->getValue(); Value *dest = subtreeRoot->getValue(); mvec.push_back(BuildMI(V9::ORNr, 3).addReg(lhs).addReg(notArg) .addReg(dest, MachineOperand::Def)); if (notArg->getType() == Type::BoolTy) { // set 1 in result register if result of above is non-zero mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1) .addReg(dest, MachineOperand::UseAndDef)); } break; } case 40: // bool: Xor(bool, bool) case 140: // bool: Xor(bool, not) case 240: // bool: Xor(bool, boolconst) case 340: // reg : BXor(reg, reg) case 540: // reg : BXor(reg, Constant) Add3OperandInstr(V9::XORr, subtreeRoot, mvec); break; case 440: // bool: BXor(bool, bnot) { // Use the argument of NOT as the second argument! // Mark the NOT node so that no code is generated for it. // If the type is boolean, set 1 or 0 in the result register. InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild(); Value* notArg = BinaryOperator::getNotArgument( cast(notNode->getInstruction())); notNode->markFoldedIntoParent(); Value *lhs = subtreeRoot->leftChild()->getValue(); Value *dest = subtreeRoot->getValue(); mvec.push_back(BuildMI(V9::XNORr, 3).addReg(lhs).addReg(notArg) .addReg(dest, MachineOperand::Def)); if (notArg->getType() == Type::BoolTy) { // set 1 in result register if result of above is non-zero mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1) .addReg(dest, MachineOperand::UseAndDef)); } break; } case 41: // setCCconst: SetCC(reg, Constant) { // Comparison is with a constant: // // If the bool result must be computed into a register (see below), // and the constant is int ZERO, we can use the MOVR[op] instructions // and avoid the SUBcc instruction entirely. // Otherwise this is just the same as case 42, so just fall through. // // The result of the SetCC must be computed and stored in a register if // it is used outside the current basic block (so it must be computed // as a boolreg) or it is used by anything other than a branch. // We will use a conditional move to do this. // Instruction* setCCInstr = subtreeRoot->getInstruction(); bool computeBoolVal = (subtreeRoot->parent() == NULL || ! AllUsesAreBranches(setCCInstr)); if (computeBoolVal) { InstrTreeNode* constNode = subtreeRoot->rightChild(); assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode); Constant *constVal = cast(constNode->getValue()); bool isValidConst; if ((constVal->getType()->isInteger() || isa(constVal->getType())) && ConvertConstantToIntType(target, constVal, constVal->getType(), isValidConst) == 0 && isValidConst) { // That constant is an integer zero after all... // Use a MOVR[op] to compute the boolean result // Unconditionally set register to 0 mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0) .addRegDef(setCCInstr)); // Now conditionally move 1 into the register. // Mark the register as a use (as well as a def) because the old // value will be retained if the condition is false. MachineOpCode movOpCode = ChooseMovpregiForSetCC(subtreeRoot); mvec.push_back(BuildMI(movOpCode, 3) .addReg(subtreeRoot->leftChild()->getValue()) .addZImm(1) .addReg(setCCInstr, MachineOperand::UseAndDef)); break; } } // ELSE FALL THROUGH } case 42: // bool: SetCC(reg, reg): { // This generates a SUBCC instruction, putting the difference in a // result reg. if needed, and/or setting a condition code if needed. // Instruction* setCCInstr = subtreeRoot->getInstruction(); Value* leftVal = subtreeRoot->leftChild()->getValue(); Value* rightVal = subtreeRoot->rightChild()->getValue(); const Type* opType = leftVal->getType(); bool isFPCompare = opType->isFloatingPoint(); // If the boolean result of the SetCC is used outside the current basic // block (so it must be computed as a boolreg) or is used by anything // other than a branch, the boolean must be computed and stored // in a result register. We will use a conditional move to do this. // bool computeBoolVal = (subtreeRoot->parent() == NULL || ! AllUsesAreBranches(setCCInstr)); // A TmpInstruction is created to represent the CC "result". // Unlike other instances of TmpInstruction, this one is used // by machine code of multiple LLVM instructions, viz., // the SetCC and the branch. Make sure to get the same one! // Note that we do this even for FP CC registers even though they // are explicit operands, because the type of the operand // needs to be a floating point condition code, not an integer // condition