//===- JumpThreading.cpp - Thread control through conditional blocks ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Jump Threading pass. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "jump-threading" #include "llvm/Transforms/Scalar.h" #include "llvm/IntrinsicInst.h" #include "llvm/LLVMContext.h" #include "llvm/Pass.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Target/TargetData.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ValueHandle.h" using namespace llvm; STATISTIC(NumThreads, "Number of jumps threaded"); STATISTIC(NumFolds, "Number of terminators folded"); static cl::opt Threshold("jump-threading-threshold", cl::desc("Max block size to duplicate for jump threading"), cl::init(6), cl::Hidden); namespace { /// This pass performs 'jump threading', which looks at blocks that have /// multiple predecessors and multiple successors. If one or more of the /// predecessors of the block can be proven to always jump to one of the /// successors, we forward the edge from the predecessor to the successor by /// duplicating the contents of this block. /// /// An example of when this can occur is code like this: /// /// if () { ... /// X = 4; /// } /// if (X < 3) { /// /// In this case, the unconditional branch at the end of the first if can be /// revectored to the false side of the second if. /// class VISIBILITY_HIDDEN JumpThreading : public FunctionPass { TargetData *TD; #ifdef NDEBUG SmallPtrSet LoopHeaders; #else SmallSet, 16> LoopHeaders; #endif public: static char ID; // Pass identification JumpThreading() : FunctionPass(&ID) {} virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); } bool runOnFunction(Function &F); void FindLoopHeaders(Function &F); bool ProcessBlock(BasicBlock *BB); bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB, unsigned JumpThreadCost); BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val); bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); bool ProcessJumpOnPHI(PHINode *PN); bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd); bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB); bool SimplifyPartiallyRedundantLoad(LoadInst *LI); }; } char JumpThreading::ID = 0; static RegisterPass X("jump-threading", "Jump Threading"); // Public interface to the Jump Threading pass FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } /// runOnFunction - Top level algorithm. /// bool JumpThreading::runOnFunction(Function &F) { DOUT << "Jump threading on function '" << F.getNameStart() << "'\n"; TD = &getAnalysis(); FindLoopHeaders(F); bool AnotherIteration = true, EverChanged = false; while (AnotherIteration) { AnotherIteration = false; bool Changed = false; for (Function::iterator I = F.begin(), E = F.end(); I != E;) { BasicBlock *BB = I; while (ProcessBlock(BB)) Changed = true; ++I; // If the block is trivially dead, zap it. This eliminates the successor // edges which simplifies the CFG. if (pred_begin(BB) == pred_end(BB) && BB != &BB->getParent()->getEntryBlock()) { DOUT << " JT: Deleting dead block '" << BB->getNameStart() << "' with terminator: " << *BB->getTerminator(); LoopHeaders.erase(BB); DeleteDeadBlock(BB); Changed = true; } } AnotherIteration = Changed; EverChanged |= Changed; } LoopHeaders.clear(); return EverChanged; } /// FindLoopHeaders - We do not want jump threading to turn proper loop /// structures into irreducible loops. Doing this breaks up the loop nesting /// hierarchy and pessimizes later transformations. To prevent this from /// happening, we first have to find the loop headers. Here we approximate this /// by finding targets of backedges in the CFG. /// /// Note that there definitely are cases when we want to allow threading of /// edges across a loop header. For example, threading a jump from outside the /// loop (the preheader) to an exit block of the loop is definitely profitable. /// It is also almost always profitable to thread backedges from within the loop /// to exit blocks, and is often profitable to thread backedges to other blocks /// within the loop (forming a nested loop). This simple analysis is not rich /// enough to track all of these properties and keep it up-to-date as the CFG /// mutates, so we don't allow any of these transformations. /// void JumpThreading::FindLoopHeaders(Function &F) { SmallVector, 32> Edges; FindFunctionBackedges(F, Edges); for (unsigned i = 0, e = Edges.size(); i != e; ++i) LoopHeaders.insert(const_cast(Edges[i].second)); } /// FactorCommonPHIPreds - If there are multiple preds with the same incoming /// value for the PHI, factor them together so we get one block to thread for /// the whole group. /// This is important for things like "phi i1 [true, true, false, true, x]" /// where we only need to clone the block for the true blocks once. /// BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Value *Val) { SmallVector CommonPreds; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == Val) CommonPreds.push_back(PN->getIncomingBlock(i)); if (CommonPreds.size() == 1) return CommonPreds[0]; DOUT << " Factoring out " << CommonPreds.size() << " common predecessors.