//===- opt.cpp - The LLVM Modular Optimizer -------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Optimizations may be specified an arbitrary number of times on the command // line, They are run in the order specified. // //===----------------------------------------------------------------------===// #include "llvm/Module.h" #include "llvm/ModuleProvider.h" #include "llvm/PassManager.h" #include "llvm/CallGraphSCCPass.h" #include "llvm/Bitcode/ReaderWriter.h" #include "llvm/Assembly/PrintModulePass.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/PassNameParser.h" #include "llvm/System/Signals.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/PluginLoader.h" #include "llvm/Support/Streams.h" #include "llvm/Support/SystemUtils.h" #include "llvm/Support/raw_ostream.h" #include "llvm/LinkAllPasses.h" #include "llvm/LinkAllVMCore.h" #include #include #include #include using namespace llvm; // The OptimizationList is automatically populated with registered Passes by the // PassNameParser. // static cl::list PassList(cl::desc("Optimizations available:")); // Other command line options... // static cl::opt InputFilename(cl::Positional, cl::desc(""), cl::init("-"), cl::value_desc("filename")); static cl::opt OutputFilename("o", cl::desc("Override output filename"), cl::value_desc("filename"), cl::init("-")); static cl::opt Force("f", cl::desc("Overwrite output files")); static cl::opt PrintEachXForm("p", cl::desc("Print module after each transformation")); static cl::opt NoOutput("disable-output", cl::desc("Do not write result bitcode file"), cl::Hidden); static cl::opt NoVerify("disable-verify", cl::desc("Do not verify result module"), cl::Hidden); static cl::opt VerifyEach("verify-each", cl::desc("Verify after each transform")); static cl::opt StripDebug("strip-debug", cl::desc("Strip debugger symbol info from translation unit")); static cl::opt DisableInline("disable-inlining", cl::desc("Do not run the inliner pass")); static cl::opt DisableOptimizations("disable-opt", cl::desc("Do not run any optimization passes")); static cl::opt StandardCompileOpts("std-compile-opts", cl::desc("Include the standard compile time optimizations")); static cl::opt OptLevelO1("O1", cl::desc("Optimization level 1. Similar to llvm-gcc -O1")); static cl::opt OptLevelO2("O2", cl::desc("Optimization level 2. Similar to llvm-gcc -O2")); static cl::opt OptLevelO3("O3", cl::desc("Optimization level 3. Similar to llvm-gcc -O3")); static cl::opt UnitAtATime("funit-at-a-time", cl::desc("Enable IPO. This is same as llvm-gcc's -funit-at-a-time")); static cl::opt DisableSimplifyLibCalls("disable-simplify-libcalls", cl::desc("Disable simplify-libcalls")); static cl::opt Quiet("q", cl::desc("Obsolete option"), cl::Hidden); static cl::alias QuietA("quiet", cl::desc("Alias for -q"), cl::aliasopt(Quiet)); static cl::opt AnalyzeOnly("analyze", cl::desc("Only perform analysis, no optimization")); // ---------- Define Printers for module and function passes ------------ namespace { struct CallGraphSCCPassPrinter : public CallGraphSCCPass { static char ID; const PassInfo *PassToPrint; CallGraphSCCPassPrinter(const PassInfo *PI) : CallGraphSCCPass((intptr_t)&ID), PassToPrint(PI) {} virtual bool runOnSCC(const std::vector&SCC) { if (!Quiet) { cout << "Printing analysis '" << PassToPrint->getPassName() << "':\n"; for (unsigned i = 0, e = SCC.size(); i != e; ++i) { Function *F = SCC[i]->getFunction(); if (F) getAnalysisID(PassToPrint).print(cout, F->getParent()); } } // Get and print pass... return false; } virtual const char *getPassName() const { return "'Pass' Printer"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(PassToPrint); AU.setPreservesAll(); } }; char