//===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a pass that optimizes call sequences on x86. // Currently, it converts movs of function parameters onto the stack into // pushes. This is beneficial for two main reasons: // 1) The push instruction encoding is much smaller than an esp-relative mov // 2) It is possible to push memory arguments directly. So, if the // the transformation is preformed pre-reg-alloc, it can help relieve // register pressure. // //===----------------------------------------------------------------------===// #include #include "X86.h" #include "X86InstrInfo.h" #include "X86Subtarget.h" #include "X86MachineFunctionInfo.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/IR/Function.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" using namespace llvm; #define DEBUG_TYPE "x86-cf-opt" static cl::opt NoX86CFOpt("no-x86-call-frame-opt", cl::desc("Avoid optimizing x86 call frames for size"), cl::init(false), cl::Hidden); namespace { class X86CallFrameOptimization : public MachineFunctionPass { public: X86CallFrameOptimization() : MachineFunctionPass(ID) {} bool runOnMachineFunction(MachineFunction &MF) override; private: bool shouldPerformTransformation(MachineFunction &MF); bool adjustCallSequence(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I); MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup, unsigned Reg); const char *getPassName() const override { return "X86 Optimize Call Frame"; } const TargetInstrInfo *TII; const TargetFrameLowering *TFL; const MachineRegisterInfo *MRI; static char ID; }; char X86CallFrameOptimization::ID = 0; } FunctionPass *llvm::createX86CallFrameOptimization() { return new X86CallFrameOptimization(); } // This checks whether the transformation is legal and profitable bool X86CallFrameOptimization::shouldPerformTransformation(MachineFunction &MF) { if (NoX86CFOpt.getValue()) return false; // We currently only support call sequences where *all* parameters. // are passed on the stack. // No point in running this in 64-bit mode, since some arguments are // passed in-register in all common calling conventions, so the pattern // we're looking for will never match. const X86Subtarget &STI = MF.getTarget().getSubtarget(); if (STI.is64Bit()) return false; // You would expect straight-line code between call-frame setup and // call-frame destroy. You would be wrong. There are circumstances (e.g. // CMOV_GR8 expansion of a select that feeds a function call!) where we can // end up with the setup and the destroy in different basic blocks. // This is bad, and breaks SP adjustment. // So, check that all of the frames in the function are closed inside // the same block, and, for good measure, that there are no nested frames. int FrameSetupOpcode = TII->getCallFrameSetupOpcode(); int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); for (MachineBasicBlock &BB : MF) { bool InsideFrameSequence = false; for (MachineInstr &MI : BB) { if (MI.getOpcode() == FrameSetupOpcode) { if (InsideFrameSequence) return false; InsideFrameSequence = true; } else if (MI.getOpcode() == FrameDestroyOpcode) { if (!InsideFrameSequence) return false; InsideFrameSequence = false; } } if (InsideFrameSequence) return false; } // Now that we know the transformation is legal, check if it is // profitable. // TODO: Add a heuristic that actually looks at the function, // and enable this for more cases. // This transformation is always a win when we expected to have // a reserved call frame. Under other circumstances, it may be either // a win or a loss, and requires a heuristic. // For now, enable it only for the relatively clear win cases. bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects(); if (CannotReserveFrame) return true; // For now, don't even try to evaluate the profitability when // not optimizing for size. AttributeSet FnAttrs = MF.getFunction()->getAttributes(); bool OptForSize = FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) || FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize); if (!OptForSize) return false; // Stack re-alignment can make this unprofitable even in terms of size. // As mentioned above, a better heuristic is needed. For now, don't do this // when the required alignment is above 8. (4 would be the safe choice, but // some experimentation showed 8 is generally good). if (TFL->getStackAlignment() > 8) return false; return true; } bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) { TII = MF.getSubtarget().getInstrInfo(); TFL = MF.getSubtarget().getFrameLowering(); MRI = &MF.getRegInfo(); if (!shouldPerformTransformation(MF)) return false; int FrameSetupOpcode = TII->getCallFrameSetupOpcode(); bool Changed = false; for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB) for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) if (I->getOpcode() == FrameSetupOpcode) Changed |= adjustCallSequence(MF, *BB, I); return Changed; } bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) { // Check that this particular call sequence is amenable to the // transformation. const X86RegisterInfo &RegInfo = *static_cast( MF.getSubtarget().getRegisterInfo()); unsigned StackPtr = RegInfo.getStackRegister(); int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); // We expect to enter this at the beginning of a call sequence assert(I->getOpcode() == TII->getCallFrameSetupOpcode()); MachineBasicBlock::iterator FrameSetup = I++; // For globals in PIC mode, we can have some LEAs here. // Ignore them, they don't bother us. // TODO: Extend this to something that covers more cases. while (I->getOpcode() == X86::LEA32r) ++I; // We expect a copy instruction here. // TODO: The copy instruction is a lowering artifact. // We should also support a copy-less version, where the stack // pointer is used directly. if (!I->isCopy() || !I->getOperand(0).isReg()) return false; MachineBasicBlock::iterator SPCopy = I++; StackPtr = SPCopy->getOperand(0).getReg(); // Scan the call setup sequence for the pattern we're looking for. // We only handle a simple case - a sequence of MOV32mi or MOV32mr // instructions, that push a sequence of 32-bit