\n"; return SplitBlockPredecessors(PN->getParent(), &CommonPreds[0], CommonPreds.size(), ".thr_comm", this); } /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to /// thread across it. static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { /// Ignore PHI nodes, these will be flattened when duplication happens. BasicBlock::const_iterator I = BB->getFirstNonPHI(); // Sum up the cost of each instruction until we get to the terminator. Don't // include the terminator because the copy won't include it. unsigned Size = 0; for (; !isa(I); ++I) { // Debugger intrinsics don't incur code size. if (isa(I)) continue; // If this is a pointer->pointer bitcast, it is free. if (isa(I) && isa(I->getType())) continue; // All other instructions count for at least one unit. ++Size; // Calls are more expensive. If they are non-intrinsic calls, we model them // as having cost of 4. If they are a non-vector intrinsic, we model them // as having cost of 2 total, and if they are a vector intrinsic, we model // them as having cost 1. if (const CallInst *CI = dyn_cast(I)) { if (!isa(CI)) Size += 3; else if (!isa(CI->getType())) Size += 1; } } // Threading through a switch statement is particularly profitable. If this // block ends in a switch, decrease its cost to make it more likely to happen. if (isa(I)) Size = Size > 6 ? Size-6 : 0; return Size; } /// ProcessBlock - If there are any predecessors whose control can be threaded /// through to a successor, transform them now. bool JumpThreading::ProcessBlock(BasicBlock *BB) { // If this block has a single predecessor, and if that pred has a single // successor, merge the blocks. This encourages recursive jump threading // because now the condition in this block can be threaded through // predecessors of our predecessor block. if (BasicBlock *SinglePred = BB->getSinglePredecessor()) if (SinglePred->getTerminator()->getNumSuccessors() == 1 && SinglePred != BB) { // If SinglePred was a loop header, BB becomes one. if (LoopHeaders.erase(SinglePred)) LoopHeaders.insert(BB); // Remember if SinglePred was the entry block of the function. If so, we // will need to move BB back to the entry position. bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); MergeBasicBlockIntoOnlyPred(BB); if (isEntry && BB != &BB->getParent()->getEntryBlock()) BB->moveBefore(&BB->getParent()->getEntryBlock()); return true; } // See if this block ends with a branch or switch. If so, see if the // condition is a phi node. If so, and if an entry of the phi node is a // constant, we can thread the block. Value *Condition; if (BranchInst *BI = dyn_cast(BB->getTerminator())) { // Can't thread an unconditional jump. if (BI->isUnconditional()) return false; Condition = BI->getCondition(); } else if (SwitchInst *SI = dyn_cast(BB->getTerminator())) Condition = SI->getCondition(); else return false; // Must be an invoke. // If the terminator of this block is branching on a constant, simplify the // terminator to an unconditional branch. This can occur due to threading in // other blocks. if (isa(Condition)) { DOUT << " In block '" << BB->getNameStart() << "' folding terminator: " << *BB->getTerminator(); ++NumFolds; ConstantFoldTerminator(BB); return true; } // If the terminator is branching on an undef, we can pick any of the // successors to branch to. Since this is arbitrary, we pick the successor // with the fewest predecessors. This should reduce the in-degree of the // others. if (isa(Condition)) { TerminatorInst *BBTerm = BB->getTerminator(); unsigned MinSucc = 0; BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); // Compute the successor with the minimum number of predecessors. unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { TestBB = BBTerm->getSuccessor(i); unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); if (NumPreds < MinNumPreds) MinSucc = i; } // Fold the branch/switch. for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { if (i == MinSucc) continue; BBTerm->getSuccessor(i)->removePredecessor(BB); } DOUT << " In block '" << BB->getNameStart() << "' folding undef terminator: " << *BBTerm; BranchInst::Create(BBTerm->getSuccessor(MinSucc), BBTerm); BBTerm->eraseFromParent(); return true; } Instruction *CondInst = dyn_cast(Condition); // If the condition is an instruction defined in another block, see if a // predecessor has the same condition: // br COND, BBX, BBY // BBX: // br COND, BBZ, BBW if (!Condition->hasOneUse() && // Multiple uses. (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. pred_iterator PI = pred_begin(BB), E = pred_end(BB); if (isa(BB->getTerminator())) { for (; PI != E; ++PI) if (BranchInst *PBI = dyn_cast((*PI)->getTerminator())) if (PBI->isConditional() && PBI->getCondition() == Condition && ProcessBranchOnDuplicateCond(*PI, BB)) return true; } else { assert(isa(BB->getTerminator()) && "Unknown jump terminator"); for (; PI != E; ++PI) if (SwitchInst *PSI = dyn_cast((*PI)->getTerminator())) if (PSI->getCondition() == Condition && ProcessSwitchOnDuplicateCond(*PI, BB)) return true; } } // All the rest of our checks depend on the condition being an instruction. if (CondInst == 0) return false; // See if this is a phi node in the current block. if (PHINode *PN = dyn_cast(CondInst)) if (PN->getParent() == BB) return ProcessJumpOnPHI(PN); // If this is a conditional branch whose condition is and/or of a phi, try to // simplify it. if ((CondInst->getOpcode() == Instruction::And || CondInst->getOpcode() == Instruction::Or) && isa(BB->getTerminator()) && ProcessBranchOnLogical(CondInst, BB, CondInst->getOpcode() == Instruction::And)) return true; if (CmpInst *CondCmp = dyn_cast(CondInst)) { if (isa(CondCmp->getOperand(0))) { // If we have "br (phi != 42)" and the phi node has any constant values // as operands, we can thread through this block. // // If we have "br (cmp phi, x)" and the phi node contains x such that the // comparison uniquely identifies the branch target, we can thread // through this block. if (ProcessBranchOnCompare(CondCmp, BB)) return true; } // If we have a comparison, loop over the predecessors to see if there is // a condition with the same value. pred_iterator PI = pred_begin(BB), E = pred_end(BB); for (; PI != E; ++PI) if (BranchInst *PBI = dyn_cast((*PI)->getTerminator())) if (PBI->isConditional() && *PI != BB) { if (CmpInst *CI = dyn_cast(PBI->getCondition())) { if (CI->getOperand(0) == CondCmp->getOperand(0) && CI->getOperand(1) == CondCmp->getOperand(1) && CI->getPredicate() == CondCmp->getPredicate()) { // TODO: Could handle things like (x != 4) --> (x == 17) if (ProcessBranchOnDuplicateCond(*PI, BB)) return true; } } } } // Check for some cases that are worth simplifying. Right now we want to look // for loads that are used by a switch or by the condition for the branch. If // we see one, check to see if it's partially redundant. If so, insert a PHI // which can then be used to thread the values. // // This is particularly important because reg2mem inserts loads and stores all // over the place, and this blocks jump threading if we don't zap them. Value *SimplifyValue = CondInst; if (CmpInst *CondCmp = dyn_cast(SimplifyValue)) if (isa(CondCmp->getOperand(1))) SimplifyValue = CondCmp->getOperand(0); if (LoadInst *LI = dyn_cast(SimplifyValue)) if (SimplifyPartiallyRedundantLoad(LI)) return true; // TODO: If we have: "br (X > 0)" and we have a predecessor where we know // "(X == 4)" thread through this block. return false; } /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that /// block that jump on exactly the same condition. This means that we almost /// always know the direction of the edge in the DESTBB: /// PREDBB: /// br COND, DESTBB, BBY /// DESTBB: /// br COND, BBZ, BBW /// /// If DESTBB has multiple predecessors, we can't just constant fold the branch /// in DESTBB, we have to thread over it. bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *BB) { BranchInst *PredBI = cast(PredBB->getTerminator()); // If both successors of PredBB go to DESTBB, we don't know anything. We can // fold the branch to an unconditional one, which allows other recursive // simplifications. bool BranchDir; if (PredBI->getSuccessor(1) != BB) BranchDir = true; else if (PredBI->getSuccessor(0) != BB) BranchDir = false; else { DOUT << " In block '" << PredBB->getNameStart() << "' folding terminator: " << *PredBB->getTerminator(); ++NumFolds; ConstantFoldTerminator(PredBB); return true; } BranchInst *DestBI = cast(BB->getTerminator()); // If the dest block has one predecessor, just fix the branch condition to a // constant and fold it. if (BB->getSinglePredecessor()) { DOUT << " In block '" << BB->getNameStart() << "' folding condition to '" << BranchDir << "': " << *BB->getTerminator(); ++NumFolds; DestBI->setCondition(Context->getConstantInt(Type::Int1Ty, BranchDir)); ConstantFoldTerminator(BB); return true; } // Otherwise we need to thread from