CallGraphSCCPassPrinter::ID = 0; struct ModulePassPrinter : public ModulePass { static char ID; const PassInfo *PassToPrint; ModulePassPrinter(const PassInfo *PI) : ModulePass((intptr_t)&ID), PassToPrint(PI) {} virtual bool runOnModule(Module &M) { if (!Quiet) { cout << "Printing analysis '" << PassToPrint->getPassName() << "':\n"; getAnalysisID(PassToPrint).print(cout, &M); } // Get and print pass... return false; } virtual const char *getPassName() const { return "'Pass' Printer"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(PassToPrint); AU.setPreservesAll(); } }; char ModulePassPrinter::ID = 0; struct FunctionPassPrinter : public FunctionPass { const PassInfo *PassToPrint; static char ID; FunctionPassPrinter(const PassInfo *PI) : FunctionPass((intptr_t)&ID), PassToPrint(PI) {} virtual bool runOnFunction(Function &F) { if (!Quiet) { cout << "Printing analysis '" << PassToPrint->getPassName() << "' for function '" << F.getName() << "':\n"; } // Get and print pass... getAnalysisID(PassToPrint).print(cout, F.getParent()); return false; } virtual const char *getPassName() const { return "FunctionPass Printer"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(PassToPrint); AU.setPreservesAll(); } }; char FunctionPassPrinter::ID = 0; struct LoopPassPrinter : public LoopPass { static char ID; const PassInfo *PassToPrint; LoopPassPrinter(const PassInfo *PI) : LoopPass((intptr_t)&ID), PassToPrint(PI) {} virtual bool runOnLoop(Loop *L, LPPassManager &LPM) { if (!Quiet) { cout << "Printing analysis '" << PassToPrint->getPassName() << "':\n"; getAnalysisID(PassToPrint).print(cout, L->getHeader()->getParent()->getParent()); } // Get and print pass... return false; } virtual const char *getPassName() const { return "'Pass' Printer"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(PassToPrint); AU.setPreservesAll(); } }; char LoopPassPrinter::ID = 0; struct BasicBlockPassPrinter : public BasicBlockPass { const PassInfo *PassToPrint; static char ID; BasicBlockPassPrinter(const PassInfo *PI) : BasicBlockPass((intptr_t)&ID), PassToPrint(PI) {} virtual bool runOnBasicBlock(BasicBlock &BB) { if (!Quiet) { cout << "Printing Analysis info for BasicBlock '" << BB.getName() << "': Pass " << PassToPrint->getPassName() << ":\n"; } // Get and print pass... getAnalysisID(PassToPrint).print(cout, BB.getParent()->getParent()); return false; } virtual const char *getPassName() const { return "BasicBlockPass Printer"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(PassToPrint); AU.setPreservesAll(); } }; char BasicBlockPassPrinter::ID = 0; inline void addPass(PassManager &PM, Pass *P) { // Add the pass to the pass manager... PM.add(P); // If we are verifying all of the intermediate steps, add the verifier... if (VerifyEach) PM.add(createVerifierPass()); } /// AddOptimizationPasses - This routine adds optimization passes /// based on selected optimization level, OptLevel. This routine /// duplicates llvm-gcc behaviour. /// /// OptLevel - Optimization Level void AddOptimizationPasses(PassManager &MPM, FunctionPassManager &FPM, unsigned OptLevel) { if (OptLevel == 0) return; FPM.add(createCFGSimplificationPass()); if (OptLevel == 1) FPM.add(createPromoteMemoryToRegisterPass()); else FPM.add(createScalarReplAggregatesPass()); FPM.add(createInstructionCombiningPass()); if (UnitAtATime) MPM.add(createRaiseAllocationsPass()); // call %malloc -> malloc inst MPM.add(createCFGSimplificationPass()); // Clean up disgusting code MPM.add(createPromoteMemoryToRegisterPass()); // Kill useless allocas if (UnitAtATime) { MPM.add(createGlobalOptimizerPass()); // OptLevel out global vars MPM.add(createGlobalDCEPass()); // Remove unused fns and globs MPM.add(createIPConstantPropagationPass()); // IP