//===-- llvm/CodeGen/LiveInterval.h - Interval representation ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveRange and LiveInterval classes. Given some // numbering of each the machine instructions an interval [i, j) is said to be a // live interval for register v if there is no instruction with number j' >= j // such that v is live at j' and there is no instruction with number i' < i such // that v is live at i'. In this implementation intervals can have holes, // i.e. an interval might look like [1,20), [50,65), [1000,1001). Each // individual range is represented as an instance of LiveRange, and the whole // interval is represented as an instance of LiveInterval. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_LIVEINTERVAL_H #define LLVM_CODEGEN_LIVEINTERVAL_H #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/AlignOf.h" #include #include namespace llvm { class MachineInstr; class MachineRegisterInfo; class TargetRegisterInfo; class raw_ostream; /// LiveIndex - An opaque wrapper around machine indexes. class LiveIndex { friend class VNInfo; friend class LiveInterval; friend class LiveIntervals; friend struct DenseMapInfo; public: enum Slot { LOAD, USE, DEF, STORE, NUM }; private: unsigned index; static const unsigned PHI_BIT = 1 << 31; public: /// Construct a default LiveIndex pointing to a reserved index. LiveIndex() : index(0) {} /// Construct an index from the given index, pointing to the given slot. LiveIndex(LiveIndex m, Slot s) : index((m.index / NUM) * NUM + s) {} /// Print this index to the given raw_ostream. void print(raw_ostream &os) const; /// Compare two LiveIndex objects for equality. bool operator==(LiveIndex other) const { return ((index & ~PHI_BIT) == (other.index & ~PHI_BIT)); } /// Compare two LiveIndex objects for inequality. bool operator!=(LiveIndex other) const { return ((index & ~PHI_BIT) != (other.index & ~PHI_BIT)); } /// Compare two LiveIndex objects. Return true if the first index /// is strictly lower than the second. bool operator<(LiveIndex other) const { return ((index & ~PHI_BIT) < (other.index & ~PHI_BIT)); } /// Compare two LiveIndex objects. Return true if the first index /// is lower than, or equal to, the second. bool operator<=(LiveIndex other) const { return ((index & ~PHI_BIT) <= (other.index & ~PHI_BIT)); } /// Compare two LiveIndex objects. Return true if the first index /// is greater than the second. bool operator>(LiveIndex other) const { return ((index & ~PHI_BIT) > (other.index & ~PHI_BIT)); } /// Compare two LiveIndex objects. Return true if the first index /// is greater than, or equal to, the second. bool operator>=(LiveIndex other) const { return ((index & ~PHI_BIT) >= (other.index & ~PHI_BIT)); } /// Returns true if this index represents a load. bool isLoad() const { return ((index % NUM) == LOAD); } /// Returns true if this index represents a use. bool isUse() const { return ((index % NUM) == USE); } /// Returns true if this index represents a def. bool isDef() const { return ((index % NUM) == DEF); } /// Returns true if this index represents a store. bool isStore() const { return ((index % NUM) == STORE); } /// Returns the slot for this LiveIndex. Slot getSlot() const { return static_cast(index % NUM); } /// Returns true if this index represents a non-PHI use/def. bool isNonPHIIndex() const { return ((index & PHI_BIT) == 0); } /// Returns true if this index represents a PHI use/def. bool isPHIIndex() const { return ((index & PHI_BIT) == PHI_BIT); } private: /// Construct an index from the given index, with its PHI kill marker set. LiveIndex(bool phi, LiveIndex o) : index(o.index) { if (phi) index |= PHI_BIT; else index &= ~PHI_BIT; } explicit LiveIndex(unsigned idx) : index(idx & ~PHI_BIT) {} LiveIndex(bool phi, unsigned idx) : index(idx & ~PHI_BIT) { if (phi) index |= PHI_BIT; } LiveIndex(bool phi, unsigned idx, Slot slot) : index(((idx / NUM) * NUM + slot) & ~PHI_BIT) { if (phi) index |= PHI_BIT; } LiveIndex nextSlot_() const { assert((index & PHI_BIT) == ((index + 1) & PHI_BIT) && "Index out of bounds."); return LiveIndex(index + 1); } LiveIndex nextIndex_() const { assert((index & PHI_BIT) == ((index + NUM) & PHI_BIT) && "Index out of bounds."); return LiveIndex(index + NUM); } LiveIndex prevSlot_() const { assert((index & PHI_BIT) == ((index - 1) & PHI_BIT) && "Index out of bounds."); return LiveIndex(index - 1); } LiveIndex prevIndex_() const { assert((index & PHI_BIT) == ((index - NUM) & PHI_BIT) && "Index out of bounds."); return LiveIndex(index - NUM); } int distance(LiveIndex other) const { return (other.index & ~PHI_BIT) - (index & ~PHI_BIT); } /// Returns an unsigned number suitable as an index into a /// vector over all instructions. unsigned getVecIndex() const { return (index & ~PHI_BIT) / NUM; } /// Scale this index by the given factor. LiveIndex scale(unsigned factor) const { unsigned i = (index & ~PHI_BIT) / NUM, o = (index % ~PHI_BIT) % NUM; assert(index <= (~0U & ~PHI_BIT) / (factor * NUM) && "Rescaled interval would overflow"); return LiveIndex(i * NUM * factor, o); } static LiveIndex emptyKey() { return LiveIndex(true, 0x7fffffff); } static LiveIndex tombstoneKey() { return LiveIndex(true, 0x7ffffffe); } static unsigned getHashValue(const LiveIndex &v) { return v.index * 37; } }; inline raw_ostream& operator<<(raw_ostream &os, LiveIndex mi) { mi.print(os); return os; } /// Densemap specialization for LiveIndex. template <> struct DenseMapInfo { static inline LiveIndex getEmptyKey() { return LiveIndex::emptyKey(); } static inline LiveIndex getTombstoneKey() { return LiveIndex::tombstoneKey(); } static inline unsigned getHashValue(const LiveIndex &v) { return LiveIndex::getHashValue(v); } static inline bool isEqual(const LiveIndex &LHS, const LiveIndex &RHS) { return (LHS == RHS); } static inline bool isPod() { return true; } }; /// VNInfo - Value Number Information. /// This class holds information about a machine level values, including /// definition and use points. /// /// Care must be taken in interpreting the def index of the value. The /// following rules apply: /// /// If the isDefAccurate() method returns false then def does not contain the /// index of the defining MachineInstr, or even (necessarily) to a /// MachineInstr at all. In general such a def index is not meaningful /// and should not be used. The exception is that, for values originally /// defined by PHI instructions, after PHI elimination def will contain the /// index of the MBB in which the PHI originally existed. This can be used /// to insert code (spills or copies) which deals with the value, which will /// be live in to the block. class VNInfo { private: enum { HAS_PHI_KILL = 1, REDEF_BY_EC = 1 << 1, IS_PHI_DEF = 1 << 2, IS_UNUSED = 1 << 3, IS_DEF_ACCURATE = 1 << 4 }; unsigned char flags; union { MachineInstr *copy; unsigned reg; } cr; public: typedef SmallVector KillSet; /// The ID number of this value. unsigned id; /// The index of the defining instruction (if isDefAccurate() returns true). LiveIndex def; KillSet kills; VNInfo() : flags(IS_UNUSED), id(~1U) { cr.copy = 0; } /// VNInfo constructor. /// d is presumed to point to the actual defining instr. If it doesn't /// setIsDefAccurate(false) should be called after construction. VNInfo(unsigned i, LiveIndex d, MachineInstr *c) : flags(IS_DEF_ACCURATE), id(i), def(d) { cr.copy = c; } /// VNInfo construtor, copies values from orig, except for the value number. VNInfo(unsigned i, const VNInfo &orig) : flags(orig.flags), cr(orig.cr), id(i), def(orig.def), kills(orig.kills) { } /// Copy from the parameter into this VNInfo. void copyFrom(VNInfo &src) { flags = src.flags; cr = src.cr; def = src.def; kills = src.kills; } /// Used for copying value number info. unsigned getFlags() const { return flags; } void setFlags(unsigned flags) { this->flags = flags; } /// For a