//===-- PrologEpilogCodeInserter.cpp - Insert Prolog & Epilog code for fn -===// // // Insert SAVE/RESTORE instructions for the function // // Insert prolog code at the unique function entry point. // Insert epilog code at each function exit point. // InsertPrologEpilog invokes these only if the function is not compiled // with the leaf function optimization. // //===----------------------------------------------------------------------===// #include "SparcInternals.h" #include "SparcRegClassInfo.h" #include "llvm/CodeGen/MachineCodeForMethod.h" #include "llvm/CodeGen/MachineCodeForBasicBlock.h" #include "llvm/CodeGen/MachineCodeForInstruction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/InstrSelectionSupport.h" #include "llvm/Pass.h" #include "llvm/Function.h" namespace { class InsertPrologEpilogCode : public FunctionPass { TargetMachine &Target; public: InsertPrologEpilogCode(TargetMachine &T) : Target(T) {} const char *getPassName() const { return "Sparc Prolog/Epilog Inserter"; } bool runOnFunction(Function &F) { MachineCodeForMethod &mcodeInfo = MachineCodeForMethod::get(&F); if (!mcodeInfo.isCompiledAsLeafMethod()) { InsertPrologCode(F); InsertEpilogCode(F); } return false; } void InsertPrologCode(Function &F); void InsertEpilogCode(Function &F); }; } // End anonymous namespace //------------------------------------------------------------------------ // External Function: GetInstructionsForProlog // External Function: GetInstructionsForEpilog // // Purpose: // Create prolog and epilog code for procedure entry and exit //------------------------------------------------------------------------ void InsertPrologEpilogCode::InsertPrologCode(Function &F) { std::vector mvec; MachineInstr* M; const MachineFrameInfo& frameInfo = Target.getFrameInfo(); // The second operand is the stack size. If it does not fit in the // immediate field, we have to use a free register to hold the size. // We will assume that local register `l0' is unused since the SAVE // instruction must be the first instruction in each procedure. // MachineCodeForMethod& mcInfo = MachineCodeForMethod::get(&F); unsigned int staticStackSize = mcInfo.getStaticStackSize(); if (staticStackSize < (unsigned) frameInfo.getMinStackFrameSize()) staticStackSize = (unsigned) frameInfo.getMinStackFrameSize(); if (unsigned padsz = (staticStackSize % (unsigned) frameInfo.getStackFrameSizeAlignment())) staticStackSize += frameInfo.getStackFrameSizeAlignment() - padsz; if (Target.getInstrInfo().constantFitsInImmedField(SAVE, staticStackSize)) { M = new MachineInstr(SAVE); M->SetMachineOperandReg(0, Target.getRegInfo().getStackPointer()); M->SetMachineOperandConst(1, MachineOperand::MO_SignExtendedImmed, - (int) staticStackSize); M->SetMachineOperandReg(2, Target.getRegInfo().getStackPointer()); mvec.push_back(M); } else { // We have to put the stack size value into a register before SAVE. // Use register %l0 to since it must be unused at function entry. // Do this by creating a code sequence equivalent to: // SETSW -(stackSize), %l0 int32_t C = - (int) staticStackSize; int uregNum = Target.getRegInfo().getUnifiedRegNum( Target.getRegInfo().getRegClassIDOfType(Type::IntTy), SparcIntRegClass::l0); M = new MachineInstr(SETHI); M->SetMachineOperandConst(0, MachineOperand::MO_SignExtendedImmed, C); M->SetMachineOperandReg(1, uregNum); M->setOperandHi32(0); mvec.push_back(M); M = new MachineInstr(OR); M->SetMachineOperandReg(0, uregNum); M->SetMachineOperandConst(1, MachineOperand::MO_SignExtendedImmed, C); M->SetMachineOperandReg(2, uregNum); M->setOperandLo32(1); mvec.push_back(M); M = new MachineInstr(SRA); M->SetMachineOperandReg(0, uregNum); M->SetMachineOperandConst(1, MachineOperand::MO_UnextendedImmed, 0); M->SetMachineOperandReg(2, uregNum); mvec.push_back(M); // Now generate the SAVE using the value in register %l0 M = new MachineInstr(SAVE); M->SetMachineOperandReg(0, Target.getRegInfo().getStackPointer()); M->SetMachineOperandReg(1, uregNum); M->SetMachineOperandReg(2, Target.getRegInfo().getStackPointer()); mvec.push_back(M); } MachineCodeForBasicBlock& bbMvec = MachineCodeForBasicBlock::get(&F.getEntryNode()); bbMvec.insert(bbMvec.begin(), mvec.begin(), mvec.end()); } void InsertPrologEpilogCode::InsertEpilogCode(Function &F) { for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { Instruction *TermInst = (Instruction*)I->getTerminator(); if (TermInst->getOpcode() == Instruction::Ret) { MachineInstr *Restore = new MachineInstr(RESTORE); Restore->SetMachineOperandReg(0, Target.getRegInfo().getZeroRegNum()); Restore->SetMachineOperandConst(1, MachineOperand::MO_SignExtendedImmed, (int64_t)0); Restore->SetMachineOperandReg(2, Target.getRegInfo().getZeroRegNum()); MachineCodeForBasicBlock& bbMvec = MachineCodeForBasicBlock::get(I); MachineCodeForInstruction &termMvec = MachineCodeForInstruction::get(TermInst); // Remove the NOPs in the delay slots of the return instruction const MachineInstrInfo &mii = Target.getInstrInfo(); unsigned numNOPs = 0; while (termMvec.back()->getOpCode() == NOP) { assert( termMvec.back() == bbMvec.back()); delete bbMvec.pop_back(); termMvec.pop_back(); ++numNOPs; } assert(termMvec.back() == bbMvec.back()); // Check that we found the right number of NOPs and have the right // number of instructions to replace them. unsigned ndelays = mii.getNumDelaySlots(termMvec.back()->getOpCode()); assert(numNOPs == ndelays && "Missing NOPs in delay slots?"); assert(ndelays == 1 && "Cannot use epilog code for delay slots?"); // Append the epilog code to the end of the basic block. bbMvec.push_back(Restore); } } } Pass *createPrologEpilogCodeInserter(TargetMachine &TM) { return new InsertPrologEpilogCode(TM); }