code. Think of this as casting the bool result to // a FP condition code register. // Later, we mark the 4th operand as being a CC register, and as a def. // TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr, setCCInstr->getParent()->getParent(), leftVal->getType(), MachineCodeForInstruction::get(setCCInstr)); // If the operands are signed values smaller than 4 bytes, then they // must be sign-extended in order to do a valid 32-bit comparison // and get the right result in the 32-bit CC register (%icc). // Value* leftOpToUse = leftVal; Value* rightOpToUse = rightVal; if (opType->isIntegral() && opType->isSigned()) { unsigned opSize = target.getTargetData().getTypeSize(opType); if (opSize < 4) { MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(setCCInstr); // create temporary virtual regs. to hold the sign-extensions leftOpToUse = new TmpInstruction(mcfi, leftVal); rightOpToUse = new TmpInstruction(mcfi, rightVal); // sign-extend each operand and put the result in the temporary reg. CreateSignExtensionInstructions (target, setCCInstr->getParent()->getParent(), leftVal, leftOpToUse, 8*opSize, mvec, mcfi); CreateSignExtensionInstructions (target, setCCInstr->getParent()->getParent(), rightVal, rightOpToUse, 8*opSize, mvec, mcfi); } } if (! isFPCompare) { // Integer condition: set CC and discard result. mvec.push_back(BuildMI(V9::SUBccr, 4) .addReg(leftOpToUse) .addReg(rightOpToUse) .addMReg(target.getRegInfo()-> getZeroRegNum(), MachineOperand::Def) .addCCReg(tmpForCC, MachineOperand::Def)); } else { // FP condition: dest of FCMP should be some FCCn register mvec.push_back(BuildMI(ChooseFcmpInstruction(subtreeRoot), 3) .addCCReg(tmpForCC, MachineOperand::Def) .addReg(leftOpToUse) .addReg(rightOpToUse)); } if (computeBoolVal) { MachineOpCode movOpCode = (isFPCompare ? ChooseMovFpcciInstruction(subtreeRoot) : ChooseMovpcciForSetCC(subtreeRoot)); // Unconditionally set register to 0 M = BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(setCCInstr); mvec.push_back(M); // Now conditionally move 1 into the register. // Mark the register as a use (as well as a def) because the old // value will be retained if the condition is false. M = (BuildMI(movOpCode, 3).addCCReg(tmpForCC).addZImm(1) .addReg(setCCInstr, MachineOperand::UseAndDef)); mvec.push_back(M); } break; } case 51: // reg: Load(reg) case 52: // reg: Load(ptrreg) SetOperandsForMemInstr(ChooseLoadInstruction( subtreeRoot->getValue()->getType()), mvec, subtreeRoot, target); break; case 55: // reg: GetElemPtr(reg) case 56: // reg: GetElemPtrIdx(reg,reg) // If the GetElemPtr was folded into the user (parent), it will be // caught above. For other cases, we have to compute the address. SetOperandsForMemInstr(V9::ADDr, mvec, subtreeRoot, target); break; case 57: // reg: Alloca: Implement as 1 instruction: { // add %fp, offsetFromFP -> result AllocationInst* instr = cast(subtreeRoot->getInstruction()); unsigned tsize = target.getTargetData().getTypeSize(instr->getAllocatedType()); assert(tsize != 0); CreateCodeForFixedSizeAlloca(target, instr, tsize, 1, mvec); break; } case 58: // reg: Alloca(reg): Implement as 3 instructions: // mul num, typeSz -> tmp // sub %sp, tmp -> %sp { // add %sp, frameSizeBelowDynamicArea -> result AllocationInst* instr = cast(subtreeRoot->getInstruction()); const Type* eltType = instr->getAllocatedType(); // If #elements is constant, use simpler code for fixed-size allocas int tsize = (int) target.getTargetData().getTypeSize(eltType); Value* numElementsVal = NULL; bool isArray = instr->isArrayAllocation(); if (!isArray || isa(numElementsVal = instr->getArraySize())) { // total size is constant: generate code for fixed-size alloca unsigned numElements = isArray? cast(numElementsVal)->getValue() : 1; CreateCodeForFixedSizeAlloca(target, instr, tsize, numElements, mvec); } else { // total size is not constant. CreateCodeForVariableSizeAlloca(target, instr, tsize, numElementsVal, mvec); } break; } case 61: // reg: Call { // Generate a direct (CALL) or indirect (JMPL) call. // Mark the return-address register, the indirection // register (for indirect calls), the operands of the Call, // and the return value (if any) as implicit operands // of the machine instruction. // // If this is a varargs function, floating point arguments // have to passed in integer registers so insert // copy-float-to-int instructions for