values onto the stack, with // no gaps between them. SmallVector MovVector(4, nullptr); unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4; if (MaxAdjust > 4) MovVector.resize(MaxAdjust, nullptr); do { int Opcode = I->getOpcode(); if (Opcode != X86::MOV32mi && Opcode != X86::MOV32mr) break; // We only want movs of the form: // movl imm/r32, k(%esp) // If we run into something else, bail. // Note that AddrBaseReg may, counter to its name, not be a register, // but rather a frame index. // TODO: Support the fi case. This should probably work now that we // have the infrastructure to track the stack pointer within a call // sequence. if (!I->getOperand(X86::AddrBaseReg).isReg() || (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) || !I->getOperand(X86::AddrScaleAmt).isImm() || (I->getOperand(X86::AddrScaleAmt).getImm() != 1) || (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) || (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) || !I->getOperand(X86::AddrDisp).isImm()) return false; int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm(); assert(StackDisp >= 0 && "Negative stack displacement when passing parameters"); // We really don't want to consider the unaligned case. if (StackDisp % 4) return false; StackDisp /= 4; assert((size_t)StackDisp < MovVector.size() && "Function call has more parameters than the stack is adjusted for."); // If the same stack slot is being filled twice, something's fishy. if (MovVector[StackDisp] != nullptr) return false; MovVector[StackDisp] = I; ++I; } while (I != MBB.end()); // We now expect the end of the sequence - a call and a stack adjust. if (I == MBB.end()) return false; // For PCrel calls, we expect an additional COPY of the basereg. // If we find one, skip it. if (I->isCopy()) { if (I->getOperand(1).getReg() == MF.getInfo()->getGlobalBaseReg()) ++I; else return false; } if (!I->isCall()) return false; MachineBasicBlock::iterator Call = I; if ((++I)->getOpcode() != FrameDestroyOpcode) return false; // Now, go through the vector, and see that we don't have any gaps, // but only a series of 32-bit MOVs. int64_t ExpectedDist = 0; auto MMI = MovVector.begin(), MME = MovVector.end(); for (; MMI != MME; ++MMI, ExpectedDist += 4) if (*MMI == nullptr) break; // If the call had no parameters, do nothing if (!ExpectedDist) return false; // We are either at the last parameter, or a gap. // Make sure it's not a gap for (; MMI != MME; ++MMI) if (*MMI != nullptr) return false; // Ok, we can in fact do the transformation for this call. // Do not remove the FrameSetup instruction, but adjust the parameters. // PEI will end up finalizing the handling of this. FrameSetup->getOperand(1).setImm(ExpectedDist); DebugLoc DL = I->getDebugLoc(); // Now, iterate through the vector in reverse order, and replace the movs // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to // replace uses. for (int Idx = (ExpectedDist / 4) - 1; Idx >= 0; --Idx) { MachineBasicBlock::iterator MOV = *MovVector[Idx]; MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands); if (MOV->getOpcode() == X86::MOV32mi) { unsigned PushOpcode = X86::PUSHi32; // If the operand is a small (8-bit) immediate, we can use a // PUSH instruction with a shorter encoding. // Note that isImm() may fail even though this is a MOVmi, because // the operand can also be a symbol. if (PushOp.isImm()) { int64_t Val = PushOp.getImm(); if (isInt<8>(Val)) PushOpcode = X86::PUSH32i8; } BuildMI(MBB, Call, DL, TII->get(PushOpcode)).addOperand(PushOp); } else { unsigned int Reg = PushOp.getReg(); // If PUSHrmm is not slow on this target, try to fold the source of the // push into the instruction. const X86Subtarget &ST = MF.getTarget().getSubtarget(); bool SlowPUSHrmm = ST.isAtom() || ST.isSLM(); // Check that this is legal to fold. Right now, we're extremely // conservative about that. MachineInstr *DefMov = nullptr; if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) { MachineInstr *Push = BuildMI(MBB, Call, DL, TII->get(X86::PUSH32rmm)); unsigned NumOps = DefMov->getDesc().getNumOperands(); for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) Push->addOperand(DefMov->getOperand(i)); DefMov->eraseFromParent(); } else { BuildMI(MBB, Call, DL, TII->get(X86::PUSH32r)).addReg(Reg).getInstr(); } } MBB.erase(MOV); } // The stack-pointer copy is no longer used in the call sequences. // There should not be any other users, but we can't commit to that, so: if (MRI->use_empty(SPCopy->getOperand(0).getReg())) SPCopy->eraseFromParent(); // Once we've done this, we need to make sure PEI doesn't assume a reserved // frame. X86MachineFunctionInfo *FuncInfo = MF.getInfo(); FuncInfo->setHasPushSequences(true); return true; } MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush( MachineBasicBlock::iterator FrameSetup, unsigned Reg) { // Do an extremely restricted form of load folding. // ISel will often create patterns like: // movl 4(%edi), %eax // movl 8(%edi), %ecx // movl 12(%edi), %edx // movl %edx, 8(%esp) // movl %ecx, 4(%esp) // movl %eax, (%esp) // call // Get rid of those with prejudice. if (!TargetRegisterInfo::isVirtualRegister(Reg)) return nullptr; // Make sure this is the only use of Reg. if (!MRI->hasOneNonDBGUse(Reg)) return nullptr; MachineBasicBlock::iterator DefMI = MRI->getVRegDef(Reg); // Make sure the def is a MOV from memory. // If the def is an another block, give up. if (DefMI->getOpcode() != X86::MOV32rm || DefMI->getParent() != FrameSetup->getParent()) return nullptr; // Be careful with movs that load from a stack slot, since it may get // resolved incorrectly. // TODO: Again, we already have the infrastructure, so this should work. if (!DefMI->getOperand(1).isReg()) return nullptr; // Now, make sure everything else up until the ADJCALLSTACK is a sequence // of MOVs. To be less conservative would require duplicating a lot of the // logic from PeepholeOptimizer. // FIXME: A possibly better approach would be to teach the PeepholeOptimizer // to be smarter about folding into pushes. for (auto I = DefMI; I != FrameSetup; ++I) if (I->getOpcode() != X86::MOV32rm) return nullptr; return DefMI; }