PredBB to DestBB's successor which // involves code duplication. Check to see if it is worth it. unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); if (JumpThreadCost > Threshold) { DOUT << " Not threading BB '" << BB->getNameStart() << "' - Cost is too high: " << JumpThreadCost << "\n"; return false; } // Next, figure out which successor we are threading to. BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); // Ok, try to thread it! return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost); } /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that /// block that switch on exactly the same condition. This means that we almost /// always know the direction of the edge in the DESTBB: /// PREDBB: /// switch COND [... DESTBB, BBY ... ] /// DESTBB: /// switch COND [... BBZ, BBW ] /// /// Optimizing switches like this is very important, because simplifycfg builds /// switches out of repeated 'if' conditions. bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB) { // Can't thread edge to self. if (PredBB == DestBB) return false; SwitchInst *PredSI = cast(PredBB->getTerminator()); SwitchInst *DestSI = cast(DestBB->getTerminator()); // There are a variety of optimizations that we can potentially do on these // blocks: we order them from most to least preferable. // If DESTBB *just* contains the switch, then we can forward edges from PREDBB // directly to their destination. This does not introduce *any* code size // growth. Skip debug info first. BasicBlock::iterator BBI = DestBB->begin(); while (isa(BBI)) BBI++; // FIXME: Thread if it just contains a PHI. if (isa(BBI)) { bool MadeChange = false; // Ignore the default edge for now. for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { ConstantInt *DestVal = DestSI->getCaseValue(i); BasicBlock *DestSucc = DestSI->getSuccessor(i); // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if // PredSI has an explicit case for it. If so, forward. If it is covered // by the default case, we can't update PredSI. unsigned PredCase = PredSI->findCaseValue(DestVal); if (PredCase == 0) continue; // If PredSI doesn't go to DestBB on this value, then it won't reach the // case on this condition. if (PredSI->getSuccessor(PredCase) != DestBB && DestSI->getSuccessor(i) != DestBB) continue; // Otherwise, we're safe to make the change. Make sure that the edge from // DestSI to DestSucc is not critical and has no PHI nodes. DOUT << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI; DOUT << "THROUGH: " << *DestSI; // If the destination has PHI nodes, just split the edge for updating // simplicity. if (isa(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ SplitCriticalEdge(DestSI, i, this); DestSucc = DestSI->getSuccessor(i); } FoldSingleEntryPHINodes(DestSucc); PredSI->setSuccessor(PredCase, DestSucc); MadeChange = true; } if (MadeChange) return true; } return false; } /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant /// load instruction, eliminate it by replacing it with a PHI node. This is an /// important optimization that encourages jump threading, and needs to be run /// interlaced with other jump threading tasks. bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { // Don't hack volatile loads. if (LI->isVolatile()) return false; // If the load is defined in a block with exactly one predecessor, it can't be // partially redundant. BasicBlock *LoadBB = LI->getParent(); if (LoadBB->getSinglePredecessor()) return false; Value *LoadedPtr = LI->getOperand(0); // If the loaded operand is defined in the LoadBB, it can't be available. // FIXME: Could do PHI translation, that would be fun :) if (Instruction *PtrOp = dyn_cast(LoadedPtr)) if (PtrOp->getParent() == LoadBB) return false; // Scan a few instructions up from the load, to see if it is obviously live at // the entry to its block. BasicBlock::iterator BBIt = LI; if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { // If the value if the load is locally available within the block, just use // it. This frequently occurs for reg2mem'd allocas. //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; // If the returned value is the load itself, replace with an undef. This can // only happen in dead loops. if (AvailableVal == LI) AvailableVal = Context->getUndef(LI->getType()); LI->replaceAllUsesWith(AvailableVal); LI->eraseFromParent(); return true; } // Otherwise, if we scanned the whole block and got to the top of the block, // we know the block is locally transparent to the load. If not, something // might clobber its value. if (BBIt != LoadBB->begin()) return false; SmallPtrSet PredsScanned; typedef SmallVector, 8> AvailablePredsTy; AvailablePredsTy