each float operand. // CallInst *callInstr = cast(subtreeRoot->getInstruction()); Value *callee = callInstr->getCalledValue(); Function* calledFunc = dyn_cast(callee); // Check if this is an intrinsic function that needs a special code // sequence (e.g., va_start). Indirect calls cannot be special. // bool specialIntrinsic = false; Intrinsic::ID iid; if (calledFunc && (iid=(Intrinsic::ID)calledFunc->getIntrinsicID())) specialIntrinsic = CodeGenIntrinsic(iid, *callInstr, target, mvec); // If not, generate the normal call sequence for the function. // This can also handle any intrinsics that are just function calls. // if (! specialIntrinsic) { Function* currentFunc = callInstr->getParent()->getParent(); MachineFunction& MF = MachineFunction::get(currentFunc); MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(callInstr); const SparcV9RegInfo& regInfo = (SparcV9RegInfo&) *target.getRegInfo(); const TargetFrameInfo& frameInfo = *target.getFrameInfo(); // Create hidden virtual register for return address with type void* TmpInstruction* retAddrReg = new TmpInstruction(mcfi, PointerType::get(Type::VoidTy), callInstr); // Generate the machine instruction and its operands. // Use CALL for direct function calls; this optimistically assumes // the PC-relative address fits in the CALL address field (22 bits). // Use JMPL for indirect calls. // This will be added to mvec later, after operand copies. // MachineInstr* callMI; if (calledFunc) // direct function call callMI = BuildMI(V9::CALL, 1).addPCDisp(callee); else // indirect function call callMI = (BuildMI(V9::JMPLCALLi,3).addReg(callee) .addSImm((int64_t)0).addRegDef(retAddrReg)); const FunctionType* funcType = cast(cast(callee->getType()) ->getElementType()); bool isVarArgs = funcType->isVarArg(); bool noPrototype = isVarArgs && funcType->getNumParams() == 0; // Use a descriptor to pass information about call arguments // to the register allocator. This descriptor will be "owned" // and freed automatically when the MachineCodeForInstruction // object for the callInstr goes away. CallArgsDescriptor* argDesc = new CallArgsDescriptor(callInstr, retAddrReg,isVarArgs,noPrototype); assert(callInstr->getOperand(0) == callee && "This is assumed in the loop below!"); // Insert sign-extension instructions for small signed values, // if this is an unknown function (i.e., called via a funcptr) // or an external one (i.e., which may not be compiled by llc). // if (calledFunc == NULL || calledFunc->isExternal()) { for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) { Value* argVal = callInstr->getOperand(i); const Type* argType = argVal->getType(); if (argType->isIntegral() && argType->isSigned()) { unsigned argSize = target.getTargetData().getTypeSize(argType); if (argSize <= 4) { // create a temporary virtual reg. to hold the sign-extension TmpInstruction* argExtend = new TmpInstruction(mcfi, argVal); // sign-extend argVal and put the result in the temporary reg. CreateSignExtensionInstructions (target, currentFunc, argVal, argExtend, 8*argSize, mvec, mcfi); // replace argVal with argExtend in CallArgsDescriptor argDesc->getArgInfo(i-1).replaceArgVal(argExtend); } } } } // Insert copy instructions to get all the arguments into // all the places that they need to be. // for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) { int argNo = i-1; CallArgInfo& argInfo = argDesc->getArgInfo(argNo); Value* argVal = argInfo.getArgVal(); // don't use callInstr arg here const Type* argType = argVal->getType(); unsigned regType = regInfo.getRegTypeForDataType(argType); unsigned argSize = target.getTargetData().getTypeSize(argType); int regNumForArg = SparcV9RegInfo::getInvalidRegNum(); unsigned regClassIDOfArgReg; // Check for FP arguments to varargs functions. // Any such argument in the first $K$ args must be passed in an // integer register. If there is no prototype, it must also // be passed as an FP register. // K = #integer argument registers. bool isFPArg = argVal->getType()->isFloatingPoint(); if (isVarArgs && isFPArg) { if (noPrototype) { // It is a function with no prototype: pass value // as an FP value as well as a varargs value. The FP value // may go in a register or on the stack. The copy instruction // to the outgoing reg/stack is created by the normal argument // handling code since this is the "normal" passing mode. // regNumForArg = regInfo.regNumForFPArg(regType, false, false, argNo, regClassIDOfArgReg); if (regNumForArg == regInfo.getInvalidRegNum()) argInfo.setUseStackSlot(); else argInfo.setUseFPArgReg(); } // If this arg. is in the first $K$ regs, add special copy- // float-to-int instructions to pass the value as an int. // To check if it is in the first $K$, get the register // number for the arg #i. These copy instructions are // generated here because they are extra cases and not needed // for the normal argument handling (some code reuse is // possible though -- later). // int copyRegNum = regInfo.regNumForIntArg(false, false, argNo, regClassIDOfArgReg); if (copyRegNum != regInfo.getInvalidRegNum()) { // Create a virtual register to represent copyReg. Mark // this vreg as being an implicit operand of the call MI const Type* loadTy = (argType == Type::FloatTy ? Type::IntTy : Type::LongTy); TmpInstruction* argVReg = new TmpInstruction(mcfi, loadTy, argVal, NULL, "argRegCopy"); callMI->addImplicitRef(argVReg); // Get a temp stack location to use to copy // float-to-int via the stack. // // FIXME: For now, we allocate permanent space because // the stack frame manager does not allow locals to be // allocated (e.g., for alloca) after a temp is // allocated! // // int tmpOffset = MF.getInfo()->pushTempValue(argSize); int tmpOffset = MF.getInfo()->allocateLocalVar(argVReg); // Generate the store from FP reg to stack unsigned StoreOpcode = ChooseStoreInstruction(argType); M = BuildMI(convertOpcodeFromRegToImm(StoreOpcode), 3) .addReg(argVal).addMReg(regInfo.getFramePointer()) .addSImm(tmpOffset); mvec.push_back(M); // Generate the load from stack to int arg reg unsigned LoadOpcode = ChooseLoadInstruction(loadTy); M = BuildMI(convertOpcodeFromRegToImm(LoadOpcode), 3) .addMReg(regInfo.getFramePointer()).addSImm(tmpOffset) .addReg(argVReg, MachineOperand::Def); // Mark operand with register it should be assigned // both for copy and for the callMI M->SetRegForOperand(M->getNumOperands()-1, copyRegNum); callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1, copyRegNum); mvec.push_back(M); // Add info about the argument to the CallArgsDescriptor argInfo.setUseIntArgReg(); argInfo.setArgCopy(copyRegNum); } else { // Cannot fit in first $K$ regs so pass arg on stack argInfo.setUseStackSlot(); } } else if (isFPArg) { // Get the outgoing arg reg to see if there is one. regNumForArg = regInfo.regNumForFPArg(regType, false, false, argNo, regClassIDOfArgReg); if (regNumForArg == regInfo.getInvalidRegNum()) argInfo.setUseStackSlot(); else { argInfo.setUseFPArgReg(); regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg, regNumForArg); } } else { // Get the outgoing arg reg to see if there is one. regNumForArg = regInfo.regNumForIntArg(false,false, argNo, regClassIDOfArgReg); if (regNumForArg == regInfo.getInvalidRegNum()) argInfo.setUseStackSlot(); else { argInfo.setUseIntArgReg(); regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg, regNumForArg); } } // // Now insert copy instructions to stack slot or arg. register // if (argInfo.usesStackSlot()) { // Get the stack offset for this argument slot. // FP args on stack are right justified so adjust offset! // int arguments are also right justified but they are // always loaded as a full double-word so the offset does // not need to be adjusted. int argOffset = frameInfo.getOutgoingArgOffset(MF, argNo); if (argType->isFloatingPoint()) { unsigned slotSize = SparcV9FrameInfo::SizeOfEachArgOnStack; assert(argSize <= slotSize && "Insufficient slot size!"); argOffset += slotSize - argSize; } // Now generate instruction to copy argument to stack MachineOpCode storeOpCode = (argType->isFloatingPoint() ? ((argSize == 4)? V9::STFi : V9::STDFi) : V9::STXi); M = BuildMI(storeOpCode, 3).addReg(argVal) .addMReg(regInfo.getStackPointer()).addSImm(argOffset); mvec.push_back(M); } else if (regNumForArg != regInfo.getInvalidRegNum()) { // Create a virtual register to represent the arg reg. Mark // this vreg as being an implicit operand of the call MI. TmpInstruction* argVReg = new TmpInstruction(mcfi, argVal, NULL, "argReg"); callMI->addImplicitRef(argVReg); // Generate the reg-to-reg copy into the outgoing arg reg. // -- For FP values, create a FMOVS or FMOVD instruction // -- For non-FP values, create an add-with-0 instruction if (argType->isFloatingPoint()) M=(BuildMI(argType==Type::FloatTy? V9::FMOVS :V9::FMOVD,2) .addReg(argVal).addReg(argVReg, MachineOperand::Def)); else M = (BuildMI(ChooseAddInstructionByType(argType), 3) .addReg(argVal).addSImm((int64_t) 0) .addReg(argVReg, MachineOperand::Def)); // Mark the operand with the register it should be assigned M->SetRegForOperand(M->getNumOperands()-1, regNumForArg); callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1, regNumForArg); mvec.push_back(M); } else assert(argInfo.getArgCopy() != regInfo.getInvalidRegNum() && "Arg. not in stack slot, primary or secondary register?"); } // add call instruction and delay slot before copying return value mvec.push_back(callMI); mvec.push_back(BuildMI(V9::NOP, 0)); // Add the return value as an implicit ref. The call operands // were added above. Also, add code to copy out the return value. // This is always register-to-register for int or FP return values. // if (callInstr->getType() != Type::VoidTy) { // Get the return value reg. const Type* retType = callInstr->getType(); int regNum = (retType->isFloatingPoint() ? (unsigned) SparcV9FloatRegClass::f0 : (unsigned) SparcV9IntRegClass::o0); unsigned regClassID = regInfo.getRegClassIDOfType(retType); regNum = regInfo.getUnifiedRegNum(regClassID, regNum); // Create a virtual register to represent it and mark // this vreg as being an implicit operand of the call MI TmpInstruction* retVReg = new TmpInstruction(mcfi, callInstr, NULL, "argReg"); callMI->addImplicitRef(retVReg, /*isDef*/ true); // Generate the reg-to-reg copy from the return value reg. // -- For FP values, create a FMOVS or FMOVD instruction // -- For non-FP values, create an add-with-0 instruction if (retType->isFloatingPoint()) M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2) .addReg(retVReg).addReg(callInstr, MachineOperand::Def)); else M = (BuildMI(ChooseAddInstructionByType(retType), 3) .addReg(retVReg).addSImm((int64_t) 0) .addReg(callInstr, MachineOperand::Def)); // Mark the operand with the register it should be assigned // Also mark the implicit ref of the call defining this operand M->SetRegForOperand(0, regNum); callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,regNum); mvec.push_back(M); } // For the CALL instruction, the ret. addr. reg. is also implicit if (isa(callee)) callMI->addImplicitRef(retAddrReg, /*isDef*/ true); MF.getInfo()->popAllTempValues(); // free temps used for this inst } break; } case 62: // reg: Shl(reg, reg) { Value* argVal1 = subtreeRoot->leftChild()->getValue(); Value* argVal2 = subtreeRoot->rightChild()->getValue(); Instruction* shlInstr = subtreeRoot->getInstruction(); const Type* opType = argVal1->getType(); assert((opType->isInteger() || isa(opType)) && "Shl unsupported for other types"); unsigned opSize = target.getTargetData().getTypeSize(opType); CreateShiftInstructions(target, shlInstr->getParent()->getParent(), (opSize > 4)? V9::SLLXr6:V9::SLLr5, argVal1, argVal2, 0, shlInstr, mvec, MachineCodeForInstruction::get(shlInstr)); break; } case 63: // reg: Shr(reg, reg) { const Type* opType = subtreeRoot->leftChild()->getValue()->getType(); assert((opType->isInteger() || isa(opType)) && "Shr unsupported for other types"); unsigned opSize = target.getTargetData().getTypeSize(opType); Add3OperandInstr(opType->isSigned() ? (opSize > 4? V9::SRAXr6 : V9::SRAr5) : (opSize > 4? V9::SRLXr6 : V9::SRLr5), subtreeRoot, mvec); break; } case 64: // reg: Phi(reg,reg) break; // don't forward the value case 65: // reg: VANext(reg): the va_next(va_list, type) instruction { // Increment the va_list pointer register according to the type. // All LLVM argument types are <= 64 bits, so use one doubleword. Instruction* vaNextI = subtreeRoot->getInstruction(); assert(target.getTargetData().getTypeSize(vaNextI->getType()) <= 8 && "We assumed that all LLVM parameter types <= 8 bytes!"); unsigned argSize = SparcV9FrameInfo::SizeOfEachArgOnStack; mvec.push_back(BuildMI(V9::ADDi, 3).addReg(vaNextI->getOperand(0)). addSImm(argSize).addRegDef(vaNextI)); break; } case 66: // reg: VAArg (reg): the va_arg instruction { // Load argument from stack using current va_list pointer value. // Use 64-bit load for all non-FP args, and LDDF or double for FP. Instruction* vaArgI = subtreeRoot->getInstruction(); MachineOpCode loadOp = (vaArgI->getType()->isFloatingPoint() ? (vaArgI->getType() == Type::FloatTy ? V9::LDFi : V9::LDDFi) : V9::LDXi); mvec.push_back(BuildMI(loadOp, 