register interval, if this VN was definied by a copy instr /// getCopy() returns a pointer to it, otherwise returns 0. /// For a stack interval the behaviour of this method is undefined. MachineInstr* getCopy() const { return cr.copy; } /// For a register interval, set the copy member. /// This method should not be called on stack intervals as it may lead to /// undefined behavior. void setCopy(MachineInstr *c) { cr.copy = c; } /// For a stack interval, returns the reg which this stack interval was /// defined from. /// For a register interval the behaviour of this method is undefined. unsigned getReg() const { return cr.reg; } /// For a stack interval, set the defining register. /// This method should not be called on register intervals as it may lead /// to undefined behaviour. void setReg(unsigned reg) { cr.reg = reg; } /// Returns true if one or more kills are PHI nodes. bool hasPHIKill() const { return flags & HAS_PHI_KILL; } /// Set the PHI kill flag on this value. void setHasPHIKill(bool hasKill) { if (hasKill) flags |= HAS_PHI_KILL; else flags &= ~HAS_PHI_KILL; } /// Returns true if this value is re-defined by an early clobber somewhere /// during the live range. bool hasRedefByEC() const { return flags & REDEF_BY_EC; } /// Set the "redef by early clobber" flag on this value. void setHasRedefByEC(bool hasRedef) { if (hasRedef) flags |= REDEF_BY_EC; else flags &= ~REDEF_BY_EC; } /// Returns true if this value is defined by a PHI instruction (or was, /// PHI instrucions may have been eliminated). bool isPHIDef() const { return flags & IS_PHI_DEF; } /// Set the "phi def" flag on this value. void setIsPHIDef(bool phiDef) { if (phiDef) flags |= IS_PHI_DEF; else flags &= ~IS_PHI_DEF; } /// Returns true if this value is unused. bool isUnused() const { return flags & IS_UNUSED; } /// Set the "is unused" flag on this value. void setIsUnused(bool unused) { if (unused) flags |= IS_UNUSED; else flags &= ~IS_UNUSED; } /// Returns true if the def is accurate. bool isDefAccurate() const { return flags & IS_DEF_ACCURATE; } /// Set the "is def accurate" flag on this value. void setIsDefAccurate(bool defAccurate) { if (defAccurate) flags |= IS_DEF_ACCURATE; else flags &= ~IS_DEF_ACCURATE; } /// Returns true if the given index is a kill of this value. bool isKill(LiveIndex k) const { KillSet::const_iterator i = std::lower_bound(kills.begin(), kills.end(), k); return (i != kills.end() && *i == k); } /// addKill - Add a kill instruction index to the specified value /// number. void addKill(LiveIndex k) { if (kills.empty()) { kills.push_back(k); } else { KillSet::iterator i = std::lower_bound(kills.begin(), kills.end(), k); kills.insert(i, k); } } /// Remove the specified kill index from this value's kills list. /// Returns true if the value was present, otherwise returns false. bool removeKill(LiveIndex k) { KillSet::iterator i = std::lower_bound(kills.begin(), kills.end(), k); if (i != kills.end() && *i == k) { kills.erase(i); return true; } return false; } /// Remove all kills in the range [s, e). void removeKills(LiveIndex s, LiveIndex e) { KillSet::iterator si = std::lower_bound(kills.begin(), kills.end(), s), se = std::upper_bound(kills.begin(), kills.end(), e); kills.erase(si, se); } }; /// LiveRange structure - This represents a simple register range in the /// program, with an inclusive start point and an exclusive end point. /// These ranges are rendered as [start,end). struct LiveRange { LiveIndex start; // Start point of the interval (inclusive) LiveIndex end; // End point of the interval (exclusive) VNInfo *valno; // identifier for the value contained in this interval. LiveRange(LiveIndex S, LiveIndex E, VNInfo *V) : start(S), end(E), valno(V) { assert(S < E && "Cannot create empty or backwards range"); } /// contains - Return true if the index is covered by this range. /// bool contains(LiveIndex I) const { return start <= I && I < end; } /// containsRange - Return true if the given range, [S, E), is covered by /// this range. bool containsRange(LiveIndex S, LiveIndex E) const { assert((S < E) && "Backwards interval?"); return (start <= S && S < end) && (start < E && E <= end); } bool operator<(const LiveRange &LR) const { return start < LR.start || (start == LR.start && end < LR.end); } bool operator==(const LiveRange &LR) const { return start == LR.start && end == LR.end; } void dump() const; void print(raw_ostream &os) const; private: LiveRange(); // DO NOT IMPLEMENT }; raw_ostream& operator<<(raw_ostream& os, const LiveRange &LR); inline bool operator<(LiveIndex V, const LiveRange &LR) { return V < LR.start; } inline bool operator<(const LiveRange &LR, LiveIndex V) { return LR.start < V; } /// LiveInterval - This class represents some number of live ranges for a /// register or value. This class also contains a bit of register allocator /// state. class LiveInterval { public: typedef SmallVector Ranges; typedef SmallVector VNInfoList; unsigned reg; // the register or stack slot of this interval // if the top bits is set, it represents a stack slot. float weight; // weight of this interval Ranges ranges; // the ranges in which this register is live VNInfoList valnos; // value#'s struct InstrSlots { enum { LOAD = 0, USE = 1, DEF = 2, STORE = 3, NUM = 4 }; }; LiveInterval(unsigned Reg, float Weight, bool IsSS = false) : reg(Reg), weight(Weight) { if (IsSS) reg = reg | (1U << (sizeof(unsigned)*CHAR_BIT-1)); } typedef Ranges::iterator iterator; iterator begin() { return ranges.begin(); } iterator end() { return ranges.end(); } typedef Ranges::const_iterator const_iterator; const_iterator begin() const { return ranges.begin(); } const_iterator end() const { return ranges.end(); } typedef VNInfoList::iterator vni_iterator; vni_iterator vni_begin() { return valnos.begin(); } vni_iterator vni_end() { return valnos.end(); } typedef VNInfoList::const_iterator const_vni_iterator; const_vni_iterator vni_begin() const { return valnos.begin(); } const_vni_iterator vni_end() const { return valnos.end(); } /// advanceTo - Advance the specified iterator to point to the LiveRange /// containing the specified position, or end() if the position is past the /// end of the interval. If no LiveRange contains this position, but the /// position is in a hole, this method returns an iterator pointing the the /// LiveRange immediately after the hole. iterator advanceTo(iterator I, LiveIndex Pos) { if (Pos >= endIndex()) return end(); while (I->end <= Pos) ++I; return I; } void clear() { while (!valnos.empty()) { VNInfo *VNI = valnos.back(); valnos.pop_back(); VNI->~VNInfo(); } ranges.clear(); } /// isStackSlot - Return true if this is a stack slot interval. /// bool isStackSlot() const { return reg & (1U << (sizeof(unsigned)*CHAR_BIT-1)); } /// getStackSlotIndex - Return stack slot index if this is a stack slot /// interval. int getStackSlotIndex() const { assert(isStackSlot() && "Interval is not a stack slot interval!"); return reg & ~(1U << (sizeof(unsigned)*CHAR_BIT-1)); } bool hasAtLeastOneValue() const { return !valnos.empty(); } bool containsOneValue() const { return valnos.size() == 1; } unsigned getNumValNums() const { return (unsigned)valnos.size(); } /// getValNumInfo - Returns pointer to the specified val#. /// inline VNInfo *getValNumInfo(unsigned ValNo) { return valnos[ValNo]; } inline const VNInfo *getValNumInfo(unsigned ValNo) const { return valnos[ValNo]; } /// getNextValue - Create a new value number and return it. MIIdx specifies /// the instruction that defines the value number. VNInfo *getNextValue(LiveIndex def, MachineInstr *CopyMI, bool isDefAccurate, BumpPtrAllocator &VNInfoAllocator){ VNInfo *VNI = static_cast(VNInfoAllocator.Allocate((unsigned)sizeof(VNInfo), alignof())); new (VNI) VNInfo((unsigned)valnos.size(), def, CopyMI); VNI->setIsDefAccurate(isDefAccurate); valnos.push_back(VNI); return