Constant Propagation MPM.add(createDeadArgEliminationPass()); // Dead argument elimination } MPM.add(createInstructionCombiningPass()); // Clean up after IPCP & DAE MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE if (UnitAtATime) { MPM.add(createPruneEHPass()); // Remove dead EH info MPM.add(createFunctionAttrsPass()); // Deduce function attrs } if (OptLevel > 1) MPM.add(createFunctionInliningPass()); // Inline small functions if (OptLevel > 2) MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args if (!DisableSimplifyLibCalls) MPM.add(createSimplifyLibCallsPass()); // Library Call Optimizations MPM.add(createInstructionCombiningPass()); // Cleanup for scalarrepl. MPM.add(createJumpThreadingPass()); // Thread jumps. MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createScalarReplAggregatesPass()); // Break up aggregate allocas MPM.add(createInstructionCombiningPass()); // Combine silly seq's MPM.add(createCondPropagationPass()); // Propagate conditionals MPM.add(createTailCallEliminationPass()); // Eliminate tail calls MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createReassociatePass()); // Reassociate expressions MPM.add(createLoopRotatePass()); // Rotate Loop MPM.add(createLICMPass()); // Hoist loop invariants MPM.add(createLoopUnswitchPass()); MPM.add(createLoopIndexSplitPass()); // Split loop index MPM.add(createInstructionCombiningPass()); MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars MPM.add(createLoopDeletionPass()); // Delete dead loops if (OptLevel > 1) MPM.add(createLoopUnrollPass()); // Unroll small loops MPM.add(createInstructionCombiningPass()); // Clean up after the unroller MPM.add(createGVNPass()); // Remove redundancies MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset MPM.add(createSCCPPass()); // Constant prop with SCCP // Run instcombine after redundancy elimination to exploit opportunities // opened up by them. MPM.add(createInstructionCombiningPass()); MPM.add(createCondPropagationPass()); // Propagate conditionals MPM.add(createDeadStoreEliminationPass()); // Delete dead stores MPM.add(createAggressiveDCEPass()); // Delete dead instructions MPM.add(createCFGSimplificationPass()); // Merge & remove BBs if (UnitAtATime) { MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes MPM.add(createDeadTypeEliminationPass()); // Eliminate dead types } if (OptLevel > 1 && UnitAtATime) MPM.add(createConstantMergePass()); // Merge dup global constants return; } void AddStandardCompilePasses(PassManager &PM) { PM.add(createVerifierPass()); // Verify that input is correct addPass(PM, createLowerSetJmpPass()); // Lower llvm.setjmp/.longjmp // If the -strip-debug command line option was specified, do it. if (StripDebug) addPass(PM, createStripSymbolsPass(true)); if (DisableOptimizations) return; addPass(PM, createRaiseAllocationsPass()); // call %malloc -> malloc inst addPass(PM, createCFGSimplificationPass()); // Clean up disgusting code addPass(PM, createPromoteMemoryToRegisterPass());// Kill useless allocas addPass(PM, createGlobalOptimizerPass()); // Optimize out global vars addPass(PM, createGlobalDCEPass()); // Remove unused fns and globs addPass(PM, createIPConstantPropagationPass());// IP Constant Propagation addPass(PM, createDeadArgEliminationPass()); // Dead argument elimination addPass(PM, createInstructionCombiningPass()); // Clean up after IPCP & DAE addPass(PM, createCFGSimplificationPass()); // Clean up after IPCP & DAE addPass(PM, createPruneEHPass()); // Remove dead EH info addPass(PM, createFunctionAttrsPass()); // Deduce function attrs if (!DisableInline) addPass(PM, createFunctionInliningPass()); // Inline small functions