AvailablePreds; BasicBlock *OneUnavailablePred = 0; // If we got here, the loaded value is transparent through to the start of the // block. Check to see if it is available in any of the predecessor blocks. for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); PI != PE; ++PI) { BasicBlock *PredBB = *PI; // If we already scanned this predecessor, skip it. if (!PredsScanned.insert(PredBB)) continue; // Scan the predecessor to see if the value is available in the pred. BBIt = PredBB->end(); Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); if (!PredAvailable) { OneUnavailablePred = PredBB; continue; } // If so, this load is partially redundant. Remember this info so that we // can create a PHI node. AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); } // If the loaded value isn't available in any predecessor, it isn't partially // redundant. if (AvailablePreds.empty()) return false; // Okay, the loaded value is available in at least one (and maybe all!) // predecessors. If the value is unavailable in more than one unique // predecessor, we want to insert a merge block for those common predecessors. // This ensures that we only have to insert one reload, thus not increasing // code size. BasicBlock *UnavailablePred = 0; // If there is exactly one predecessor where the value is unavailable, the // already computed 'OneUnavailablePred' block is it. If it ends in an // unconditional branch, we know that it isn't a critical edge. if (PredsScanned.size() == AvailablePreds.size()+1 && OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { UnavailablePred = OneUnavailablePred; } else if (PredsScanned.size() != AvailablePreds.size()) { // Otherwise, we had multiple unavailable predecessors or we had a critical // edge from the one. SmallVector PredsToSplit; SmallPtrSet AvailablePredSet; for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) AvailablePredSet.insert(AvailablePreds[i].first); // Add all the unavailable predecessors to the PredsToSplit list. for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); PI != PE; ++PI) if (!AvailablePredSet.count(*PI)) PredsToSplit.push_back(*PI); // Split them out to their own block. UnavailablePred = SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), "thread-split", this); } // If the value isn't available in all predecessors, then there will be // exactly one where it isn't available. Insert a load on that edge and add // it to the AvailablePreds list. if (UnavailablePred) { assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && "Can't handle critical edge here!"); Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", UnavailablePred->getTerminator()); AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); } // Now we know that each predecessor of this block has a value in // AvailablePreds, sort them for efficient access as we're walking the preds. array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); // Create a PHI node at the start of the block for the PRE'd load value. PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); PN->takeName(LI); // Insert new entries into the PHI for each predecessor. A single block may // have multiple entries here. for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; ++PI) { AvailablePredsTy::iterator I = std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), std::make_pair(*PI, (Value*)0)); assert(I != AvailablePreds.end() && I->first == *PI && "Didn't find entry for predecessor!"); PN->addIncoming(I->second, I->first); } //cerr << "PRE: " << *LI << *PN << "\n"; LI->replaceAllUsesWith(PN); LI->eraseFromParent(); return true; } /// ProcessJumpOnPHI - We have a conditional branch of switch on a PHI node in /// the current block. See if there are any simplifications we can do based on /// inputs to the phi node. /// bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) { // See if the phi node has any constant values. If so, we can determine where // the corresponding predecessor will branch. ConstantInt *PredCst = 0; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if ((PredCst = dyn_cast(PN->getIncomingValue(i)))) break; // If no incoming value has a constant, we don't know the destination of any // predecessors. if (PredCst == 0) return false; // See if the cost of duplicating this block is low enough. BasicBlock *BB = PN->getParent(); unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); if (JumpThreadCost > Threshold) { DOUT << " Not threading BB '" << BB->getNameStart() << "' - Cost is too high: " << JumpThreadCost << "\n"; return false; } // If so, we can actually do this threading. Merge any common predecessors // that will act the same. BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst); // Next, figure out which successor we are threading to. BasicBlock *SuccBB; if (BranchInst *BI = dyn_cast(BB->getTerminator())) SuccBB = BI->getSuccessor(PredCst == Context->getConstantIntFalse()); else { SwitchInst *SI = cast(BB->getTerminator()); SuccBB = SI->getSuccessor(SI->findCaseValue(PredCst)); } // Ok, try to thread it! return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost); } /// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch /// whose condition is an AND/OR where one side is PN. If PN has constant /// operands that permit us to evaluate the condition for some operand, thread /// through the block. For example with: /// br (and X, phi(Y, Z, false)) /// the predecessor corresponding to the 'false' will always jump to the false /// destination of the branch. /// bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd) { // If this is a binary operator tree of the same AND/OR opcode, check the // LHS/RHS. if (BinaryOperator *BO = dyn_cast(V)) if ((isAnd && BO->getOpcode() == Instruction::And) || (!isAnd && BO->getOpcode() == Instruction::Or)) { if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd)) return true; if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd)) return true; } // If this isn't a PHI node, we can't handle it. PHINode *PN = dyn_cast(V); if (!PN || PN->getParent() != BB) return false; // We can only do the simplification for phi nodes of 'false' with AND or // 'true' with OR. See if we have any entries in the phi for this. unsigned PredNo = ~0U; ConstantInt *PredCst = Context->getConstantInt(Type::Int1Ty, !isAnd); for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { if (PN->getIncomingValue(i) == PredCst) { PredNo = i; break; } } // If no match, bail out. if (PredNo == ~0U) return false; // See if the cost of duplicating this block is low enough. unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); if (JumpThreadCost > Threshold) { DOUT << " Not threading BB '" << BB->getNameStart() << "' - Cost is too high: " << JumpThreadCost << "\n"; return false; } // If so, we can actually do this threading. Merge any common predecessors // that will act the same. BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst); // Next, figure out which successor we are threading to. If this was an AND, // the constant must be FALSE, and we must be targeting the 'false' block. // If this is an OR, the constant must be TRUE, and we must be targeting the // 'true' block. BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd); // Ok, try to thread it! return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost); } /// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right /// hand sides of the compare instruction, try to determine the result. If the /// result can not be determined, a null pointer is returned. static Constant *GetResultOfComparison(CmpInst::Predicate pred, Value *LHS, Value *RHS, LLVMContext *Context) { if (Constant *CLHS = dyn_cast(LHS)) if (Constant *CRHS = dyn_cast(RHS)) return Context->getConstantExprCompare(pred, CLHS, CRHS); if (LHS == RHS) if (isa(LHS->getType()) || isa(LHS->getType())) return ICmpInst::isTrueWhenEqual(pred) ? Context->getConstantIntTrue() : Context->getConstantIntFalse(); return 0; } /// ProcessBranchOnCompare - We found a branch on a comparison between a phi /// node and a value. If we can identify when the comparison is true between /// the phi inputs and the value, we can fold the compare for that edge and /// thread through it. bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) { PHINode *PN = cast(Cmp->getOperand(0)); Value *RHS = Cmp->getOperand(1); // If the phi isn't in the current block, an incoming edge to this block // doesn't control the destination. if (PN->getParent() != BB) return false; // We can do this simplification if any comparisons fold to true or false. // See if any do. Value *PredVal = 0; bool TrueDirection = false; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { PredVal = PN->getIncomingValue(i); Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal, RHS, Context); if (!Res) { PredVal = 0; continue; } // If this folded to a constant expr, we can't do anything. if (ConstantInt *ResC = dyn_cast(Res)) { TrueDirection = ResC->getZExtValue(); break; } // If this folded to undef, just go the false way. if (isa(Res)) { TrueDirection = false; break; } // Otherwise, we can't fold this input. PredVal = 0; } // If no match, bail out. if (PredVal == 0) return false; // See if the cost of duplicating this block is low enough. unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); if (JumpThreadCost > Threshold) { DOUT << " Not threading BB '" << BB->getNameStart() << "' - Cost is too high: " << JumpThreadCost << "\n"; return false; } // If so, we can actually do this threading. Merge any common predecessors // that will act the same. BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredVal); // Next, get our successor. BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection); // Ok, try to thread it! return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost); } /// ThreadEdge - We have decided that it is safe and profitable to thread an /// edge from PredBB to SuccBB across BB. Transform the IR to reflect this /// change. bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB, unsigned JumpThreadCost) { // If threading to the same block as we come from, we would infinite loop. if (SuccBB == BB) { DOUT << " Not threading across BB '" << BB->getNameStart() << "' - would thread to self!\n"; return false; } // If threading this would thread across a loop header, don't thread the edge. // See the comments above FindLoopHeaders for justifications and caveats. if (LoopHeaders.count(BB)) { DOUT << " Not threading from '" << PredBB->getNameStart() << "' across loop header BB '" << BB->getNameStart() << "' to dest BB '" << SuccBB->getNameStart() << "' - it might create an irreducible loop!\n"; return false; } // And finally, do it! DOUT << " Threading edge from '" << PredBB->getNameStart() << "' to '" << SuccBB->getNameStart() << "' with cost: " << JumpThreadCost << ", across block:\n " << *BB << "\n"; // Jump Threading can not update SSA properties correctly if the values // defined in the duplicated block are used outside of the block itself. For // this reason, we spill all values that are used outside of BB to the stack. for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { if (!I->isUsedOutsideOfBlock(BB)) continue; // We found a use of I outside of BB. Create a new stack slot to // break this inter-block usage pattern. DemoteRegToStack(*I); } // We are going to have to map operands from the original BB block to the new // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to // account for entry from PredBB. DenseMap ValueMapping; BasicBlock *NewBB = BasicBlock::Create(BB->getName()+".thread", BB->getParent(), BB); NewBB->moveAfter(PredBB); BasicBlock::iterator BI = BB->begin(); for (; PHINode *PN = dyn_cast(BI); ++BI) ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); // Clone the non-phi instructions of BB into NewBB, keeping track of the // mapping and using it to remap operands in the cloned instructions. for (; !isa(BI); ++BI) { Instruction *New = BI->clone(*Context); New->setName(BI->getNameStart()); NewBB->getInstList().push_back(New); ValueMapping[BI] = New; // Remap operands to patch up intra-block references. for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) if (Instruction *Inst = dyn_cast(New->getOperand(i))) { DenseMap::iterator I = ValueMapping.find(Inst); if (I != ValueMapping.end()) New->setOperand(i, I->second); } } // We didn't copy the terminator from BB over to NewBB, because there is now // an unconditional jump to SuccBB. Insert the unconditional jump. BranchInst::Create(SuccBB, NewBB); // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the // PHI nodes for NewBB now. for (BasicBlock::iterator PNI = SuccBB->begin(); isa(PNI); ++PNI) { PHINode *PN = cast(PNI); // Ok, we have a PHI node. Figure out what the incoming value was for the // DestBlock. Value *IV = PN->getIncomingValueForBlock(BB); // Remap the value if necessary. if (Instruction *Inst = dyn_cast(IV)) { DenseMap::iterator I = ValueMapping.find(Inst); if (I != ValueMapping.end()) IV = I->second; } PN->addIncoming(IV, NewBB); } // Ok, NewBB is good to go. Update the terminator of PredBB to jump to // NewBB instead of BB. This eliminates predecessors from BB, which requires // us to simplify any PHI nodes in BB. TerminatorInst *PredTerm = PredBB->getTerminator(); for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) if (PredTerm->getSuccessor(i) == BB) { BB->removePredecessor(PredBB); PredTerm->setSuccessor(i, NewBB); } // At this point, the IR is fully up to date and consistent. Do a quick scan // over the new instructions and zap any that are constants or dead. This // frequently happens because of phi translation. BI = NewBB->begin(); for (BasicBlock::iterator E = NewBB->end(); BI != E; ) { Instruction *Inst = BI++; if (Constant *C = ConstantFoldInstruction(Inst, BB->getContext(), TD)) { Inst->replaceAllUsesWith(C); Inst->eraseFromParent(); continue; } RecursivelyDeleteTriviallyDeadInstructions(Inst); } // Threaded an edge! ++NumThreads; return true; }