VNI; } /// Create a copy of the given value. The new value will be identical except /// for the Value number. VNInfo *createValueCopy(const VNInfo *orig, BumpPtrAllocator &VNInfoAllocator) { VNInfo *VNI = static_cast(VNInfoAllocator.Allocate((unsigned)sizeof(VNInfo), alignof())); new (VNI) VNInfo((unsigned)valnos.size(), *orig); valnos.push_back(VNI); return VNI; } /// addKills - Add a number of kills into the VNInfo kill vector. If this /// interval is live at a kill point, then the kill is not added. void addKills(VNInfo *VNI, const VNInfo::KillSet &kills) { for (unsigned i = 0, e = static_cast(kills.size()); i != e; ++i) { if (!liveBeforeAndAt(kills[i])) { VNI->addKill(kills[i]); } } } /// isOnlyLROfValNo - Return true if the specified live range is the only /// one defined by the its val#. bool isOnlyLROfValNo(const LiveRange *LR) { for (const_iterator I = begin(), E = end(); I != E; ++I) { const LiveRange *Tmp = I; if (Tmp != LR && Tmp->valno == LR->valno) return false; } return true; } /// MergeValueNumberInto - This method is called when two value nubmers /// are found to be equivalent. This eliminates V1, replacing all /// LiveRanges with the V1 value number with the V2 value number. This can /// cause merging of V1/V2 values numbers and compaction of the value space. VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2); /// MergeInClobberRanges - For any live ranges that are not defined in the /// current interval, but are defined in the Clobbers interval, mark them /// used with an unknown definition value. Caller must pass in reference to /// VNInfoAllocator since it will create a new val#. void MergeInClobberRanges(const LiveInterval &Clobbers, BumpPtrAllocator &VNInfoAllocator); /// MergeInClobberRange - Same as MergeInClobberRanges except it merge in a /// single LiveRange only. void MergeInClobberRange(LiveIndex Start, LiveIndex End, BumpPtrAllocator &VNInfoAllocator); /// MergeValueInAsValue - Merge all of the live ranges of a specific val# /// in RHS into this live interval as the specified value number. /// The LiveRanges in RHS are allowed to overlap with LiveRanges in the /// current interval, it will replace the value numbers of the overlaped /// live ranges with the specified value number. void MergeRangesInAsValue(const LiveInterval &RHS, VNInfo *LHSValNo); /// MergeValueInAsValue - Merge all of the live ranges of a specific val# /// in RHS into this live interval as the specified value number. /// The LiveRanges in RHS are allowed to overlap with LiveRanges in the /// current interval, but only if the overlapping LiveRanges have the /// specified value number. void MergeValueInAsValue(const LiveInterval &RHS, const VNInfo *RHSValNo, VNInfo *LHSValNo); /// Copy - Copy the specified live interval. This copies all the fields /// except for the register of the interval. void Copy(const LiveInterval &RHS, MachineRegisterInfo *MRI, BumpPtrAllocator &VNInfoAllocator); bool empty() const { return ranges.empty(); } /// beginIndex - Return the lowest numbered slot covered by interval. LiveIndex beginIndex() const { if (empty()) return LiveIndex(); return ranges.front().start; } /// endNumber - return the maximum point of the interval of the whole, /// exclusive. LiveIndex endIndex() const { if (empty()) return LiveIndex(); return ranges.back().end; } bool expiredAt(LiveIndex index) const { return index >= endIndex(); } bool liveAt(LiveIndex index) const; // liveBeforeAndAt - Check if the interval is live at the index and the // index just before it. If index is liveAt, check if it starts a new live // range.If it does, then check if the previous live range ends at index-1. bool liveBeforeAndAt(LiveIndex index) const; /// getLiveRangeContaining - Return the live range that contains the /// specified index, or null if there is none. const LiveRange *getLiveRangeContaining(LiveIndex Idx) const { const_iterator I = FindLiveRangeContaining(Idx); return I == end() ? 