addPass(PM, createArgumentPromotionPass()); // Scalarize uninlined fn args addPass(PM, createSimplifyLibCallsPass()); // Library Call Optimizations addPass(PM, createInstructionCombiningPass()); // Cleanup for scalarrepl. addPass(PM, createJumpThreadingPass()); // Thread jumps. addPass(PM, createCFGSimplificationPass()); // Merge & remove BBs addPass(PM, createScalarReplAggregatesPass()); // Break up aggregate allocas addPass(PM, createInstructionCombiningPass()); // Combine silly seq's addPass(PM, createCondPropagationPass()); // Propagate conditionals addPass(PM, createTailCallEliminationPass()); // Eliminate tail calls addPass(PM, createCFGSimplificationPass()); // Merge & remove BBs addPass(PM, createReassociatePass()); // Reassociate expressions addPass(PM, createLoopRotatePass()); addPass(PM, createLICMPass()); // Hoist loop invariants addPass(PM, createLoopUnswitchPass()); // Unswitch loops. addPass(PM, createLoopIndexSplitPass()); // Index split loops. // FIXME : Removing instcombine causes nestedloop regression. addPass(PM, createInstructionCombiningPass()); addPass(PM, createIndVarSimplifyPass()); // Canonicalize indvars addPass(PM, createLoopDeletionPass()); // Delete dead loops addPass(PM, createLoopUnrollPass()); // Unroll small loops addPass(PM, createInstructionCombiningPass()); // Clean up after the unroller addPass(PM, createGVNPass()); // Remove redundancies addPass(PM, createMemCpyOptPass()); // Remove memcpy / form memset addPass(PM, createSCCPPass()); // Constant prop with SCCP // Run instcombine after redundancy elimination to exploit opportunities // opened up by them. addPass(PM, createInstructionCombiningPass()); addPass(PM, createCondPropagationPass()); // Propagate conditionals addPass(PM, createDeadStoreEliminationPass()); // Delete dead stores addPass(PM, createAggressiveDCEPass()); // Delete dead instructions addPass(PM, createCFGSimplificationPass()); // Merge & remove BBs addPass(PM, createStripDeadPrototypesPass()); // Get rid of dead prototypes addPass(PM, createDeadTypeEliminationPass()); // Eliminate dead types addPass(PM, createConstantMergePass()); // Merge dup global constants } } // anonymous namespace //===----------------------------------------------------------------------===// // main for opt // int main(int argc, char **argv) { llvm_shutdown_obj X; // Call llvm_shutdown() on exit. try { cl::ParseCommandLineOptions(argc, argv, "llvm .bc -> .bc modular optimizer and analysis printer\n"); sys::PrintStackTraceOnErrorSignal(); // Allocate a full target machine description only if necessary. // FIXME: The choice of target should be controllable on the command line. std::auto_ptr target; std::string ErrorMessage; // Load the input module... std::auto_ptr M; if (MemoryBuffer *Buffer = MemoryBuffer::getFileOrSTDIN(InputFilename, &ErrorMessage)) { M.reset(ParseBitcodeFile(Buffer, &ErrorMessage)); delete Buffer; } if (M.get() == 0) { cerr << argv[0] << ": "; if (ErrorMessage.size()) cerr << ErrorMessage << "\n"; else cerr << "bitcode didn't read correctly.\n"; return 1; } // Figure out what stream we are supposed to write to... // FIXME: cout is not binary! std::ostream *Out = &std::cout; // Default to printing to stdout... if (OutputFilename != "-") { if (!Force && std::ifstream(OutputFilename.c_str())) { // If force is not specified, make sure not to overwrite a file! cerr << argv[0] << ": error opening '" << OutputFilename << "': file exists!\n" << "Use -f command line argument to force output\n"; return 1; } std::ios::openmode io_mode = std::ios::out | std::ios::trunc | std::ios::binary; Out = new std::ofstream(OutputFilename.c_str(), io_mode); if (!Out->good()) { cerr << argv[0] << ": error opening " << OutputFilename << "!