3).addReg(vaArgI->getOperand(0)). addSImm(0).addRegDef(vaArgI)); break; } case 71: // reg: VReg case 72: // reg: Constant break; // don't forward the value default: assert(0 && "Unrecognized BURG rule"); break; } } if (forwardOperandNum >= 0) { // We did not generate a machine instruction but need to use operand. // If user is in the same tree, replace Value in its machine operand. // If not, insert a copy instruction which should get coalesced away // by register allocation. if (subtreeRoot->parent() != NULL) ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum); else { std::vector minstrVec; Instruction* instr = subtreeRoot->getInstruction(); CreateCopyInstructionsByType(target, instr->getParent()->getParent(), instr->getOperand(forwardOperandNum), instr, minstrVec, MachineCodeForInstruction::get(instr)); assert(minstrVec.size() > 0); mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end()); } } if (maskUnsignedResult) { // If result is unsigned and smaller than int reg size, // we need to clear high bits of result value. assert(forwardOperandNum < 0 && "Need mask but no instruction generated"); Instruction* dest = subtreeRoot->getInstruction(); if (dest->getType()->isUnsigned()) { unsigned destSize=target.getTargetData().getTypeSize(dest->getType()); if (destSize <= 4) { // Mask high 64 - N bits, where N = 4*destSize. // Use a TmpInstruction to represent the // intermediate result before masking. Since those instructions // have already been generated, go back and substitute tmpI // for dest in the result position of each one of them. // MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(dest); TmpInstruction *tmpI = new TmpInstruction(mcfi, dest->getType(), dest, NULL, "maskHi"); Value* srlArgToUse = tmpI; unsigned numSubst = 0; for (unsigned i=0, N=mvec.size(); i < N; ++i) { // Make sure we substitute all occurrences of dest in these instrs. // Otherwise, we will have bogus code. bool someArgsWereIgnored = false; // Make sure not to substitute an upwards-exposed use -- that would // introduce a use of `tmpI' with no preceding def. Therefore, // substitute a use or def-and-use operand only if a previous def // operand has already been substituted (i.e., numSubst > 0). // numSubst += mvec[i]->substituteValue(dest, tmpI, /*defsOnly*/ numSubst == 0, /*notDefsAndUses*/ numSubst > 0, someArgsWereIgnored); assert(!someArgsWereIgnored && "Operand `dest' exists but not replaced: probably bogus!"); } assert(numSubst > 0 && "Operand `dest' not replaced: probably bogus!"); // Left shift 32-N if size (N) is less than 32 bits. // Use another tmp. virtual register to represent this result. if (destSize < 4) { srlArgToUse = new TmpInstruction(mcfi, dest->getType(), tmpI, NULL, "maskHi2"); mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpI) .addZImm(8*(4-destSize)) .addReg(srlArgToUse, MachineOperand::Def)); } // Logical right shift 32-N to get zero extension in top 64-N bits. mvec.push_back(BuildMI(V9::SRLi5, 3).addReg(srlArgToUse) .addZImm(8*(4-destSize)) .addReg(dest, MachineOperand::Def)); } else if (destSize < 8) { assert(0 && "Unsupported type size: 32 < size < 64 bits"); } } } } } // End llvm namespace //==------------------------------------------------------------------------==// // Class V9ISel Implementation //==------------------------------------------------------------------------==// bool V9ISel::runOnFunction(Function &F) { // First pass - Walk the function, lowering any calls to intrinsic functions // which the instruction selector cannot handle. for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) if (CallInst *CI = dyn_cast(I++)) if (Function *F = CI->getCalledFunction()) switch (F->getIntrinsicID()) { case Intrinsic::not_intrinsic: case Intrinsic::vastart: case Intrinsic::vacopy: case Intrinsic::vaend: // We directly implement these intrinsics. Note that this knowledge // is incestuously entangled with the code in // SparcInstrSelection.cpp and must be updated when it is updated. // Since ALL of the code in this library is incestuously intertwined // with it already and sparc specific, we will live with this. break; default: // All other intrinsic calls we must lower. Instruction *Before = CI->getPrev(); Target.getIntrinsicLowering().LowerIntrinsicCall(CI); if (Before) { // Move iterator to instruction after call I = Before; ++I; } else { I = BB->begin(); } } // Build the instruction trees to be given as inputs to BURG. InstrForest instrForest(&F); if (SelectDebugLevel >= Select_DebugInstTrees) { std::cerr << "\n\n*** Input to instruction selection for function " << F.getName() << "\n\n" << F << "\n\n*** Instruction trees for function " << F.getName() << "\n\n"; instrForest.dump(); } // Invoke BURG instruction selection for each tree for (InstrForest::const_root_iterator RI = instrForest.roots_begin(); RI != instrForest.roots_end(); ++RI) { InstructionNode* basicNode = *RI; assert(basicNode->parent() == NULL && "A `root' node has a parent?"); // Invoke BURM to label each tree node with a state burm_label(basicNode); if (SelectDebugLevel >= Select_DebugBurgTrees) { printcover(basicNode, 1, 0); std::cerr << "\nCover cost == " << treecost(basicNode, 1, 0) <<"\n\n"; printMatches(basicNode); } // Then recursively walk the tree to select instructions SelectInstructionsForTree(basicNode, /*goalnt*/1); } // Create the MachineBasicBlocks and add all of the MachineInstrs // defined in the MachineCodeForInstruction objects to the MachineBasicBlocks. MachineFunction &MF = MachineFunction::get(&F); std::map MBBMap; for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { MachineBasicBlock *MBB = new MachineBasicBlock(BI); MF.getBasicBlockList().push_back(MBB); MBBMap[BI] = MBB; for (BasicBlock::iterator II = BI->begin(); II != BI->end(); ++II) { MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(II); MBB->insert(MBB->end(), mvec.begin(), mvec.end()); } } // Initialize Machine-CFG for the function. for (MachineFunction::iterator i = MF.begin (), e = MF.end (); i != e; ++i) { MachineBasicBlock &MBB = *i; const BasicBlock *BB = MBB.getBasicBlock (); // for each successor S of BB, add MBBMap[S] as a successor of MBB. for (succ_const_iterator si = succ_begin(BB), se = succ_end(BB); si != se; ++si) { MachineBasicBlock *succMBB = MBBMap[*si]; assert (succMBB && "Can't find MachineBasicBlock for this successor"); MBB.addSuccessor (succMBB); } } // Insert phi elimination code InsertCodeForPhis(F); if (SelectDebugLevel >= Select_PrintMachineCode) { std::cerr << "\n*** Machine instructions after INSTRUCTION SELECTION\n"; MachineFunction::get(&F).dump(); } return true; } /// InsertCodeForPhis - This method inserts Phi elimination code for /// all Phi nodes in the given function. After this method is called, /// the Phi nodes still exist in the LLVM code, but copies are added to the /// machine code. /// void V9ISel::InsertCodeForPhis(Function &F) { // Iterate over every Phi node PN in F: MachineFunction &MF = MachineFunction::get(&F); for (MachineFunction::iterator BB = MF.begin(); BB != MF.end(); ++BB) { for (BasicBlock::const_iterator IIt = BB->getBasicBlock()->begin(); const PHINode *PN = dyn_cast(IIt); ++IIt) { // Create a new temporary register to hold the result of the Phi copy. // The leak detector shouldn't track these nodes. They are not garbage, // even though their parent field is never filled in. Value *PhiCpRes = new PHINode(PN->getType(), PN->getName() + ":PhiCp"); LeakDetector::removeGarbageObject(PhiCpRes); // For each of PN's incoming values, insert a copy in the corresponding // predecessor block. MachineCodeForInstruction &MCforPN = MachineCodeForInstruction::get (PN); for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i) { std::vector mvec, CpVec; Target.getRegInfo()->cpValue2Value(PN->getIncomingValue(i), PhiCpRes, mvec); for (std::vector::iterator MI=mvec.begin(); MI != mvec.end(); ++MI) { std::vector CpVec2 = FixConstantOperandsForInstr(const_cast(PN), *MI, Target); CpVec2.push_back(*MI); CpVec.insert(CpVec.end(), CpVec2.begin(), CpVec2.end()); } // Insert the copy instructions into the predecessor BB. InsertPhiElimInstructions(PN->getIncomingBlock(i), CpVec); MCforPN.insert (MCforPN.end (), CpVec.begin (), CpVec.end ()); } // Insert a copy instruction from PhiCpRes to PN. std::vector mvec; Target.getRegInfo()->cpValue2Value(PhiCpRes, const_cast(PN), mvec); BB->insert(BB->begin(), mvec.begin(), mvec.end()); MCforPN.insert (MCforPN.end (), mvec.begin (), mvec.end ()); } // for each Phi Instr in BB } // for all BBs in function } /// InsertPhiElimInstructions - Inserts the instructions in CpVec into the /// MachineBasicBlock corresponding to BB, just before its terminator /// instruction. This is used by InsertCodeForPhis() to