0 : &*I; } /// getLiveRangeContaining - Return the live range that contains the /// specified index, or null if there is none. LiveRange *getLiveRangeContaining(LiveIndex Idx) { iterator I = FindLiveRangeContaining(Idx); return I == end() ? 0 : &*I; } /// FindLiveRangeContaining - Return an iterator to the live range that /// contains the specified index, or end() if there is none. const_iterator FindLiveRangeContaining(LiveIndex Idx) const; /// FindLiveRangeContaining - Return an iterator to the live range that /// contains the specified index, or end() if there is none. iterator FindLiveRangeContaining(LiveIndex Idx); /// findDefinedVNInfo - Find the by the specified /// index (register interval) or defined VNInfo *findDefinedVNInfoForRegInt(LiveIndex Idx) const; /// findDefinedVNInfo - Find the VNInfo that's defined by the specified /// register (stack inteval only). VNInfo *findDefinedVNInfoForStackInt(unsigned Reg) const; /// overlaps - Return true if the intersection of the two live intervals is /// not empty. bool overlaps(const LiveInterval& other) const { return overlapsFrom(other, other.begin()); } /// overlaps - Return true if the live interval overlaps a range specified /// by [Start, End). bool overlaps(LiveIndex Start, LiveIndex End) const; /// overlapsFrom - Return true if the intersection of the two live intervals /// is not empty. The specified iterator is a hint that we can begin /// scanning the Other interval starting at I. bool overlapsFrom(const LiveInterval& other, const_iterator I) const; /// addRange - Add the specified LiveRange to this interval, merging /// intervals as appropriate. This returns an iterator to the inserted live /// range (which may have grown since it was inserted. void addRange(LiveRange LR) { addRangeFrom(LR, ranges.begin()); } /// join - Join two live intervals (this, and other) together. This applies /// mappings to the value numbers in the LHS/RHS intervals as specified. If /// the intervals are not joinable, this aborts. void join(LiveInterval &Other, const int *ValNoAssignments, const int *RHSValNoAssignments, SmallVector &NewVNInfo, MachineRegisterInfo *MRI); /// isInOneLiveRange - Return true if the range specified is entirely in the /// a single LiveRange of the live interval. bool isInOneLiveRange(LiveIndex Start, LiveIndex End); /// removeRange - Remove the specified range from this interval. Note that /// the range must be a single LiveRange in its entirety. void removeRange(LiveIndex Start, LiveIndex End, bool RemoveDeadValNo = false); void removeRange(LiveRange LR, bool RemoveDeadValNo = false) { removeRange(LR.start, LR.end, RemoveDeadValNo); } /// removeValNo - Remove all the ranges defined by the specified value#. /// Also remove the value# from value# list. void removeValNo(VNInfo *ValNo); /// scaleNumbering - Renumber VNI and ranges to provide gaps for new /// instructions. void scaleNumbering(unsigned factor); /// getSize - Returns the sum of sizes of all the LiveRange's. /// unsigned getSize() const; /// ComputeJoinedWeight - Set the weight of a live interval after /// Other has been merged into it. void ComputeJoinedWeight(const LiveInterval &Other); bool operator<(const LiveInterval& other) const { const LiveIndex &thisIndex = beginIndex(); const LiveIndex &otherIndex = other.beginIndex(); return (thisIndex < otherIndex || (thisIndex == otherIndex && reg < other.reg)); } void print(raw_ostream &OS, const TargetRegisterInfo *TRI = 0) const; void dump() const; private: Ranges::iterator addRangeFrom(LiveRange LR, Ranges::iterator From); void extendIntervalEndTo(Ranges::iterator I, LiveIndex NewEnd); Ranges::iterator extendIntervalStartTo(Ranges::iterator I, LiveIndex NewStr); LiveInterval& operator=(const LiveInterval& rhs); // DO NOT IMPLEMENT }; inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) { LI.print(OS); return OS; } } #endif