\n"; return 1; } // Make sure that the Output file gets unlinked from the disk if we get a // SIGINT sys::RemoveFileOnSignal(sys::Path(OutputFilename)); } // If the output is set to be emitted to standard out, and standard out is a // console, print out a warning message and refuse to do it. We don't // impress anyone by spewing tons of binary goo to a terminal. if (!Force && !NoOutput && CheckBitcodeOutputToConsole(Out,!Quiet)) { NoOutput = true; } // Create a PassManager to hold and optimize the collection of passes we are // about to build... // PassManager Passes; // Add an appropriate TargetData instance for this module... Passes.add(new TargetData(M.get())); FunctionPassManager *FPasses = NULL; if (OptLevelO1 || OptLevelO2 || OptLevelO3) { FPasses = new FunctionPassManager(new ExistingModuleProvider(M.get())); FPasses->add(new TargetData(M.get())); } // If the -strip-debug command line option was specified, add it. If // -std-compile-opts was also specified, it will handle StripDebug. if (StripDebug && !StandardCompileOpts) addPass(Passes, createStripSymbolsPass(true)); // Create a new optimization pass for each one specified on the command line for (unsigned i = 0; i < PassList.size(); ++i) { // Check to see if -std-compile-opts was specified before this option. If // so, handle it. if (StandardCompileOpts && StandardCompileOpts.getPosition() < PassList.getPosition(i)) { AddStandardCompilePasses(Passes); StandardCompileOpts = false; } if (OptLevelO1 && OptLevelO1.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, 1); OptLevelO1 = false; } if (OptLevelO2 && OptLevelO2.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, 2); OptLevelO2 = false; } if (OptLevelO3 && OptLevelO3.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, 3); OptLevelO3 = false; } const PassInfo *PassInf = PassList[i]; Pass *P = 0; if (PassInf->getNormalCtor()) P = PassInf->getNormalCtor()(); else cerr << argv[0] << ": cannot create pass: " << PassInf->getPassName() << "\n"; if (P) { bool isBBPass = dynamic_cast(P) != 0; bool isLPass = !isBBPass && dynamic_cast(P) != 0; bool isFPass = !isLPass && dynamic_cast(P) != 0; bool isCGSCCPass = !isFPass && dynamic_cast(P) != 0; addPass(Passes, P); if (AnalyzeOnly) { if (isBBPass) Passes.add(new BasicBlockPassPrinter(PassInf)); else if (isLPass) Passes.add(new LoopPassPrinter(PassInf)); else if (isFPass) Passes.add(new FunctionPassPrinter(PassInf)); else if (isCGSCCPass) Passes.add(new CallGraphSCCPassPrinter(PassInf)); else Passes.add(new ModulePassPrinter(PassInf)); } } if (PrintEachXForm) Passes.add(createPrintModulePass(&errs())); } // If -std-compile-opts was specified at the end of the pass list, add them. if (StandardCompileOpts) { AddStandardCompilePasses(Passes); StandardCompileOpts = false; } if (OptLevelO1) { AddOptimizationPasses(Passes, *FPasses, 1); } if (OptLevelO2) { AddOptimizationPasses(Passes, *FPasses, 2); } if (OptLevelO3) { AddOptimizationPasses(Passes, *FPasses, 3); } if (OptLevelO1 || OptLevelO2 || OptLevelO3) { for (Module::iterator I = M.get()->begin(), E = M.get()->end(); I != E; ++I) FPasses->run(*I); } // Check that the module is well formed on completion of optimization if (!NoVerify && !VerifyEach) Passes.add(createVerifierPass()); // Write bitcode out to disk or cout as the last step... if (!NoOutput && !AnalyzeOnly) Passes.add(CreateBitcodeWriterPass(*Out)); // Now that we have all of the passes ready, run them. Passes.run(*M.get()); // Delete the ofstream. if (Out != &std::cout) delete Out; return 0; } catch (const std::string& msg) { cerr << argv[0] << ": " << msg << "\n"; } catch (...) { cerr << argv[0] << ": Unexpected unknown exception occurred.\n"; } llvm_shutdown(); return 1; }