insert copies, above. /// void V9ISel::InsertPhiElimInstructions(BasicBlock *BB, const std::vector& CpVec) { Instruction *TermInst = (Instruction*)BB->getTerminator(); MachineCodeForInstruction &MC4Term = MachineCodeForInstruction::get(TermInst); MachineInstr *FirstMIOfTerm = MC4Term.front(); assert (FirstMIOfTerm && "No Machine Instrs for terminator"); MachineBasicBlock *MBB = FirstMIOfTerm->getParent(); assert(MBB && "Machine BB for predecessor's terminator not found"); MachineBasicBlock::iterator MCIt = FirstMIOfTerm; assert(MCIt != MBB->end() && "Start inst of terminator not found"); // Insert the copy instructions just before the first machine instruction // generated for the terminator. MBB->insert(MCIt, CpVec.begin(), CpVec.end()); } /// SelectInstructionsForTree - Recursively walk the tree to select /// instructions. Do this top-down so that child instructions can exploit /// decisions made at the child instructions. /// /// E.g., if br(setle(reg,const)) decides the constant is 0 and uses /// a branch-on-integer-register instruction, then the setle node /// can use that information to avoid generating the SUBcc instruction. /// /// Note that this cannot be done bottom-up because setle must do this /// only if it is a child of the branch (otherwise, the result of setle /// may be used by multiple instructions). /// void V9ISel::SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt) { // Get the rule that matches this node. int ruleForNode = burm_rule(treeRoot->state, goalnt); if (ruleForNode == 0) { std::cerr << "Could not match instruction tree for instr selection\n"; abort(); } // Get this rule's non-terminals and the corresponding child nodes (if any) short *nts = burm_nts[ruleForNode]; // First, select instructions for the current node and rule. // (If this is a list node, not an instruction, then skip this step). // This function is specific to the target architecture. if (treeRoot->opLabel != VRegListOp) { std::vector minstrVec; InstructionNode* instrNode = (InstructionNode*)treeRoot; assert(instrNode->getNodeType() == InstrTreeNode::NTInstructionNode); GetInstructionsByRule(instrNode, ruleForNode, nts, Target, minstrVec); MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(instrNode->getInstruction()); mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end()); } // Then, recursively compile the child nodes, if any. // if (nts[0]) { // i.e., there is at least one kid InstrTreeNode* kids[2]; int currentRule = ruleForNode; burm_kids(treeRoot, currentRule, kids); // First skip over any chain rules so that we don't visit // the current node again. while (ThisIsAChainRule(currentRule)) { currentRule = burm_rule(treeRoot->state, nts[0]); nts = burm_nts[currentRule]; burm_kids(treeRoot, currentRule, kids); } // Now we have the first non-chain rule so we have found // the actual child nodes. Recursively compile them. for (unsigned i = 0; nts[i]; i++) { assert(i < 2); InstrTreeNode::InstrTreeNodeType nodeType = kids[i]->getNodeType(); if (nodeType == InstrTreeNode::NTVRegListNode || nodeType == InstrTreeNode::NTInstructionNode) SelectInstructionsForTree(kids[i], nts[i]); } } // Finally, do any post-processing on this node after its children // have been translated. if (treeRoot->opLabel != VRegListOp) PostprocessMachineCodeForTree((InstructionNode*)treeRoot, ruleForNode, nts); } /// PostprocessMachineCodeForTree - Apply any final cleanups to /// machine code for the root of a subtree after selection for all its /// children has been completed. /// void V9ISel::PostprocessMachineCodeForTree(InstructionNode *instrNode, int ruleForNode, short *nts) { // Fix up any constant operands in the machine instructions to either // use an immediate field or to load the constant into a register. // Walk backwards and use direct indexes to allow insertion before current. Instruction* vmInstr = instrNode->getInstruction(); MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(vmInstr); for (unsigned i = mvec.size(); i != 0; --i) { std::vector loadConstVec = FixConstantOperandsForInstr(vmInstr, mvec[i-1], Target); mvec.insert(mvec.begin()+i-1, loadConstVec.begin(), loadConstVec.end()); } } /// createSparcV9BurgInstSelector - Creates and returns a new SparcV9 /// BURG-based instruction selection pass. /// FunctionPass *llvm::createSparcV9BurgInstSelector(TargetMachine &TM) { return new V9ISel(TM); }